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ABSTRACT
This paper focuses on opinion formation and herding effects in
financial markets. We adopt a well-established opinion diffusion
dynamics to model social connections between the traders in a hy-
pothetical market environment. Opinions are translated to trading
positions and market prices evolve accordingly. We relate the shape
of the graph social network with the equilibria of the game, where
traders can strategically decide whether to follow the wisdom of
the crowd or act upon their own beliefs. We adopt Empirical Game-
Theoretic Analysis to compute the Nash equilibrium of this game.
We show that the larger their neighbourhood, the more the traders
are willing to imitate others and the less volatile the stock price is.
However, when every trader in the market has perfect knowledge
of the opinions of all the other traders, the market will still exhibit
crashes and bubbles.
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1 INTRODUCTION
The efficient market hypothesis (EMH) was introduced in the mid-
1960s and is widely accepted as an important financial theory. Ac-
cording to the theory, financial markets are incapable of generating
their own internal forces to upset equilibrium, and large price
changes are simply the result of markets reacting to new external
information or changing fundamentals. Thus, according to EMH,
there is no room for asset prices to bubble or collapse [1]. How-
ever, history and past data show that EMH has not always been
successful in explaining phenomena in financial markets. From
the Dutch tulip bubble in 1626, the South Sea corporate bubble in
the UK, the French Mississippi corporate bubble in the early 1700s
and the Japanese bubble in the 1980s, to the recent US subprime
mortgages and the 2008 financial crisis, bubbles and crashes have
occurred and continue to occur in financial markets. People increas-
ingly believe that traditional economic models cannot explain the
significant jumps of financial markets and related crises. Therefore,
agent-based models (ABM) as an alternative method to better un-
derstand the complex dynamics of financial markets have received
attention [7].

In this paper, we use ABM to connect two complex dynamics in
financial markets. The first is concerned with how traders’ decisions
are influenced by their professional connections. We adopt a model
of opinion dynamics, introduced in [9] building upon the seminal
work of DeGroot [5], and studied extensively by the community
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working on incentives in multi-agent system, see, e.g., [3, 8]. In this
model, each agent (modeling a trader) needs to balance its own per-
sonal belief about the future movement of a financial asset with the
opinions of the other traders in the market. The interplay between
steering (acting upon personal belief) and herding (acting upon the
wisdom of the crowd) is in fact the second dynamics we want to
study. To capture this, we link the opinion dynamics with trading
decisions, which naturally define a market price dynamics. In this
setup, we study the emergence of herding in financial markets, as
a function of the structure of the social network of traders.

We adopt Empirical Game-Theoretic Analysis to compute the
equilibria of the game, where agents decide at each step whether
to follow or steer, for a variety of social graphs. We set a parameter
similar to the degree of ‘stubbornness’ of agents. A high level of
agent ‘stubbornness’ means that the agent is more likely to believe
in itself. Once we reach a stubbornness equilibrium, we observe
how the stock price changes by using our ABM. We further assess
how herding (or lack thereof) affects markets by studying crashes
and bubbles. In absence of quantitative notions, we introduce a new
definition of crashes and bubbles, inspired by the financial concept
of Maximum Drawdown [11]. Our results overall confirm that at
equilibrium, the more traders are connected in the social network
the more likely it is that herding will occur. However, herding will
not cause substantial price movements in the market unless the
social graph is a clique. In this case, in fact, we find that a minority
of agents will maintain a high level of stubbornness at equilibrium,
which will lead to few bumps along the road.

The paper unfolds as follows: Section 2 presents the literature
review about this topic. Section 3 describes the design and general
setup of the experiment. The main experimental results and anal-
yses are presented in Section 4. The final section concludes our
findings from the experiments.

2 LITERATURE REVIEW
Agent-based models (ABM) are a class of computational models
that simulate the behavior and interactions of autonomous agents
in order to assess their impact on the system as a whole. It com-
bines elements of game theory, complex systems, computational
sociology, and multi-agent systems. ABMs are microscopic models
that simulate the simultaneous actions and interactions of multi-
ple agents in an attempt to recreate and predict the emergence of
complex phenomena. They are computational method that allows
analysts to create, analyze, and experiment with artificial worlds
composed of agents that interact in a particular environment [4].
ABM is applicable to the analysis of financial markets formed by
heterogeneous entities and their interactions, as well as to the study
of economic phenomena such as financial crises that are difficult
to explain with mainstream economic tools. Some previous studies
have analyzed financial markets based on asset management. One



