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ABSTRACT
The use of algorithmic decision making systems in domains which

impact the financial, social, and political well-being of people has

created a demand for these decision making systems to be “fair”

under some accepted notion of equity. This demand has in turn

inspired a large body of work focused on the development of fair

learning algorithms which are then used in lieu of their conven-

tional counterparts. Most analysis of such fair algorithms proceeds

from the assumption that the people affected by the algorithmic

decisions are represented as immutable feature vectors. However,

strategic agents may possess both the ability and the incentive to

manipulate this observed feature vector in order to attain a more

favorable outcome. We explore the impact that strategic agent

behavior can have on group-fair classification. We find that in

many settings strategic behavior can lead to fairness reversal, with
a conventional classifier exhibiting higher fairness than a classifier

trained to satisfy group fairness. Further, we show that fairness

reversal occurs as a result of a group-fair classifier becoming more

selective, achieving fairness largely by excluding individuals from

the advantaged group. In contrast, if group fairness is achieved by

the classifier becoming more inclusive, fairness reversal does not
occur.
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1 INTRODUCTION
The increasing deployment of algorithmic decision making systems

in social, political, and economic domains has brought with it a

demand that fairness of decisions be a central part of algorithm

design.While the specific notion of fairness appropriate to a domain

is often a matter of debate, several have come to be commonly

used in prior literature, such as positive (or selection) rate and false

positive rate. A common goal in the design of fairness-aware (group-
fair) algorithms is to balance predictive efficacy (such as accuracy)

with achieving near-equality on a chosen fairness measure among

demographic categories, such as race or gender. A question that

arises in many domains where such “fair” algorithms could be

used is whether they are susceptible to, and create incentives for,

manipulation by agents who may misrepresent themselves in order
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to achieve better outcomes. For example, in selection of individuals

to receive assistance from social service programs, or in admission

to selective educational programs, it may be possible for applicants

to misreport features like the number of dependents, income, or

other self-reported characteristics.

We investigate the effects of such strategic manipulation of a

binary group-fair classifier. In the context of the social services

example, the classifier’s job is to determine if an applicant should,

or should not, be granted assistance, and the fairness guarantee

of this classifier could be approximate equality of false positive

rate between male and female applicants. Our first observation is

that the ability of individuals to manipulate the features a classifier

uses can lead to fairness reversal, with the conventional (accuracy-

maximizing) classifier exhibiting greater fairness than a group-fair

classifier. We observe this phenomenon on a number of standard

benchmark datasets commonly used in evaluating group-fair classi-

fiers. Next, we theoretically investigate the conditions under which

such fairness reversal occurs. We prove that the key characteris-

tic that leads to fairness reversal is that the group fair classifier

becomes more selective, excluding some of the individuals in the

advantaged group from being selected. Moreover, we show that

this condition is sufficient for fairness reversal for several classes of

functions measuring the costs of misreporting features. In contrast,

we experimentally demonstrate that when a group-fair classifier

exhibits inclusiveness instead by selecting additional individuals

from the disadvantaged group, fairness reversal does not occur.

Summary of results: We begin by observing empirically the phe-

nomenon of fairness reversal, exhibited on a number of datasets

commonly used in benchmarking group-fair classification efficacy.

The key factor that results in fairness reversal is the extent to which

group fairness is achieved through increased selectivity (the fair

classifier 𝑓𝐹 positively classifies fewer inputs than the conventional

classifier 𝑓𝐶 ) as opposed to increased inclusiveness (𝑓𝐹 positively

classifies more inputs than 𝑓𝐶 ). Next, we examine this issue the-

oretically, and prove that selectivity is a sufficient condition for

fairness reversal. Further, we show that, under some additional

conditions, selectivity is also a necessary condition. These results

obtain for two common classes of functions measuring the cost of

misreporting attributes, and explain our empirical observations.

Related Work: Our work is closely related to two major strands

in the literature: algorithmic fairness (in particular, approaches for

group-fair classification) and adversarial machine learning (also

called strategic classification).

The algorithmic fairness literature aims to study the extent to

which algorithmic decisions are perceived as unfair, for example, by

being inequitable to historically disadvantaged groups [2, 4, 5, 8].

Many approaches have been introduced, particularly in machine

learning, that investigate how to balance fairness and task-related

efficacy, such as accuracy [1, 10, 13, 17, 25–27]. Many of these



impose hard constraints to ensure that pre-defined groups are near-

equitable on some exogenously specified metric, e.g., selection (pos-

itive) rate [1, 17, 26], although alternative means, such as modifying

the data to eliminate disparities, have also been proposed [7, 10].

The adversarial machine learning literature was initially moti-

vated by security considerations, such as spam and malware de-

tection [15, 19, 24]. The primary issue of concern is that as we

use machine learning techniques to identify malicious behavior,

malicious actors change behavior characteristics to evade detection.

It has, however, come to have a far broader scope, encompassing

robustness of machine learning techniques in computer vision as

well as social applications [3, 6, 9, 11, 12]. In the latter context, this

is known as strategic classification, to indicate the concern that

individuals impacted by algorithmic decisions change their features

(e.g., by misreporting their household characteristics on surveys

used to allocate housing to the homeless) and thereby undermine al-

gorithms’ efficacy. The intersection between strategic classification

and fairness is particularly salient to our work, and has featured

studies that highlight the inequity that results from strategic be-

havior by individuals [14], as well as inequity (social cost) resulting

from making classifiers robust to strategic behavior [21, 25]. Our

goal, however, is quite distinct: we investigate the extent to which

group-fair classification itself leads to greater inequity compared to

baseline approaches that do not include group-fairness constraints

as a result of strategic behavior by individuals.

2 PRELIMINARIES
We consider a setting with a population of agents, with each char-

acterized by 1) a feature vector x ∈ X, 2) a group 𝑔 ∈ 𝐺 ≡ {0, 1} to
which it belongs (as is common in much prior literature, we treat it

as binary here), and 3) a (true) binary label𝑦 ∈ Y ≡ {0, 1}, denoting,
for example, the agent’s qualification (for a service, employment,

bail, etc). LetD be the joint distribution over𝐺 ×X ×Y. We define

ℎ(x) as the marginal pdf of x, and assume that ℎ(x) > 0 for each

x ∈ X.

Since using the sensitive group membership feature may pose a

legal challenge, we assume that neither the conventional nor the

group-fair classifier do so at prediction time (but may at training

time), results relating to group aware classifiers (those that use

group membership at prediction time) are provided in the supple-

ment. We denote the conventional classifier by 𝑓𝐶 , while the group-

fair classifier is denoted by 𝑓𝐹 , and both map feature vectors x into

a binary label 𝑦 ∈ Y. We assume that the conventional classifier

aims to maximize accuracy, i.e., 𝑓𝐶 ∈ argmax𝑓 P(x,𝑦)
(
𝑓 (x) = 𝑦

)
,

while 𝑓𝐹 aims to balance accuracy and fairness, solving

𝑓𝐹 = argmax𝑓 (1 − 𝛼)P(x,𝑦) (𝑓 (x) = 𝑦)
− 𝛼

��M(𝑓 ;𝑔 = 0) −M(𝑓 ;𝑔 = 1)
��,

where 𝛼 ∈ [0, 1] specifies the relative weight of accuracy and

fairness terms, whileM(𝑓 ;𝑔) is a measure of efficacy (e.g., positive

rate) of 𝑓 restricted to a group 𝑔.

In the literature fairness is sometimes defined with hard con-

straints, rather than the soft constraints of 𝛼-fairness, for example

𝑓𝐹 = argmax𝑓 P(x,𝑦) (𝑓 (x) = 𝑦)
subj. to

��M(𝑓 ;𝑔 = 0) −M(𝑓 ;𝑔 = 1)
�� ≤ 𝛽

With hard constraints, decreasing 𝛽 can never increase the unfair-

ness of 𝑓𝐹 . In general soft constraints do not have the propriety that

increasing 𝛼 will never increase the unfairness of 𝑓𝐹 . However, in

the settings we study this is not an issue as there is a direct corre-

spondence between 𝛼 and 𝛽 fairness (Lemma A.2 in the appendix).

We consider the impact of strategic behavior of agents when

they face a classifier 𝑓 (whether conventional or group-fair). Specif-

ically, we suppose that each agent with features x can modify these,

transforming them into another feature vector x′ that is reported
to the classifier. In doing so, the agent incurs a cost, captured by a

manipulation cost function 𝑐 (x, x′) ≥ 0 [11, 12, 19].

We study two families of manipulation cost functions:

Feature-monotonic costs: 𝑐 (x, x′) is monotonic in | |x − x′ | |, (larger
manipulations are more costly).

Outcome-monotonic costs: 𝑐 (x, x′) is monotonic in P(𝑦 = 1|x′)−
P(𝑦 = 1|x) and 𝑐 (x, x′) = 0 for all x′ such that P(𝑦 = 1|x) > P(𝑦 =

1|x′), (manipulations leading to better outcomes are more costly).

We define the agent’s utility as

𝑢 (x, x′) = 𝑓 (x′) − 𝑓 (x) − 1

𝐵
𝑐 (x, x′),

where 𝐵 is a parameter trading off costs and benefits of manipu-

lation. Following the standard setting in strategic classification or

adversarial machine learning, we assume anymisreporting behavior

would not change the true nature of x’s label 𝑦. We assume that all

agents are rational utility maximizers. Thus, since 𝑓 (x′) − 𝑓 (x) ≤ 1,

the agent will misreport its features only when 𝑐 (x, x′) ≤ 𝐵. Addi-

tionally, the agent will not misreport if 𝑓 (x) = 1 (they are selected

even with true values of features). Consequently, we can equiva-

lently view 𝐵 as an upper bound on the costs that agents are willing

to incur from misreporting their features, that is, the manipulation
budget.

3 FAIRNESS REVERSAL
Our central goal is to understand the conditions under which fair-
ness reversal occurs in strategic settings, that is, when a fair classifier
𝑓𝐹 becomes less fair than its conventional counterpart 𝑓𝐶 if agents

act strategically. Fairness reversal occurs when there is a range of

strategic manipulation budgets 𝐵 for which the conventional clas-

sifier 𝑓𝐶 exhibits greater fairness than the group-fair model 𝑓𝐹 . In

this section, we study this phenomenon empirically, demonstrating

that it is commonly observed for several benchmark datasets.

For our empirical study, we use five datasets used as common

benchmarks for group-fair classification:

Adult:Dataset of working professionals where the goal is to predict
high or low income (protected feature: gender).

Community Crime: Dataset of communities where the objective

is to predict if the community has high crime (protected feature:

race).

Law School: Dataset of law students where the objective is to

predict bar-exam passage (protected feature: race).

Student: Dataset of students where the objective is to predict a

student receiving high math grades (protected feature: race).

Credit: Dataset of people applying for credit where the objective
is to predict creditworthiness (protected feature: age).

All five datasets have binary outcomes, and we label the more

desirable outcome for the individuals by 𝑦 = 1 (e.g., having a high



Figure 1: Difference in unfairness between groups on several datasets as a function of the manipulation budget 𝐵 when
manipulation costs are feature-monotonic. The dashed black lines correspond to 𝑓𝐶 and colored lines correspond to 𝑓𝐹 . Fairness
reversal occurs when one of the colored lines is above the black line. The top row displays results when 𝑓𝐹 is learned via
the Reductions algorithm, with fairness defined in terms of PR, TPR, or FPR, for several different values of 𝛼 . The bottom
row displays results when 𝑓𝐹 is learned via the EqOdds algorithm, with fairness defined in terms of GFPR. Reductions is
group-agnostic, and EqOdds is group-aware.

income in the Adult data), with the less desirable outcome labeled

by 𝑦 = 0. Consequently, higher positive rate (PR), true positive rate
(TPR), or false positive rate (FPR) is more desirable for individuals.

Group membership in each dataset is determined by race, gender,

or age which in these datasets corresponds to a binary feature (as

in [16] the age feature is made binary by considering those older

than 25 as Old, and those 25 or younger as Young). A detailed break-

down of the datasets can be found in the Appendix. In all cases,

we refer to the “advantaged” group (e.g. the group with higher

PR for PR based fairness) as group 1, or 𝐺1, while the disadvan-

taged group is referred to as 0 or 𝐺0. In our experiments, we only

consider features that can potentially be manipulated (see the Ap-

pendix for further details). We use four classifiers as conventional
𝑓𝐶 , namely logistic regression (LGR), support vector machines with

an RBF kernel (SVM), neural networks (NN), and gradient boosting

trees (GB), and three group-fair approaches to obtain 𝑓𝐹 , Reduc-
tions [1], GerryFair [17], and EqOdds [22] The first two impose

hard group-fairness constraints with a specified tolerance level

𝛽 , while the third remedies unfairness through post processing.

To study strategic manipulation, we use a mix of local search for

categorical features [18, 23] and projected gradient descent (PGD)

for continuous features [20]; further details are provided in the

Appendix.

We investigate fairness reversals on four of the datasets and for

Reductions and EqOdds fairness methods in Figure 1; additional

experiments in section E appendix show that this illustration is rep-

resentative. Consider first Figure 1 (top), which considers settings

where predictions do not take the sensitive features as an input (we

call these group-agnostic classifiers). In these four plots, the dashed

line corresponds to 𝑓𝐶 , and the rest are group-fair classifiers 𝑓𝐹 for

different values of 𝛼 (recall that higher 𝛼 entails greater importance

of group fairness). What we observe is that in many cases, particu-

larly when 𝛼 is not very high, there is a range of budget values 𝐵 for

which 𝑓𝐹 becomes less fair than 𝑓𝐶 . Moreover, in many cases, this

range is considerable. In Figure 1 (bottom plots), where group-fair

classifiers are group-aware, including the sensitive feature as an

input, the fairness reversal phenomenon is even more dramatic.

Figure 1 exhibits several additional phenomena. Note, in particu-

lar, that in many cases the unfairness (i.e., FPR difference between

the groups) initially increases as the budget increases, but in all

cases as budgets 𝐵 keep increasing, eventually unfairness vanishes

as a result of strategic behavior by agents. Furthermore, much as

we observe this initial unfairness increase for both 𝑓𝐶 and 𝑓𝐹 , it

appears amplified for some of the group fair classifiers 𝑓𝐹 .

What causes fairness reversal? As we formally prove below, the

essential condition is selectivity of fair classifier 𝑓𝐹 compared to

𝑓𝐶 . Specifically, in binary classification, there are, roughly, two

ways one can improve fairness on a given dataset (that is, without

any consideration of strategic behavior): inclusiveness (selecting
additional agents from the disadvantaged group by changing their

predicted class to 1) and selectivity (excluding some of the members

of the advantaged group by changing their predicted class to 0).Our
key observation is that selectivity leads to fairness reversals,
while inclusiveness does not.



Figure 2: Fairness reversals and selectivity of classifiers on two ordinal features. The top row shows regions with positive
predictions using two features (corresponding to the axes), and dot colors correspond to the sensitive demographics. The
bottom row shows the relative unfairness between demographic groups (for the classifiers shown in the top row) as a function
of strategic manipulation budget 𝐵 (lower means more fair).