of the earliest representative models is the Artificial Stock Market
[12]. The authors developed a simple model of the stock market and
showed that price bubbles, crashes and persistently high trading
volumes could occur.
Opinion formation describes the dynamics of opinions across a
set of interacting factors and is a powerful tool for predicting the
evolution and diffusion of opinions. F. Slanina and H. Lavicka de-
scribe the Sznajd model of opinion formation and social influence
[17]. The Sznajd model is an economic physics model proposed in
2000. Implementing a phenomenon called social validation [18]. In
brief, the model posits that if two people have the same opinion,
their neighbors will begin to agree with them. If the people around
them disagree, their neighbors will begin to argue with them. In a
multi-person environment it has been pointed out that, in order to
be realistic, the concept of a solution should be obtained through
a decentralised, rational and simple process. Therefore, many au-
thors investigated the concept of computing solutions through
decentralised dynamics, see for example [8]. In these algorithms,
participants take turns to reduce their costs in the hope that the
system will reach equilibrium quickly. They note that finite opinion
games are potential games [15]. That means these games admit
pure Nash equilibria. They then studied the decentralised dynamics
of finite opinion games, in which players can actively update their
opinions without the intervention of a central authority. Morris
considers a group of individuals who must act together as a team
and assumes that each individual in the group has his or her own
subjective probability distribution for an unknown value of a pa-
rameter [5]. He proposes a model which describes how the group
can agree on a common subjective probability distribution for the
parameter by collecting their individual opinions. He argues that
the model can be applied to the problem of reaching consensus.

Wyart and Bouchaud study a general model of self-referencing
behavior in financial markets [25]. But their model does not take
into account the effects of imitation through social networks. An
‘information cascade’ occurs when a person trusts its neighbors’ in-
formation too much and does not consider its own [2]. ‘Information
cascade’ is a phenomenon described in behavioral economics and
network theory, where many people make the same decision in a
continuous manner. Georges Harras and Didier Sornette proposed a
simple agent-based model to study how proximate causes of crashes
or rallies relate to their underlying mechanisms and vice versa [10].
There are three sources of information in the paper: public informa-
tion (news), information from their neighbors’ network and private
information. Agents use the past correlation of these three sources
of information to form and adjust their trading strategies. In their
experiment they simulated a market. In this market there are 2,500
agents trading the same stock. They explored the characteristics
of crashes and bubbles by observing the change in the price of
this stock. Each of their agents has four neighbors, i.e., the social
graph is a grid. In their conclusion, they argue that the resulting
market is approximately efficient when an agent has little faith in
its neighbors. They think that when the agent is more trusting of
its neighbor the market is more prone to crash and bubble. We will
be applying our experiments to more neighbours for each agent
and more type of social graphs. We focus not only on the detailed
dynamics of the collapse and the development of the bubble but
also on opinion formation and herding effects in financial markets.

Maximum Drawdown (MDD)Maximum Drawdown (MDD) is de-
fined as the maximum loss that occurs from peak to trough over a
specified time period. A sharp contraction may even indicate that
an already successful trading system is deteriorating due to changes
in the market regime. In Hongzhong Zhang and Olympia Hadjil-
iadis’ paper, they study the probabilistic behavior of two quantities
that are closely related to market crashes [26]. The first is the draw-
down of an asset, and the second is the time interval between the
last reset of the maximum value and the impairment before the
drawdown. The first is the fall of an investor’s current asset from a
historical high to a pre-specified level. This is widely used in the
financial risk management literature as an indicator of a market
crash. The second is the rate at which investors’ capital decreases
and therefore measures the speed at which a market crash occurs.
They call this the speed of market crashes. In the classification
of large financial crashes presented in Giulia Rotundo and Mauro
Navarra’s article, the bursting of speculative bubbles due to endoge-
nous causes is located in the framework of extreme stock market
crashes [16]. They further delve into the analysis by examining the
drawdown and maximum drawdown of declines in index prices to
further describe the rising component of these selected bubbles. An
analysis of decreasing duration, which is central to their estimated
risk measures, is also performed. It can be then seen that MDD is
widely used to explore crashes and bubbles in the financial market.
Empirical game theory analysis is an emerging empirical method-
ology that bridges the gap of game theory and simulation in prac-
tical strategic reasoning [22]. However, many interesting games
go far beyond the bounds of manageable modeling and reasoning.
The problem here is not just the complexity of the analysis task
or finding a balance. For example, the Trading Agent Competitive
Supply Chain Management (TAC/SCM) game [6] is a well-defined
six-person symmetric game of incomplete information. This game
poses a difficult challenge for game-theoretic analysis. Even if a
complete strategy is given for all six agents, there is no obvious way
to obtain the expected gains unless sampling is done from a ran-
dom environment using an available game simulator. In Wellman’s
article [22] EGTA is broken down into three basic steps which are:
Parametrize Strategy Space, Estimate Empirical Game and Analyze
Empirical Game. This approach to has been applied a variety of
games, especially market-based scenarios, see, e.g., [19–21]. In some
cases, this approach is able to support conclusions in these games
that cannot be reached through standard analytical methods. In
EGTA, techniques from simulation, search and statistics are com-
bined with game theoretical concepts. Techniques from search and
statistics are combined with concepts from game theory to describe
the strategic properties of a domain [24].

3 GENERAL SETUP
In our model, public news is included in private information. More
neighbors of the agent can make the agent’s opinion formation
more realistic and allow a more complete study of herd behavior.
We set up a fixed number of 𝑁 = 100 agents who are buying and
selling a stock. We follow [10] and model a market portfolio, trading
in an organized market coordinated by market makers. At each
time step, the agent may trade or hold. We focus on understanding



the detailed issues behind bubbles and crashes. Therefore, we limit
the authenticity of the model to a simple set of components.