We illustrate this in Figure 2, which shows the decision bound-

aries of 𝑓𝐹 and 𝑓𝐶 (top row), as well as associated fairness as a func-

tion of budget (bottom row) for several combinations of dataset,

classifier, and fairness definition. On the Adult and Crime datasets

(first two columns), fairness is achieved predominantly through

selectivity, as the orange region (𝑓𝐶 ) includes few additional green

points (disadvantaged group) compared to the blue region (𝑓𝐶 ), but

excludes many blue points (advantaged group). This, in turn, leads

to instances of fairness reversal (bottom row first column). In the

Law School dataset (third column), in contrast, fairness is achieved

primarily through inclusiveness, and 𝑓𝐹 remains more fair than

𝑓𝐶 over a broad range of strategic manipulation budgets 𝐵. The

reason that selectivity leads to fairness reversal is that those from

the advantaged group who are excluded tend as a result to be closer

to the decision boundary than those from the disadvantaged group.

In the Appendix we provide further results linking selectivity of the

fair classifier to fairness reversals. We also observe in the Appendix

that when strategic agent behavior results in a fairness reversal

between 𝑓𝐹 and 𝑓𝐶 , the relative accuracy of the classifiers is also

reversed, implying a fundamental relationship between fairness

and accuracy when agents are strategic.

In the next section, we study the phenomenon of fairness as well

as accuracy reversal in strategic classification settings theoretically,

demonstrating that selectivity is indeed a sufficient (and, under

some additional qualifications, necessary) condition for fairness

reversal.

4 THEORETICAL ANALYSIS
In this section we provide theoretical explanations of the empirical

observations made in the previous section. We start with single-

variable classifiers. We then proceed to generalize our observations

to multi-feature classifiers. Our key observation is that selectivity

is in fact a sufficient condition for fairness reversal, providing a

theoretical underpinning for the empirical observations above. Ad-

ditionally, we investigate the underlying causes of fair classifiers
become more selective, and provide conditions on the underlying

distribution for this to be the case. In the case of single variable clas-

sifiers with feature-monotonic costs and multivariable classifiers

with outcome-monotonic costs, we further show that selectivity

also leads to accuracy reversals and outline conditions on the under-

lying distribution such that selectivity is also a necessary condition

for both of these phenomena.

To begin, we now formally define fairness reversal.

Definition 4.1. (Fairness Reversal) Let 𝑀 be a fairness metric
(e.g. FPR), 𝑓𝐹 be a classifier which is group-fair with respect to 𝑀 ,
and 𝑓𝐶 be a conventional accuracy-maximizing classifier. Define
𝑈 (𝑓 ) =

��𝑀 (𝑓 |𝑔 = 1) −𝑀 (𝑓 |𝑔 = 0)
��. Suppose that 𝑈 (𝑓𝐹 ) < 𝑈 (𝑓𝐶 ).

Let 𝑓 (𝑐,𝐵)
𝐶

, 𝑓
(𝑐,𝐵)
𝐹

be the induced classifiers when agents best respond
to 𝑓𝐶 and 𝑓𝐹 respectively with manipulation cost 𝑐 (x, x′) and budget
𝐵. We say that a budget 𝐵 leads to fairness reversal between 𝑓𝐶 and
𝑓𝐹 if𝑈 (𝑓 (𝑐,𝐵)

𝐹
) ≥ 𝑈 (𝑓 (𝑐,𝐵)

𝐶
).

We will then say that fairness reversal between 𝑓𝐹 and 𝑓𝐶 occurs

if there is some strategic manipulation budget 𝐵 which leads to



fairness reversal, that is, for this budget, 𝑓𝐶 becomes more fair than

𝑓𝐹 after manipulation. Note that if the budget 𝐵 is 0, 𝑓𝐹 will be more

fair than 𝑓𝐶 by construction, whereas if the budget is infinite, as

long as any input is classified as the positive class, all individuals

can misreport their features to be this class, and consequently

either classifier is fair, in the sense that every input is predicted as

1. As a result, our analysis in the sequel is focused solely on the

intermediate cases between these extremes.

4.1 Single Variable Classifier
We begin our theoretical exploration of fairness reversals with an

exemplar case: a single variable threshold classifier. In this set-

ting agents possess a single ordinal feature 𝑥 . For simplicity we

demonstrate our results for a continuous feature 𝑥 ∈ [0, 1], but the
results hold for any ordinal feature (discrete or continuous). Both

the conventional classifier (selected for maximal accuracy) and fair

classifier (selected for weighted combination of accuracy and fair-

ness with respect to a fairness metric𝑀) can be expressed as a single

parameter 𝜃𝐶 , 𝜃𝐹 ∈ [0, 1] respectively where 𝑓 (𝑥) = I[𝑥 ≥ 𝜃 ].
Our first result is that in single-feature classification, higher se-

lectivity of the group-fair classifier is sufficient for fairness reversal.

Theorem 4.2. Suppose fairness is defined by PR, TPR, or FPR, 𝑐 (𝑥, 𝑥 ′)
is monotone in |𝑥 ′−𝑥 |, and 𝜃𝐶 is the most accurate, and 𝜃𝐹 the optimal
𝛼-fair, threshold. If 𝜃𝐶 < 𝜃𝐹 , then there exists a budget 𝐵 that leads
to fairness reversal between 𝑓𝐹 and 𝑓𝐶 .

Proof Sketch. The full proof is provided in the Appendix. The

unfairness of threshold 𝜃 w.r.t. to the distribution D and fairness

metric M ∈ {PR,TPR, FPR} is expressed as,

𝑈D (𝜃 ) =
��MD (𝜃 |𝑔 = 1) −MD (𝜃 |𝑔 = 0)

��,
For a given threshold𝜃 andmanipulation budget𝐵 the best response

of an agent with true feature 𝑥 is

𝑥
(𝐵)
𝜃

= argmax𝑥 ′
(
I[𝑥 ′ ≥ 𝜃 ] − I[𝑥 ≥ 𝜃 ]

)
s.t. 𝑐 (𝑥, 𝑥 ′) ≤ 𝐵,

When agents from D play this optimal response, let the resulting

distribution be D (𝑐,𝐵)
𝜃

. The difference in unfairness between classi-

fiers when agents are strategic is𝑈D (𝑐,𝐵)
𝜃𝐶

(𝜃𝐶 ) −𝑈D (𝑐,𝐵)
𝜃𝐹

(𝜃𝐹 ). Since

both 𝑓𝐶 and 𝑓𝐹 are thresholds and 𝑐 is feature-monotonic, we can

express the decisions of both on the modified distribution D (𝑐,𝐵)
𝜃

as modified thresholds on the original distribution D:

𝑈D (𝑐,𝐵)
𝜃𝐶

(𝜃𝐶 ) −𝑈D (𝑐,𝐵)
𝜃𝐹

(𝜃𝐹 ) = 𝑈D (𝜃 (𝑐,𝐵)
𝐶

) −𝑈D (𝜃 (𝑐,𝐵)
𝐹

)

where 𝜃
(𝑐,𝐵)
𝐶

= argmin𝑥𝑥 s.t. 𝑐 (𝑥, 𝜃𝐶 ) ≤ 𝐵 and,

𝜃
(𝑐,𝐵)
𝐹

= argmin𝑥𝑥 s.t. 𝑐 (𝑥, 𝜃𝐹 ) ≤ 𝐵

By the monotonicity of 𝑐 both 𝜃𝐶 , 𝜃𝐹 are monotonically decreasing

w.r.t. 𝐵 and 𝜃
(𝑐,𝐵)
𝐶

≤ 𝜃
(𝑐,𝐵)
𝐹

. When 𝜃
(𝑐,𝐵)
𝐶

= 0, the unfairness of

𝜃
(𝑐,𝐵)
𝐶

is trivially 0, i.e.𝑈D (0) = 0. Let 𝐵′
be the largest 𝐵 for which

𝑈D (𝜃 (𝑐,𝐵
′)

𝐶
) > 0. The manipulated threshold 𝜃

(𝑐,𝐵′)
𝐶

is continuous

in 𝐵 and thus, 𝑈D (𝜃 (𝑐,𝐵)
𝐶

) is also continuous in 𝐵, implying that

𝑈D (𝜃 (𝑐,𝐵)
𝐶

) takes on all values between𝑈D (𝜃 (𝑐,𝐵
′)

𝐶
) and𝑈D (𝜃𝐶 ).