The information that underlies an agent’s decision is limited
to two sources (neighbors and themselves) and the payoffs that
have been realized. We let 𝑇 denote the trading horizon and set
𝑇 = 10, 000 in our experiments. We denote the opinion for agent 𝑖
at time step 𝑡 , as 𝑠𝑖 (𝑡) ∈ [0, 1]. The opinion will define the trading
position. The graph 𝐺 = (𝑉 , 𝐸),𝑉 = 𝑁 , is undirected with 𝐸 =

{(𝑖, 𝑗) |𝑖, 𝑗 ∈ 𝑁 }. 𝑁𝑖 as the neighborhood of 𝑖 in 𝐺 , i.e., 𝑁𝑖 = { 𝑗 ∈
𝑉 | (𝑖, 𝑗) ∈ 𝐸}. For cliques, we have 𝑁𝑖 = 𝑉 \ {𝑖}. We assume that
agents are aware of each other’s decisions at the last time step.

3.1 Two sources of information
The first source of information is private and denoted by 𝑏𝑖 (𝑡),
which is information obtained by agent 𝑖 at time 𝑡 in its own unique
ways, but which is not public. 𝑏𝑖 (𝑡) is the belief of agent 𝑖 about
the stock at time 𝑡 . It reflects each agent’s particular subjective
view of the stock’s future performance. Intuitively, the bigger 𝑏𝑖 (𝑡)
the more the agent believes that the stock will increase in value
(and then needs to be bought). The private information 𝑏𝑖 (𝑡) is
different for each agent and there is no correlation between each
agent’s private information; moreover each 𝑏𝑖 (𝑡) changes with
the time step 𝑡 . The second source of information of agent 𝑖 is
provided by the past decisions of other agents at time 𝑡 , 𝑠 𝑗 (𝑡 − 1),
for 𝑗 ∈ 𝑁𝑖 and 𝑡 ≤ 𝑇 . With limited access to information and
limited bounded rationality, some argue that imitating others is
optimal [14]. In our model, motivated by work in game theory,
agents gather information on the opinions of their “neighbors” in
their social network and incorporate it as an ingredient into their
trading decision.

3.2 Opinion formation
The cost 𝐶 (𝑠𝑖 (𝑡)) of the opinion 𝑠𝑖 (𝑡) for agent 𝑖 at time step 𝑡

represents the degree of match between the opinion of the agent
𝑖 and the information it receives. The smaller the gap between its
opinion and the two sources of information, the more reasonable it
is. We follow [8] and define:

𝐶 (𝑠𝑖 (𝑡)) = (1−𝛼) [𝑠𝑖 (𝑡)−𝑏𝑖 (𝑡)]2+𝛼
∑

𝑗 ∈𝑁𝑖
[𝑠𝑖 (𝑡) − 𝑠 𝑗 (𝑡 − 1)]2

|𝑁𝑖 |
(1)

As we can see in (1), [𝑠𝑖 (𝑡)−𝑏𝑖 (𝑡)] means the difference between the
opinion of agent 𝑖 at time 𝑡 , (𝑠𝑖 (𝑡)) and the private information it got
(𝑏𝑖 (𝑡)). 𝛼 means that how much agents trust their neighbors, 𝛼 ∈
[0, 1]. A bigger 𝛼 represents more trusting other agents, and vice
versa. In this experiment we limited each agent to only two sources
of information (private information and neighbor information) in
the market. So (1 − 𝛼) means the agent’s level of trust in itself that
we call ‘stubbornness’ in the following. The value of 𝑠𝑖 (𝑡) at the
minimum of 𝐶 (𝑠𝑖 (𝑡)) is the optimal opinion chosen by our agent 𝑖
at time 𝑡 . As discussed in the introduction, this model of opinion
dynamics is well motivated and rooted in economics and sociology
[5].

3.3 Trading decision
3.3.1 Buy or sell. The signal for the trading is determined by the
opinion 𝑠𝑖 (𝑡) for agent 𝑖 at time 𝑡 . We set a buying threshold 𝑡ℎ𝐵

and a selling threshold 𝑡ℎ𝑆 , both in [0, 1], with 𝑡ℎ𝐵 > 𝑡ℎ𝑆 . They
can be seen as the agent’s risk tolerance in each experiment. When
𝑠𝑖 (𝑡) ≥ 𝑡ℎ𝐵 , the agent 𝑖 will buy the stock. When 𝑠𝑖 (𝑡) ≤ 𝑡ℎ𝑆 , the
agent 𝑖 will sell the stock. When 𝑡ℎ𝑆 < 𝑠𝑖 (𝑡) < 𝑡ℎ𝐵 , the agent 𝑖 will
hold, as shown in Figure 1.