If at 𝐵′
, we have𝑈D (𝜃 (𝑐,𝐵

′)
𝐶

) = 𝑈D (𝜃 (𝑐,𝐵
′)

𝐶
) the proof is complete

since both classifiers have equal unfairness. If this is not the case,

then there exists 𝜀 > 0 such that𝑈D (𝜃 (𝑐,𝐵
′+𝜀)

𝐶
) = 0, but 𝜃

(𝑐,𝐵′+𝜀)
𝐹

≥
𝜃
(𝑐,𝐵′+𝜀)
𝐶

, implying that𝑈D (𝜃 (𝑐,𝐵
′)

𝐹
) > 𝑈D (𝜃 (𝑐,𝐵

′)
𝐶

). Thus a fairness
reversal must occur at 𝐵 = 𝐵′

. □

We now turn our attention to a complementary observation: fair-

ness reversal is accompanied by accuracy reversal, that is, strategic
behavior leads to 𝑓𝐹 having higher accuracy than 𝑓𝐶 . This is pri-

marily due to the fact that 𝑓𝐹 becomes more selective and therefore

more resilient to manipulation.

Theorem 4.3. Suppose fairness is defined by PR, TPR, or FPR, 𝑐 (𝑥, 𝑥 ′)
is monotone in |𝑥 ′−𝑥 |, and 𝜃𝐶 is the most accurate, and 𝜃𝐹 the optimal
𝛼-fair, threshold. If 𝜃𝐶 < 𝜃𝐹 , then there exists a budget 𝐵 such that
𝑓𝐹 is more accurate than 𝑓𝐶 .

Proof. LetLD (𝜃 ) denote the error of classifier 𝑓 with threshold
𝜃 on distribution D. Note that by definition LD (𝜃𝐶 ) ≤ LD (𝜃 )
for all 𝜃 ∈ [0, 1], and LD (0) = P(𝑦 = 0). Thus, for 𝐵 ∈ [0,∞),
by continuity and the fact that a threshold 𝜃 on the manipulated

distribution D (𝑐,𝐵)
𝜃

can be expressed as a threshold 𝜃 (𝑐,𝐵) on the

original distribution D, we have

LD (𝑐,𝐵) (𝜃𝐶 ) = LD (𝜃 (𝑐,𝐵)
𝐶

) ∈ [LD (𝜃𝐶 ), P(𝑦 = 0)] .

Moreover, since 𝜃𝐶 ≤ 𝜃𝐹 , any 𝐵 ≥ 0 implies 𝜃
(𝑐,𝐵)
𝐶

≤ 𝜃
(𝑐,𝐵)
𝐹

. If

𝜃
(𝑐,𝐵)
𝐶

= 𝜃
(𝑐,𝐵)
𝐹

thenLD (𝜃 (𝑐,𝐵)
𝐶

) = LD (𝜃 (𝑐,𝐵)
𝐹

). If not then 𝜃 (𝑐,𝐵)
𝐶

=

𝜃
(𝑐,𝐵+𝜀)
𝐹

for some 𝜀 > 0. That is, for any budget 𝐵 either an accu-

racy reversal occurs, or 𝜃
(𝑐,𝐵)
𝐶

is strictly more selective than 𝜃
(𝑐,𝐵)
𝐹

.

This, combined with the fact that LD (𝜃 (𝑐,𝐵)
𝐶

) takes on all values in

[LD (𝜃𝐶 ), P(𝑦 = 0)] indicates that LD (𝜃 (𝑐,𝐵)
𝐶

) and LD (𝜃 (𝑐,𝐵+𝜀)
𝐹

)
is arbitrarily close to P(𝑦 = 0). When this happens, it must be the

case that LD (𝜃 (𝑐,𝐵)
𝐶

) = LD (𝜃 (𝑐,𝐵+𝜀)
𝐹

) ≥ LD (𝜃 (𝑐,𝐵)
𝐹

). □

We showed thus far that selectivity is sufficient for fairness
and accuracy reversal. Under what conditions is it also necessary?
Loosely speaking, when a feature 𝑥 is a good predictor of both𝑦 and

𝑔, both the error and unfairness 𝑓𝐶 and 𝑓𝐹 are unimodal (formally

defined in the Appendix) with respect to the manipulation budget

𝐵. As documented in the Appendix, most ordinal features produce

threshold classifiers which have (approximately) unimodal error

and unfairness. When this occurs, the selectivity of 𝑓𝐹 is not only

sufficient for fairness and accuracy reversals, but also necessary.

This is stated informally in the following theorem, and is formally

stated and proved in the Appendix.

Definition 4.4. (Unimodal): A function 𝐻 : [𝑎, 𝑏] → R is uni-
modal if there exists a point 𝑟 ∈ [𝑎, 𝑏] such that 𝐻 is monotone de-
creasing (increasing) on [𝑎, 𝑟 ] and monotone increasing (decreasing)
on [𝑟, 𝑏].
(All convex and concave functions are unimodal.)

Theorem 4.5 (Informal). Let 𝑓𝐶 and 𝑓𝐹 be threshold classifiers and
𝑐 (𝑥, 𝑥 ′) be feature monotonic. When error and unfairness are uni-
modal with respect to the manipulation budget 𝐵, then both fairness
and accuracy reversal will occur between 𝑓𝐹 and 𝑓𝐶 if and only if
𝜃𝐹 > 𝜃𝐶 .

In the Appendix we also discuss why error and unfairness tend

to be unimodal on the benchmark datasets. The upshot, however,



is that in many natural settings, selectivity is both necessary and

sufficient for fairness reversal.

Now that we have established the critical role of selectivity in

fairness reversal, we next analyze why that is. As mentioned previ-

ously, there are roughly two ways to achieve fairness: inclusiveness

(classifying more examples as positive) or selectivity (classifying

fewer examples as positive). Which of these will be the outcome

of training 𝑓𝐹 depends intimately on the data distribution. In the

case of single feature classification, Theorem B.2 in the Appendix

provides conditions on the underlying distribution such that the

optimal fair classifier will achieve its fairness via selectivity (thus

resulting in a fairness reversal if agents are strategic). This con-

dition can be intuitively interpreted as follows. Suppose that 𝑆 is

the set of individuals selected (i.e., classified as 1) by 𝑓𝐶 who are

also near the decision boundary of 𝑓𝐶 . If the advantaged group is

overrepresented in 𝑆 , there is a range of parameters 𝛼 such that the

optimal 𝛼-fair classifier is more selective than 𝑓𝐶 (recall that higher

𝛼 places greater importance on group-fairness in learning).

4.2 General Classifiers
Next we discuss general multi-variate classifiers, generalizing sev-

eral of the results from Section 4.1. First we show that when 𝑓𝐹 is

more selective than 𝑓𝐶 , fairness reversal occurs for both feature-

monotonic and outcome-monotonic cost functions. Second, we

give conditions which lead to 𝑓𝐹 being more selective than 𝑓𝐶 . For

outcome-monotonic costs, we provide two additional results: 1)

greater selectivity of 𝑓𝐹 also leads to accuracy reversal, and 2) uni-

modality of each classifier’s error and unfairness causes selectivity

to be both necessary and sufficient for fairness and accuracy rever-

sal.

4.2.1 Outcome-Monotonic Costs. Recall that a manipulation cost

function 𝑐 (x, x′) is outcome-monotonic if it is monotonic in P(𝑦 =

1|x′) − P(𝑦 = 1|x) and 0 for any P(𝑦 = 1|x′) ≤ P(𝑦 = 1|x),
i.e., reporting “better" features is more expensive. With respect

to outcome-monotonic costs, we define the selectivity of a classifier

𝑓 to be the minimum value of P(𝑦 = 1|x) such that 𝑓 (x) = 1, (i.e.,

what is the example with the lowest true probability to have 𝑦 = 1

classified as positive by 𝑓 ).

As shown in [21] these manipulation costs result in the following

best response for classifier 𝑓 . Let

x∗ = argminx P(𝑦 = 1|x)
s.t. 𝑓 (x) = 1.

Then for any agent with feature x such that 𝑓 (𝑥) = 0 the optimal

strategy is to play x′ where

x′ =

{
x if 𝑐 (x, x∗) > 𝐵

x∗ otherwise.

With this best response in hand we show that 𝑓𝐹 having greater

selectivity than 𝑓𝐶 leads to fairness reversal.

Theorem 4.6. Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and optimal fair
classifiers respectively. Suppose fairness is defined by PR, FPR, or TPR,
and 𝑐 (x, x′) is outcome monotonic. Let 𝑝𝐶 = minx P(𝑦 = 1|x) such
that 𝑓𝐶 (x) = 1 and 𝑝𝐹 = minx P(𝑦 = 1|x) such that 𝑓𝐹 (x) = 1. If

𝑝𝐶 < 𝑝𝐹 , then there exists a budget 𝐵 that leads to fairness reversal
between 𝑓𝐶 and 𝑓𝐹 .

Proof sketch. The full proof is deferred to the Appendix. We

can express agents’ best responses in terms of a modified classifier,

rather than a modified distribution. For classifier 𝑓 , let

𝑝 ′ = min

x:𝑓 (x)=1
P(𝑦 = 1|x),

and x′ be the feature corresponding to 𝑝 ′. Then when agents best

respond to 𝑓 the resulting manipulated classifier can be expressed

as a threshold on the underlying probabilities P(𝑦 = 1|x), i.e., let
x∗ = argminx P(𝑦 = 1|x)

s.t. 𝑐 (x∗, x′) ≤ 𝐵,

then 𝑓 (𝑐,𝐵) classifies any x with P(𝑦 = 1|x) ≥ P(𝑦 = 1|x∗) pos-
itively, and all others negatively. Similarly to Theorem 4.2, the

monotonicity of P(𝑦 = 1|x∗), as a function of 𝐵, implies the ex-

istence of a budget interval over which the unfairness of 𝑓
(𝑐,𝐵)
𝐶

decreases below 𝑓
(𝑐,𝐵)
𝐹

, thus resulting in a fairness reversal. □

Similar to the single-variable, fairness reversals in the outcome-

monotonic case also result in accuracy reversal:

Theorem 4.7. Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and optimal fair
classifiers respectively. Suppose fairness is defined by PR, FPR, or TPR,
and 𝑐 (x, x′) is outcome-monotonic. Let 𝑝𝐶 = minx P(𝑦 = 1|x) such
that 𝑓𝐶 (x) = 1 and 𝑝𝐹 = minx P(𝑦 = 1|x) such that 𝑓𝐹 (x) = 1. If
𝑝𝐶 < 𝑝𝐹 , then there exists a budget 𝐵 under which 𝑓𝐹 becomes more
accurate than 𝑓𝐶 .

The full proof is deferred to the Appendix.

Empirically we observe that when costs are outcome-monotonic,

the majority of classifiers have error and unfairness which is uni-

modal with respect to the manipulation budget 𝐵. When this occurs,

selectivity of 𝑓𝐹 becomes both necessary and sufficient.

Theorem 4.8 (Informal). Let 𝑓𝐶 and 𝑓𝐹 the optimal conventional
and fair classifiers respectively. Suppose fairness is defined by PR, FPR,
or TPR, and 𝑐 (𝑥, 𝑥 ′) is outcome-monotonic. If error and unfairness
are unimodal with respect to the manipulation budget 𝐵, then there
exists a budget 𝐵 which leads to fairness and accuracy reversal if and
only if 𝑓𝐹 is more selective than 𝑓𝐶 .

The formal statement and full proof of this theorem is presented

in the Appendix.

4.2.2 Feature-Monotonic Costs. Finally, we demonstrate that se-

lectivity remains sufficient for fairness reversal in general when

costs are feature-monotonic. Recall that in the single-variable case

relative selectivity of 𝑓𝐹 and 𝑓𝐶 selectivity could be simply de-

fined in terms of the classification thresholds 𝜃𝐶 and 𝜃𝐹 . Outcome-

monotonic cost functions similarly admitted a relatively straightfor-

ward definition of selectivity, with 𝑓𝐹 being more selective than 𝑓𝐶
if minx:𝑓𝐶 (x)=1

(
P(𝑦 = 1|x, )

)
< minx:𝑓𝐹 (𝑥)=1

(
P(𝑦 = 1|x)

)
(i.e., 𝑓𝐹

only accepts examples with higher true probability than that those

accepted by 𝑓𝐶 ). In the general case when cost functions are feature-

monotonic, we define selectivity in terms of the sets of examples
that each classifier classifies positively. Specifically we say 𝑓𝐹 is

more selective than 𝑓𝐶 if the set of examples positively classified

by 𝑓𝐹 constitutes a subset of those positively classified by 𝑓𝐶 .



Definition 4.9. Let X𝑓𝐶 = {x ∈ X : 𝑓𝐶 (x) = 1} and X𝑓𝐹 =

{x ∈ X : 𝑓𝐹 (x) = 1}. We say that 𝑓𝐹 is more selective than 𝑓𝐶 if
X𝑓𝐹 ⊂ X𝑓𝐶 .

Note that this definition of selectivity generalizes the earlier

definitions. In single-variable classification, X𝑓𝐹 ⊂ X𝑓𝐶 if and only

if 𝜃𝐶 < 𝜃𝐹 , and in the case of outcome monotonic costs X𝑓𝐹 ⊂ X𝑓𝐶
implies

min

x:𝑓𝐶 (x)=1

(
P(𝑦 = 1|x)

)
< min

x:𝑓𝐹 (x)=1

(
P(𝑦 = 1|x)

)
.

Of course, in reality selectivity is an approximation: in general, we

will rarely have instances in which 𝑓𝐹 is strictly more selective

than 𝑓𝐶 in the above sense. The practical upshot of our results here,

therefore, is that they provide an explanation for the empirically

observed phenomenon that ties approximate selectivity to fairness

reversal.

Theorem 4.10. Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and the optimal
𝛼-fair classifier, respectively. Suppose fairness is defined by PR, FPR,
or TPR and 𝑐 (x, x′) is feature-monotonic. If 𝑓𝐹 is more selective than
𝑓𝐶 , then there exists a budget 𝐵 that leads to fairness reversal between
𝑓𝐹 and 𝑓𝐶 .

Proof Sketch. The full proof is deferred to the Appendix. The

key idea is that trivial classifiers (i.e., those that predict 𝑓 (x) = 1

for all x) have 0 unfairness (in terms of PR, FPR, and TPR fairness).