Figure 1: Trading decision

3.3.2 Trading size. The assets of agent 𝑖 consist of the amount of
cash it holds, 𝑐𝑎𝑠ℎ𝑖 (𝑡), and the number of single stock traded in
the market, 𝑠𝑡𝑜𝑐𝑘𝑖 (𝑡). 𝑝𝑟𝑖𝑐𝑒 (𝑡) is the price of the stock of time 𝑡 .
When an agent decides to buy, it uses a fixed fraction 𝑔 of its cash to
buy stocks. When an agent decides to sell the stock, it sells a fixed
fraction 𝑔 of its stock. Therefore, its action 𝐴𝑖 (𝑡) and the direction
𝐵𝑖 (𝑡) of its decision is defined by:

𝐴𝑖 (𝑡) = 𝑔 · 𝑐𝑎𝑠ℎ𝑖 (𝑡)
𝑝𝑟𝑖𝑐𝑒 (𝑡) (2)

𝐵𝑖 (𝑡) = +1(𝑏𝑢𝑦𝑖𝑛𝑔) (3)

if 𝑠𝑖 (𝑡) ≥ 𝑡ℎ𝐵 , and

𝐴𝑖 (𝑡) = 𝑔 · 𝑠𝑡𝑜𝑐𝑘𝑖 (𝑡) (4)
𝐵𝑖 (𝑡) = −1(𝑠𝑒𝑙𝑙𝑖𝑛𝑔) (5)

if 𝑠𝑖 (𝑡) ≤ 𝑡ℎ𝑆 .

3.4 Price clearing
When all the agents have taken the position, a new price is created.
We denote 𝑟 (𝑡) the average of the stock return; 𝛾 represents the
relative impact of the excess demand upon the price. We assume
for simplicity the existence of a market maker, who accepts all
transactions from agents and has an unlimited amount of cash and
stock. The assumption seems to make sense for markets with many
high frequency traders, providing liquidity to the market. The price
is then determined by:

𝑟 (𝑡) = 1
𝛾 · 𝑁

𝑁∑
𝑖=1

𝐴𝑖 (𝑡) · 𝐵𝑖 (𝑡) (6)

𝑙𝑜𝑔[𝑝𝑟𝑖𝑐𝑒 (𝑡 + 1)] = 𝑙𝑜𝑔[𝑝𝑟𝑖𝑐𝑒 (𝑡)] + 𝑟 (𝑡) (7)

In (6), we assume that the linear market impact function is a rough
approximation of a time scale that is significantly larger than the
trade-by-trade time scale on which the nonlinear impact function
is observed [13]. This is similar to [10].

3.5 Cash and stock
As from above, we assume a friction-less market that has no trans-
action costs. When the return and new price of the stock are deter-
mined by (6) and (7), the amount of cash and stock held by agent 𝑖



will be determined by the following formulas:

𝑐𝑎𝑠ℎ𝑖 (𝑡) = 𝑐𝑎𝑠ℎ𝑖 (𝑡 − 1) −𝐴𝑖 (𝑡) · 𝑝𝑟𝑖𝑐𝑒 (𝑡) · 𝐵𝑖 (𝑡) (8)
𝑠𝑡𝑜𝑐𝑘𝑖 (𝑡) = 𝑠𝑡𝑜𝑐𝑘𝑖 (𝑡 − 1) +𝐴𝑖 (𝑡) · 𝐵𝑖 (𝑡) (9)

3.6 Crashes and bubbles
To the best of our knowledge, there are no accepted quantitative
definitions of these concepts. The definitions of crashes and bubbles
in our research are based on changes in stock prices inspired by
the financial concept of Maximum Drawdown. We let 𝑃𝑚𝑎𝑥 and
𝑃𝑚𝑖𝑛 denote maximum and minimum stock prices in a suitable
time interval, they are initially set at 𝑝𝑟𝑖𝑐𝑒 (0). We let 𝑃𝑡 denote a
shorthand for the current price at time 𝑡 , 𝑝𝑟𝑖𝑐𝑒 (𝑡). We assume that
there are two thresholds 𝛿𝑖𝑛 and 𝛿𝑜𝑢𝑡 . These two thresholds change
depending on the market environment we are studying. When the
stock price trend downwards, 𝛿𝑖𝑛 is the percentage decline in stock
price, used to determine the start point of the crash and 𝛿𝑜𝑢𝑡 is
the growth after the stock price reaches its lowest point, used to
determine the end point of the crash; 𝛿𝑖𝑛 and 𝛿𝑜𝑢𝑡 are similarly used
to determine where bubbles start and end when stock prices tend
to rise. The point-in-time at which the crashes and bubbles begin
is named 𝑡𝑖𝑛 , and the point at the end of the crashes and bubbles is
named 𝑡𝑜𝑢𝑡 .

We let 𝑡𝑚𝑎𝑥 denote the time step in which the price was 𝑃𝑚𝑎𝑥

and 𝑡𝑚𝑖𝑛 be the time step when the price was 𝑃𝑚𝑖𝑛 . Our notion of
crash is given in Algorithm 1 where 𝑡𝑖𝑛 is the start point of the
crash and 𝑡𝑜𝑢𝑡 is the end point of the crash. The duration of this
crash is from 𝑡𝑖𝑛 to 𝑡𝑜𝑢𝑡 . When 𝛿1 > 𝛿𝑖𝑛 and 𝛿2 > 𝛿𝑜𝑢𝑡 , there is a
crash , see Figure 2. Bubbles are define similarly in Algorithm 2.
When 𝛿3 > 𝛿𝑖𝑛 and 𝛿4 > 𝛿𝑜𝑢𝑡 , there is a bubble, see Figure 2.