As 𝐵 increases, both 𝑓
(𝑐,𝐵)
𝐶

and 𝑓
(𝑐,𝐵)
𝐹

(the classifiers resulting from

agents best responding to either classifier with budget 𝐵 and cost

function 𝑐) will approach 0 unfairness (not necessarily monoton-

ically) as they become more like trivial classifiers. At some point

prior to reaching trivial classification, the relative fairness of the

classifiers will be flipped. This is due to the fact that

{x ∈ X : 𝑓𝐹 (x) = 1} ⊂ {x ∈ X : 𝑓𝐶 (x) = 1}

and feature-monotonic costs result in the manipulated classifiers

maintaining the subset propriety, i.e.,

{x ∈ X : 𝑓
(𝑐,𝐵)
𝐹

(x) = 1} ⊂ {x ∈ X : 𝑓
(𝑐,𝐵)
𝐶

(x) = 1} for any 𝐵.

Thus implying that 𝑓
(𝑐,𝐵)
𝐹

approaches a trivial classifiermore “slowly”

than 𝑓
(𝑐,𝐵)
𝐶

with respect to 𝐵. Moreover, prior to approaching triv-

iality 𝑓
(𝑐,𝐵)
𝐹

will effectively approach 𝑓𝐶 , thus absorbing some of

the original unfairness of 𝑓𝐶 , resulting in a fairness reversal. □

Next, we give a condition that leads 𝑓𝐹 to be more selective

than 𝑓𝐶 . Here, we provide this condition for the PR fairness metric;

analogous results for TPR and FPR are given in the Appendix. For

this result, we define the following notation 𝑃𝐺𝑧
= P(𝑔 = 𝑧), 𝑔(x) =

𝑃 (𝑔 = 1|x), and X0 = {x ∈ X : 𝑔(𝑥) < 𝑃𝐺1
and P(𝑦 = 1|x) < 1/2},

(i.e. those who are less likely than chance to have 𝑔 = 0 and 𝑦 = 0).

Theorem 4.11. Suppose 𝑓𝐶 and 𝑓𝐹 are the most accurate and optimal
𝛼-fair classifier, respectively, and we use the PR fairness metric. Then
𝑓𝐹 is more selective than 𝑓𝐶 if and only if 0 < 𝛼 ≤ 𝛼∗, where

𝛼∗ = min

x∈X0

𝑃𝐺
0
𝑃𝐺

1
(2P(𝑦=1 |x)−1)

𝑔 (x)+𝑃𝐺
1

(
𝑃𝐺

1
−2𝑔 (x)−2𝑃𝐺

1
P(𝑦=1 |x)

) .

Proof Sketch. The full proof is deferred to the Appendix. Here

we provide a proof sketch for PR fairness and discrete features.

Both the conventional and fair objectives can be written as follows:

𝑓𝐶 =argmin𝑓 P(𝑓 (x) ≠ 𝑦)
𝑓𝐹 =argmin𝑓 (1 − 𝛼)P(𝑓 (x) ≠ 𝑦)

+ 𝛼
��P(𝑓 (x) = 1|𝑔 = 1) − P(𝑓 (𝑥) = 1|𝑔 = 0)

��
Assuming the optimal 𝑓𝐹 has higher positive rate for group 1, the

argument of the fair objective can be simplified to

(1 − 𝛼)
∑︁
x∈X

(
(1 − 𝑓 (x))P(𝑦 = 1|x) + 𝑓 (x)P(𝑦 = 0|x)

)
P(x)

+𝛼
∑︁
x∈X

𝑓 (x)
(
P(𝑔 = 1|x)
P(𝑔 = 1) − P(𝑔 = 0|x)

P(𝑔 = 0)

)
P(x)

Thus 𝑓𝐹 (x) = 1 is optimal if

𝛼
(P(𝑔 = 1|x) + (P(𝑔 = 1) − 2)P(𝑔 = 1))

(1 − P(𝑔 = 1))P(𝑔 = 1) (1)

− (1 − 𝛼)2P(𝑦 = 1|x) + 1

≥ 0,

and 𝑓𝐶 (x) = 1 is optimal if P(𝑦 = 1|x) ≥ 1/2. Thus, 𝑓𝐹 will posi-

tively classify an example x, which is negatively classified by 𝑓𝐶
(i.e., 𝑓𝑓 (x) = 1 ≠ 𝑓𝐶 (x) = 0) , only if Equation 1 is nonnegative and

P(𝑦 = 1|x) ≥ 1/2. Simplifying this condition yields 𝛼∗. □

Remark 4.12. The condition on 𝛼∗ given in Theorem 4.11 is also

sufficient for 𝑓𝐹 to be more selective than 𝑓𝐶 , when selectivity is

defined in terms outcome-monotonic costs.

The key observation from Theorem 4.11 is that fairness reversal

is a small-𝛼 phenomenon. This may seem surprising, since 𝑓𝐹 is

likely to be most similar to 𝑓𝐶 for smaller values of 𝛼 (in particular,

the two are identical when 𝛼 = 0). However, when 𝛼 is high, the

fairness term is sufficiently dominant that reversals are unlikely.

Consequently, it is precisely the intermediate values of 𝛼 , where we

aspire to preserve high accuracy while improving group-fairness

that are most susceptible to fairness reversal. And, indeed, this is

consistent with our empirical observations in Section 3. Further,

note that for some distributions, 𝛼∗ ≤ 0, which means that fairness

reversal cannot be guaranteed.

5 CONCLUSION
We demonstrate a fairness-reversal phenomenon, where a trained-

to-be fair classifier exhibits more unfairness than the conventional

accuracy-maximizing one if human agents can strategically respond

to a classifier. We show that a sufficient condition for observing

fairness reversal is “selectivity”, that is, a group-fair classifier mak-

ing fewer positive predictions than its conventional counterpart.

Our results caution against a naive expectation of fairness guar-

antees when a fair classifier sees real-world deployment. A more

nuanced understanding of when fair classifiers may suffer from

such problems and how to mitigate them is an important direction

for future work.
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APPENDIX
In the appendix we provide full proofs for our theoretical claims as

well as additional experimental results.

A GENERAL DEFINITIONS AND LEMMAS
Definition A.1. (PR, TPR, FPR): Postive Rate (PR), True Positive
Rate (TPR), and False Positive Rate (FPR) are defined, for classifier 𝑓
(with predicted probabilities ℎ) and distribution D over 𝐺 × X × Y,
as

PRD (𝑓 ) = P
(
𝑓 (𝑥) = 1

)
TPRD (𝑓 ) = P

(
𝑓 (𝑥) = 1|𝑦 = 1

)
FPRD (𝑓 ) = P

(
𝑓 (𝑥) = 1|𝑦 = 0

)
GTPRD (𝑓 ) = E[ℎ(𝑥) |𝑦 = 0]
GFPRD (𝑓 ) = E[(1 − ℎ(𝑥)) |𝑦 = 1]

Lemma A.2. Consider the objective

𝑓𝐹 = argmin

𝑓
(1 − 𝛼)P(x,𝑦) (𝑓 (x) = 𝑦)

− 𝛼
��M(𝑓 ;𝑔 = 0) −M(𝑓 ;𝑔 = 1)

��
WhenM is defined in terms of PR, TPR, FPR, increasing 𝛼 could never
in a less fair classifier.

Proof: (Lemma A.2). Let 𝑈 (𝑓𝐹 ) = |M(𝑓𝐹 ;𝑔 = 0) − M(𝑓𝐹 ;𝑔 =

1) | and L(𝑓 ) = 1 − P(𝑓 (x) = 𝑦). First observe that 𝑓 = 1 causes

𝑈 (𝑓 ) = 0, implying that for 𝛼 arbitrarily close to 1 the 𝑈 (𝑓 ) ap-
proaches 0. Next consider two classifier 𝑓1, 𝑓2, which are solutions to

the soft constrained objective for 𝛼1, 𝛼2 respectively, where 𝛼1 > 𝛼2.

(1 − 𝛼1)L(𝑓1) + 𝛼1𝑈 (𝑓1) < (1 − 𝛼1)L(𝑓2) + 𝛼1𝑈 (𝑓2)
and

(1 − 𝛼2)L(𝑓2) + 𝛼2𝑈 (𝑓2) < (1 − 𝛼2)L(𝑓1) + 𝛼2𝑈 (𝑓1)

If for all such pairs of 𝑓1, 𝑓2 it was the case that 𝑈 (𝑓1) ≥ 𝑈 (𝑓2),
then the proof is complete, so assume by way of contradiction that

𝑈 (𝑓1) < 𝑈 (𝑓2). That is, increasing the fairness coefficient 𝛼 (from

𝛼1 to 𝛼2) has resulted in a less fair classifier. In this case, we then

know that L(𝑓1) > L(𝑓2) since otherwise 𝑓1 would be the optimal

classifier for both 𝛼1 and 𝛼2. Thus for some 𝜀,𝛾 > 0, we can express

L(𝑓1) = L(𝑓2) + 𝜖 and𝑈 (𝑓1) = 𝑈 (𝑓2) − 𝛾 . Hence

(1 − 𝛼1)L(𝑓1) + 𝛼1𝑈 (𝑓1) < (1 − 𝛼1)L(𝑓2) + 𝛼1𝑈 (𝑓2)
=⇒ (1 − 𝛼1) (L(𝑓2) + 𝜀) + 𝛼1 (𝑈 (𝑓1) − 𝛾)

< (1 − 𝛼1)L(𝑓2) + 𝛼1𝑈 (𝑓2)
=⇒ (1 − 𝛼1)𝜀 < 𝛼1𝛾

and

(1 − 𝛼2)L(𝑓1) + 𝛼2𝑈 (𝑓1) > (1 − 𝛼2)L(𝑓2) + 𝛼2𝑈 (𝑓2)
=⇒ (1 − 𝛼2) (L(𝑓2) + 𝜀) + 𝛼2 (𝑈 (𝑓2) − 𝛾)

< (1 − 𝛼2)L(𝑓2) + 𝛼2𝑈 (𝑓2)
=⇒ (1 − 𝛼2)𝜀 > 𝛼2𝛾

Since 𝛼1, 𝛼2, 𝛾, 𝜀 > 0

(1 − 𝛼1)𝜀 > (1 − 𝛼2)𝜀 > 𝛼2𝛾 > 𝛼1𝛾

=⇒ 𝛼2 > 𝛼1 .

Figure 3: Example of a a function 𝑓 (𝑥) (solid green) which
has a single crossing (Def A.4) with the constant function 𝑣

(dotted green). 𝑓 (𝑥) can take on any values within the orange
regions and maintaining the single crossing condition with 𝑣 .
That is, so long as 𝑓 (𝑥) is upper bounded by 𝑣 prior to crossing
𝑣 , and lower bounded by 𝑣 after crossing 𝑣 , the single crossing
condition holds.

which is a contradiction. Hence increasing 𝛼 could not increase

classifier unfairness. □

Definition A.3. (Unimodal): A function 𝐻 : [𝑎, 𝑏] → R is nega-
tively unimodal (positively unimodal) on the interval [𝑎, 𝑏] if there
exists a point 𝑟 ∈ [𝑎, 𝑏] such that 𝐻 is monotone decreasing (increas-
ing) on [𝑎, 𝑟 ] and monotone increasing (decreasing) on [𝑟, 𝑏].
(All convex functions are negatively unimodal and all concave func-
tions are positively unimodal.)

Definition A.4. (Single Crossing): A function 𝑓 is said to have a
single crossing with the function 𝑔 if there exists 𝑧 s.t.

∀𝑥 ≤ 𝑧 : 𝑓 (𝑥) ≥ 𝑔(𝑥) and ∀𝑥 ≥ 𝑧 : 𝑓 (𝑥) ≥ 𝑔(𝑥)

This single crossing property is relevant to our work as we look at
conditional distributions which have a single crossing with their un-

conditioned counterpart, e.g.. the functions P
(
𝑦 = 1|𝑥

)
and P

(
𝑦 = 1

)
have a single crossing w.r.t. 𝑥 . Note that any monotone function has

a single crossing with every constant function and thus monotone

conditionals trivially satisfy this condition.

Lemma A.5. A once-differentiable function is unimodal if its deriv-
ative has a single crossing with the constant function 0.

Proof. Let 𝑓 (𝑥) : R → R be a once-differentiable function.

Suppose that 𝑓 ′(𝑥) has a single crossing with 0. Then there exists

a point 𝑧 such that 𝑥 ≤ 𝑧 implies 𝑓 ′(𝑥) ≤ 0 and 𝑧 ≤ 𝑥 implies 0 ≤
𝑓 ′(𝑥). Thus 𝑓 is monotonically decreasing on the interval (−∞, 𝑧]
and monotonically increasing on the interval [𝑧,∞). Implying that

𝑓 is unimodal. □

B SINGLE VARIABLE CLASSIFIERS
Here we provide full proofs for the results in Section 4.1. Before

proving the main results we first provide several helping lemmas

and definition.



First we show that threshold classifiers predicting on manipu-

lated distributions, can be expressed as thresholds on the original

unmanipulated distribution.

Lemma B.1. Suppose 𝑓 is of the form 𝑓 (𝑥) = I[𝑥 ≥ 𝜃 ], and the cost
of manipulating a feature from 𝑥 to 𝑥 ′ is given as 𝑐 (𝑥, 𝑥 ′), where an
agent with true feature 𝑥 can submit any 𝑥 ′ subject to 𝑐 (𝑥, 𝑥 ′) ≤ 𝐵.
Then for any cost function 𝑐 which is monotone in |𝑥 ′ − 𝑥 | there
exists a classifier 𝑓 (𝑐,𝐵) (𝑥) = I[𝑥 ≥ 𝜃 (𝑐,𝐵) ] which makes identical
predictions on the true distribution D as 𝑓 makes on manipulated
data D (𝑐,𝐵)

𝑓
, i.e. when agents behave strategically 𝑓 (𝑥 ′) = 𝑓 (𝑐,𝐵) (𝑥)

for all 𝑥 ∈ X and

𝜃 (𝑐,𝐵) = argmin𝑥𝑥 s.t. 𝑐 (𝑥, 𝜃 ) ≤ 𝐵.

Lemma B.1 implies that strategic agent behavior can be examined

through both the perspective of the original classifier 𝑓 making

predictions on the modified distribution D (𝑐,𝐵)
𝑓

or a modified clas-

sifier 𝑓 (𝑐,𝐵) on the original distribution D. Since our investigation

involves comparing two classifiers, 𝑓𝐶 and 𝑓𝐹 , the latter perspective

is of particular usefulness given that the distribution D remains

invariant between classifiers which will useful for our proofs.

Proof: (Lemma B.1). When all agents prefer positive predictions

to negative predictions, their manipulations will change the clas-

sifier in only a single direction, namely manipulations cause neg-

atively predicted examples to become positively predicted. Thus,

only agents with feature 𝑥 , where 𝑓 (𝑥) = 0 need be considered.