Algorithm 1: Definition of crash

Let 𝛿1 = 𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥
, 𝛿2 =

𝑃𝑡−𝑃𝑚𝑖𝑛

𝑃𝑚𝑖𝑛

while 𝛿1 > 𝛿𝑖𝑛 do
𝑡𝑖𝑛 ← 𝑡𝑚𝑎𝑥

if 𝛿2 > 𝛿𝑜𝑢𝑡 then
𝑡𝑜𝑢𝑡 ← 𝑡𝑚𝑖𝑛

end
end
Crash in [𝑡𝑖𝑛, 𝑡𝑜𝑢𝑡 ]
Set 𝑃𝑚𝑎𝑥 ← 𝑃𝑚𝑖𝑛

Algorithm 2: Definition of bubble

Let 𝛿3 = 𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑃𝑚𝑖𝑛
, 𝛿4 =

𝑃𝑚𝑎𝑥−𝑃𝑡
𝑃𝑚𝑎𝑥

while 𝛿3 > 𝛿𝑖𝑛 do
𝑡𝑖𝑛 ← 𝑡𝑚𝑖𝑛

if 𝛿4 > 𝛿𝑜𝑢𝑡 then
𝑡𝑜𝑢𝑡 ← 𝑡𝑚𝑎𝑥

end
end
Bubble in [𝑡𝑖𝑛, 𝑡𝑜𝑢𝑡 ]
Set 𝑃𝑚𝑖𝑛 ← 𝑃𝑚𝑎𝑥

In our experiment, 𝛿1, 𝛿2, 𝛿3 and 𝛿4 are the proportion of changes
in stock prices. Changing the value of 𝛿𝑖𝑛 and 𝛿𝑜𝑢𝑡 allows more or

less sensitivity to market movements. For example, large value of
𝛿𝑖𝑛 and small value of 𝛿𝑜𝑢𝑡 focus on ‘big’ systematic events that are
of general interest. Conversely, small value of 𝛿𝑖𝑛 and large value of
𝛿𝑜𝑢𝑡 are more suitable for industry professional and high frequency
traders.

Figure 2: Illustration of the definitions of crash and bubble

3.7 Three Strategies
In our experiments, each agent has three strategies to choose from.
They are ‘Imitation’, ‘Neutral’ and ‘No imitation’. As mentioned
above, a higher level of agent ‘stubbornness’ means that the agent
is more likely to believe in itself. This means that we can define
these three strategies in terms of the value of 𝛼 . For example, we
use 𝛼 = 0 to represent the ‘No imitation’ strategy. Then we choose
a higher value of 𝛼 to represent the ‘Imitation’ strategy. The value
of 𝛼 for the ‘Neutral’ strategy can be chosen within the interval of
the 𝛼 values of the two strategies mentioned above.

3.8 Payoff
The amount of cash and stock held by agent 𝑖 will be determined
by (8) and (9). So the total assets of agent 𝑖 at time step 𝑡 will be
determined by the following formula:

𝑍𝑖 (𝑡) = 𝑐𝑎𝑠ℎ𝑖 (𝑡) + 𝑠𝑡𝑜𝑐𝑘𝑖 (𝑡) · 𝑝𝑟𝑖𝑐𝑒 (𝑡) (10)
Then the total payoff of agent 𝑖 after 𝑡 time steps will be deter-

mined by:

𝑅𝑖 (𝑡) = (𝑍𝑖 (1) − 𝑍𝑖 (0)) + · · · + (𝑍𝑖 (𝑡) − 𝑍𝑖 (𝑡 − 1))
= 𝑍𝑖 (𝑡) − 𝑍𝑖 (0)

(11)

In general our experiment has two steps of decision making at
each time step. First agents form their opinion by a function of
‘stubbornness’ (1). Then they make their decision by the trading
thresholds that we mentioned in section 3.5. The dynamics of the
market are updated according to (6) and (7). Finally we get the
payoff for each agent at this time step by (10) and (11).

4 EXPERIMENTS AND RESULTS
We built a model with a closed system. Our agent will invest a
certain proportion of its cash in the only stock traded in the market.
Thus, when most agents buy the stock with their money, the local
maximum value of the stock’s price is reached. Until there are few



agents to buy the stock, the price of the stock will peak, after which
its price will fall. But in the real market, traders cannot all have
the same level of “𝑠𝑡𝑢𝑏𝑏𝑜𝑟𝑛𝑛𝑒𝑠𝑠” in every trade as we set out above.
Every trader should have his or her own choice. So we define a
game and in this game, each agent is considered to be a player. We
start by identifying three strategies and find a Nash equilibrium
in the game by calculating the average payoff of the agents under
each strategy. Crashes and bubbles occurring when the market is
in equilibrium are then observed based on the number of agents
choosing each strategy. But simulating all the circumstances is a
very large game. It requires a very large amount of computation. A
simulation-based approach to finding an approximate equilibrium
was proposed byWellman [22]. In this method, strategy profiles and
corresponding payoffs are extracted from the payoff distribution
by means of extensive systematic simulations. The payoff data is
used to induce a normal-form game. In this way, we can refine the
estimation of our game and get an approximate equilibrium rather
than analysing the complete game. The equilibrium we obtain in
the empirical game is considered likely to be relatively stable in a
full game [23]. After we apply EGTA to solve this game, we then
go through the simulation again to obtain the market performance
at equilibrium.

4.1 Set up parameters
4.1.1 Basic parameters. Our experiments are as consistent as pos-
sible with the basic parameters given in [10] to allow a fair com-
parison. In our simulations, we fix the number of agents in the
system to 𝑁 = 100, 𝛾 = 0.25, the fraction of their cash or stocks that
investors trade per action to 𝑔 = 2%. The initial amount of cash
and stocks held by each agent to 𝑐𝑎𝑠ℎ𝑖 (0) = 1 and 𝑠𝑡𝑜𝑐𝑘𝑖 (0) = 1,
𝑝𝑟𝑖𝑐𝑒 (0) = 1. For the value of the private information, 𝑏𝑖 (𝑡), we
use random values from 0 to 1, because the private information
changes with every time step and each agent has different personal
information. This does not mean that the agents change their mind
at every time step. The agents just get different information about
the stock at every time step.

4.1.2 Trading threshold. Because the agents in our experiment had
only three trading strategies (buy, sell and hold), we set 𝑡ℎ𝐵 = 2

3 ,
𝑡ℎ𝑆 = 1

3 . That means when the opinion for agent 𝑖 at time step 𝑡 ,
𝑠𝑖 (𝑡) > 2

3 , the agent 𝑖 will use its cash at the rate of 𝑔 to buy the
stock. When 𝑠𝑖 (𝑡) < 1

3 , agent 𝑖 will sell 𝑔 of its stock. When the
value of < 𝑠𝑖 (𝑡) is between 1

3 and 2
3 , the agent will not trade, it will

keep its cash and stock unchanged.

4.1.3 𝛿𝑖𝑛 and 𝛿𝑜𝑢𝑡 . Asmentioned above 𝛿𝑖𝑛 and 𝛿𝑜𝑢𝑡 determine the
market crash and bubble’s in point and out point. In our experiment
we set 𝛿𝑖𝑛 = 5%, 𝛿𝑜𝑢𝑡 = 2.5%.

4.1.4 Choice of the value of ‘stubbornness’. These values are based
on the results of preliminary experiments with agent-based model.
When 𝛼 = 0, the ‘stubbornness’ of agent 𝑖 reach maximum. That
means agent 𝑖 only trust itself, 𝑠𝑖 (𝑡) depends entirely on its pri-
vate information 𝑏𝑖 (𝑡). The first strategy is ‘No imitation’ and it
represents 𝛼 = 0. When 𝛼 > 0.7, few agents trade in the market.
The price of the stock remains almost unchanged. After several
tests, we have determined that the price of a stock will no longer

Figure 3: Dynamics for cliques

change when 𝛼 = 0.75. So we set 𝛼 = 0.75 as one of the strategies,
called ‘Imitation’. Similarly, when the value of 𝛼 exceeds 0.5, there
are significantly more crashes and bubbles in the market and the
fluctuation of price becomes greater. Therefore we set 𝛼 = 0.5 as
the third strategy, called ‘Neutral’.

4.2 Results
We run 100 simulations and then we take the average of the prices
at each time step. Recall that 𝑇 = 10, 000 as in [10]. Our experi-
ment uses different social graphs. We can change the way agents
contact each other so that the information they get about their
neighbors changes. To make the experiment fairer and more con-
vincing, we used the same 𝑏𝑖 (𝑡)’s for each different social graph. In
our experiments, each agent can choose one of the three strategies
per experiment. At the end of each experiment, according to (10)
and (11), we record the number of agents who chose each strategy
and their average total payoff, respectively. By varying the num-
ber of agents for each strategy, we obtained each of the possible
scenarios and their average total returns. We then process the data
analytically and find the Nash equilibrium by EGTA. We will then
observe the crashes and bubbles that occur in markets at these Nash
equilibrium points.

Figure 3 shows the Nash equilibrium that we obtained after ex-
perimentation for a clique. We use a two-dimensional triangle to
represent a three-dimensional space. Any point in the triangle rep-
resents a mixed strategy. As an example, the apex of the triangle
represents 100% of the agents choosing ‘No imitation’ strategy. The
hollow dot in the figure which the trajectories converge to repre-
sents the stable state, i.e., a Nash equilibrium point. We choose the
the equilibrium point where the majority of trajectories converge to.
At this point we have that 92% of the agents choose the ‘Imitation’
strategy, 0% of the agents choose the ‘Neutral’ strategy and the
remaining 8% of the agents choose the ‘No imitation’ strategy. With
this equilibrium point, we obtain the results shown in Figure 4; 3
crashes and 4 bubbles occur in the market.



Figure 4: Crashes and Bubbles at equilibrium for cliques

4.3 Changing the graph
In the above experiment, we set up 100 agents that are connected to
each other. This means that each agent has 99 neighbors. To better
understand opinion formation and herding effects in different social
graphs, we change the structure of the social connections between
agents. We obtain the Nash equilibrium points as shown in the
figures below.

In Figure 5, ‘𝑥-a-group’ represents a graph where each group has
𝑥 agents and each agent has 𝑥 − 1 neighbours. The graph is a ring
where agent 𝑖 has en edge with the nearest 𝑥 − 1 agents. The results
show that with each agent getting more of their neighbors’ infor-
mation, the Nash equilibrium point with the majority of trajectories
converge from the top of the triangle to the bottom left corner of
the triangle. When 90 agents are in a group (‘90-a-group’), all trends
are essentially concentrated at a Nash equilibrium point. Similarly
to the case of clique for analysis we choose the Nash equilibrium
point where the majority of trajectories converge in each graph.

Figure 6 shows the percentage of agents who chose each strategy
at ‘10-a-group’ and ‘20-a-group’. Based on the information in the
graph we can see that the largest number of agents chose the ‘No
imitation’ strategy, with very few agents choosing the other two
strategies at ‘10-a-group’. And at ‘20-a-group’, the number of agents
choosing the ‘Imitation’ strategy increases significantly.

At ‘30-a-group’, as shown in Figure 7, the agents choosing the
‘No imitation’ strategy become very few, while those choosing the
‘Imitation’ strategy become the most numerous. Very few agents
choose the ‘Neutral’ strategy at ‘40-a-group’.

As we can see in Figure 8, the proportion of agents choosing each
strategy remains almost unchanged as our social graph gradually
changes from ‘50-a-group’ to ‘80-a-group’. The majority of agents
still choose the ‘Imitation’ strategy and we hardly see any agents
choosing the ‘Neutral’ strategy.

Figure 9 shows the agent’s choice of strategy at ‘90-a-group’ and
‘100-a-group’. In Figure 9 we can see that at ‘90-a-group’ almost all
agents have opted for the ‘Imitation’ strategy and no agent chose
the ‘No imitation’ strategy. At ‘100-a-group’ we can find several
agents chose the ‘No imitation’ strategy. That means when each
agent is given almost the same information, there will always be a

few agents who believe that imitation does not yield higher returns.
So they choose to trust their own private information.

According to the information given in Figures 6 to Figure 9, we
can find that as agents get more information from neighbors the
more people choose the ‘Imitation’ strategy. This is quite under-
standable, traders are easily influenced in their judgment by outside
information in real life. This means that in the real market, the more
information traders have about others, the more they will want to
imitate them.

Table 1: Crashes and Bubbles at equilibrium

Different
graph

Number of
crashes

Number of
bubbles

10-a-group 13 9

20-a-group 6 3

30-a-group 2 3

40-a-group 1 5

50-a-group 2 3

60-a-group 1 3

70-a-group 0 3

80-a-group 0 2

90-a-group 0 0

100-a-group 3 4

Based on the data at Nash equilibrium of different social graph,
we record the number of crashes and bubbles that have occurred
in the market in Table 1. The data in Table 1 shows that the more
neighbor information agents get the fewer crashes and bubbles
there will be in the market. And there is no crash or bubble at
‘90-a-group’. This result indicates that when most people in the
market are willing to imitate others and no one believes their own
private information, the market will reach a relatively stable state.
At ‘100-a-group’, as we mentioned above, each agent is aware of
all the other agents’ information. In our experiments, agents who
choose ‘No imitation’ strategy means they only trust their own
private information, 𝑏𝑖 (𝑡). The value of 𝑏𝑖 (𝑡) is random from 0 to 1.
In other words, at ‘100-a-group’ when a few agents who choose ‘No
imitation’ strategy make some random decisions other agents are
trying to imitate their decisions. This is why there were 3 crashes
and 4 bubbles occur in the market at ‘100-a-group’.

As for the singularity of the ‘90-a-group’, as we stated in the
paper (just below Figure 9), when each agent is essentially endowed
with progressively more information from ‘30-a-group’ to ‘80-a-
group’ as shown in Figure 6 to Figure 8, there will always be a few
agents who believe that imitation will not yield higher returns and
choose to trust their own private information. However, in the case
of ‘90-a-group’, the opinions of other traders are not ignored; we
can speculate that this is because the herding effect is maximized for



Figure 5: Nash Equilibrium of different graph

Figure 6: 10-a-group and 20-a-group

Figure 7: 30-a-group and 40-a-group

this setting. Basically, all agents in the market choose the ‘Imitation’
strategy, but few prefer to keep a positive weight for their belief.
This changes in the ‘100-a-group’, where every agent is given the
information of the other 99 agents. In this full information setup,
some agents remain stubborn.

Crashes and bubbles that occur in the market also decrease as
agents are given more information. This means that as agents are
given more information, the more willing they are to imitate others

Figure 8: 50-a-group and 80-a-group

Figure 9: 90-a-group and 100-a-group

and the less volatile the price of the stock. In general, the less
neighbors’ information the agents have in our experiments the
more unstable the market becomes. But when every agent in the
market knows all the other agents information, there will still be
crashes and bubbles in the market. The market reaches its most
stable state at ‘90-a-group’.



4.4 Changing risk attitude
As from Section 3.3, when 𝑡ℎ𝑆 < 𝑠𝑖 (𝑡) < 𝑡ℎ𝐵 , the agent 𝑖 will
hold. We can think of (𝑡ℎ𝐵 − 𝑡ℎ𝑆 ) as the ‘risk aversion‘ of the agent.
When the value of (𝑡ℎ𝐵−𝑡ℎ𝑆 ) is bigger, it means the agents are more
likely to want to avoid the risk and vice versa. We set 𝑡ℎ𝐵 = 2

3 and
𝑡ℎ𝑆 = 1

3 in the above experiment. To explore what effect different
risk attitudes have on the results of our experiments, we try to
move the threshold of trading to 𝑡ℎ𝐵 = 3

5 , 𝑡ℎ𝑆 = 2
5 , thus capturing

risk seeking traders. This also allows to check the robustness of our
ABM; the riskier the traders the more volatile the market should
be.

No matter the social graphs we get the same result that there
are 4% agents choosing ‘Imitation’ strategy, 4% agent choosing
‘Neutral’ strategy and 92% agents choosing ‘No imitation’ strategy.
This means that when the trading risk is high enough, most agents
will not want to imitate their neighbours no matter how much
neighbors’ information they are given. The number of crashes and
bubbles that occur in the market at any given social graphs remains
virtually unchanged. This is because when the vast majority of
agents choose ‘No imitation’ strategy, their decisions depend on
their private information, 𝑏𝑖 (𝑡). We used the same 𝑏𝑖 (𝑡)’s for each
different social graph in our experiments. This resulted in the num-
ber of crashes and bubbles being similar in each of the social graph.
We got 8 crashes and 4 bubbles in this experiment, which is higher
than the data in Table 1. This confirms that high risk makes markets
unstable.

Then we try to change the threshold of trading to 𝑡ℎ𝐵 = 4
5 ,

𝑡ℎ𝑆 = 1
5 . This means that trading in the market has become less

risky. The results of the experiment were very similar to the results
in section 4.3. They have the same pattern which is at ‘10-a-group’
and ‘20-a-group’, the majority of agents in the market choose ‘No
imitation’ strategy and from ‘30-a-group’ to ‘80-a-group’ The choice
of agents hardly varies much. In this state, approximately 94%
of agents choose ‘Imitation’ strategy and 6% agents choose ‘No
imitation’ strategy. The result of ‘90-a-group’ and ‘100-a-group’ is
similar to Figure 9. At ‘90-a-group’ almost all agents have opted
for the ‘Imitation’ strategy and no agent chose the ‘No imitation’
strategy and several agents chose the ‘No imitation’ strategy at ‘100-
a-group’. From these results we can see that, unlike in the high-risk
state, the pattern of agents’ choice decisions in the low-risk market
is very similar to that in Section 4.3, especially the singularity of
the ‘90-a-group’.

4.5 About the trading size
In our experiment, the fraction of their cash or stocks that investors
trade per action 𝑔 as mentioned in section 3.3 is the same for all
agents following [10] and 𝑔 = 2%. When we change the 𝑔 to 1%,
crashes and bubbles in the market have become less frequent. When
we try to slowly increase𝑔 to 5%, the number of crashes and bubbles
will increase with 𝑔. Then we random 𝑔 from 1% to 5% for each
agent of different graph and get the Nash equilibrium. The results
are nearly the same as the Figure 5. That means the trading size 𝑔
only change the stability of the market and can not affect the Nash
equilibrium of different social graph.

5 CONCLUSIONS
We have defined a novel ABM to study the extent to which social
connections between market participants affect herding and market
stability. This is achieved by incorporating classical opinion dynam-
ics in the decision making process of the traders and using EGTA to
compute the equilibria of a suitably defined strategic game. In these
games, traders want to maximise their profits whilst balancing pri-
vate and public information about the asset. Loosely speaking, we
show that herding is the more likely the denser the social graph.
There is however a surprising discontinuity point in what herding
actually means for market stability; with our definition of crashes
and bubbles we show that herding leads to low volatility unless the
social network is a clique. In this case, the small minority of traders
who are not part of the herd seem to cause the market to jump a
bit; essentially, the herd responds quickly to the actions taken by
the stubborn traders.

We see our work as the introduction of a framework that can be
used to study more questions about herding in financial markets.
There are in fact still some gaps between our simulated market envi-
ronment and the real market. This is a limitation we can overcome
with continuous double auction market or different market trading
mechanisms. We could also consider different notions of crashes
and bubbles, where the length is limited in time as in flash crashes.
Moreover, other independent variables, social network structures
and richer strategy spaces can be used in follow-up experiments.
To complement our results with risk-seeking traders, one could
imagine to consider risk aversion as well as mixed populations of
traders (both by risk attitude and maybe investment style).
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