Suppose 𝑓 is a threshold classifier with threshold 𝜃 , then the

agent’s best response to 𝑓 is,

𝑥∗ = argmax𝑥 I[𝑥 ′ ≥ 𝜃 ] − I[𝑥 ≥ 𝜃 ]
s.t. 𝑐 (𝑥, 𝑥 ′) ≤ 𝐵

Since the cost function 𝑐 (𝑥, 𝑥 ′) is monotone w.r.t. |𝑥 ′−𝑥 | the above
best response has solution

𝑥∗ =

{
𝜃 if 𝑐 (𝑥, 𝜃 ) ≤ 𝐵 and 𝑥 < 𝜃

𝑥 otherwise

Moreover, the monotonicity of 𝑐 (𝑥, 𝑥 ′) also implies that if an agent

with feature 𝑥 has best response 𝑥∗ = 𝜃 , then so will any other

agent with 𝑥1 where 𝑥 ≤ 𝑥1 < 𝜃 .

Thus, the distribution shift of D caused by strategic behavior,

can be quantified in terms of the agent with the smallest feature

which is able to report a value of 𝜃 , i.e. the feature

𝑥min = argmin𝑥𝑥

s.t. 𝑐 (𝑥, 𝜃 ) ≤ 𝐵

Thus when agents are strategic, any agent with feature 𝑥 ≥ 𝑥min

will be positively classified by 𝑓 . Therefore, the threshold 𝜃 ′ = 𝑥min

makes the same classifications on the unmanipulated distribution

D as 𝜃 makes on the manipulated distribution D (𝑐,𝐵)
𝜃

. □

Next we restart the three theorems provided in Section 4.1 (The-

orems 4.2, 4.3, 4.5) and provide their full proofs.

Theorem (4.2). Suppose fairness is defined by PR, TPR, or FPR,

𝑐 (𝑥, 𝑥 ′) is monotone in |𝑥 ′ − 𝑥 |, and 𝜃𝐶 , 𝜃𝐹 are respectively the

most accurate and optimal 𝛼-fair thresholds. If 𝜃𝐶 < 𝜃𝐹 then here

exists a budget 𝐵 such that strategic behavior agent behavior, leads

to 𝑓𝐹 becoming less fair than 𝑓𝐶 if 𝜃𝐶 < 𝜃𝐹 , (i.e. fair classifiers

which are more selective than their baseline counterpart become

less fair under strategic manipulation).

Proof: (Theorem 4.2). The unfairness of threshold 𝜃 w.r.t. to

the distribution D and fairness metric M ∈ {PR,TPR, FPR} is

expressed as,

𝑈D (𝜃 ) =
��MD (𝜃 ;𝑔 = 1) −MD (𝜃 ;𝑔 = 0)

��,
For a given threshold𝜃 andmanipulation budget𝐵 the best response

of an agent with true feature 𝑥 is

𝑥
(𝐵)
𝜃

= argmax𝑥 ′
(
I[𝑥 ′ ≥ 𝜃 ] − I[𝑥 ≥ 𝜃 ]

)
s.t. 𝑐 (𝑥, 𝑥 ′) ≤ 𝐵,

When agents from D play this optimal response, let the resulting

distribution be D (𝑐,𝐵)
𝜃

. The difference in unfairness, between clas-

sifiers, when agents are strategic is 𝑈D (𝑐,𝐵)
𝜃𝐶

(𝜃𝐶 ) −𝑈D (𝑐,𝐵)
𝜃𝐹

(𝜃𝐹 ). By

lemma B.1 this unfairness can be expressed in terms of the true

distribution D, namely

𝑈D (𝑐,𝐵)
𝜃𝐶

(𝜃𝐶 ) −𝑈D (𝑐,𝐵)
𝜃𝐹

(𝜃𝐹 ) = 𝑈D (𝜃 (𝑐,𝐵)
𝐶

) −𝑈D (𝜃 (𝑐,𝐵)
𝐹

)

where 𝜃
(𝑐,𝐵)
𝐶

= argmin𝑥𝑥 s.t. 𝑐 (𝑥, 𝜃𝐶 ) ≤ 𝐵 and,

𝜃
(𝑐,𝐵)
𝐹

= argmin𝑥𝑥 s.t. 𝑐 (𝑥, 𝜃𝐹 ) ≤ 𝐵

By the monotonicity of 𝑐 both 𝜃𝐶 , 𝜃𝐹 are monotonically decreasing

w.r.t. 𝐵 and 𝜃
(𝑐,𝐵)
𝐶

≤ 𝜃
(𝑐,𝐵)
𝐹

≤ 𝜃𝐶 . When 𝜃
(𝑐,𝐵)
𝐶

= 0, the unfairness

of 𝜃
(𝑐,𝐵)
𝐶

is trivially 0, i.e. 𝑈D (0) = 0 Let 𝐵′
be the largest 𝐵 for

which𝑈D (𝜃 (𝑐,𝐵
′)

𝐶
> 0. Since 𝑐 is continuous, 𝜃

(𝑐,𝐵′)
𝐶

is continuous

in 𝐵 and thus,𝑈D (𝜃 (𝑐,𝐵)
𝐶

is also continuous in 𝐵. Hence𝑈D takes

on all values in the interval [𝑈D (𝜃 (𝑐,𝐵
′)

𝐶
,𝑈D (𝜃𝐶 )]. Now if at 𝐵′

,

we have𝑈D (𝜃 (𝑐,𝐵
′)

𝐶
= 𝑈D (𝜃 (𝑐,𝐵

′)
𝐶

) the proof is complete since both

classifiers have equal unfairness. If this is not the case, then𝜃
(𝑐,𝐵′)
𝐶

<

𝜃
(𝑐,𝐵′)
𝐹

, and theremust exits some 𝜀 > 0 such that𝑈D (𝜃 (𝑐,𝐵
′+𝜀)

𝐶
) = 0,

but 𝜃
(𝑐,𝐵′+𝜀)
𝐹

> 𝜃
(𝑐,𝐵′+𝜀)
𝐶

. If no such epsilon existed then for any

𝐵 > 𝐵′
it would have to be the case that

𝑈D (𝜃 (𝑐,𝐵)
𝐶

) > 𝑈D (𝜃 (𝑐,𝐵)
𝐹

)
or

𝑈D (𝜃 (𝑐,𝐵)
𝐶

) = 𝑈D (𝜃 (𝑐,𝐵)
𝐹

) = 0

However, this would imply that 𝜃
(𝑐,𝐵)
𝐹

< 𝜃
(𝑐,𝐵)
𝐶

, a contradiction.

Thus𝑈D (𝜃 (𝑐,𝐵
′+𝜀)

𝐹
) > 𝑈D (𝜃 (𝑐,𝐵

′+𝜀)
𝐶

= 0, which in turn implies that

𝑈D (𝜃 (𝑐,𝐵
′)

𝐹
) > 𝑈D (𝜃 (𝑐,𝐵

′)
𝐶

. That is a fairness reversal must occur

at 𝐵 = 𝐵′
. □

Theorem (4.3). Suppose fairness is defined by PR, TPR, or FPR.

𝑐 (𝑥, 𝑥 ′) is monotone in |𝑥 ′ − 𝑥 |, and 𝜃𝐶 , 𝜃𝐹 are respectively the

most accurate and optimal 𝛼-fair thresholds. If 𝜃𝐶 < 𝜃𝐹 then here

exists a budget 𝐵 such that strategic behavior agent behavior, leads

to 𝑓𝐹 becoming more accurate than 𝑓𝐶 if 𝜃𝐶 < 𝜃𝐹 .



Proof: (Theorem 4.3). Let LD (𝜃 ) denote the error of classifier
𝑓 with threshold 𝜃 on distribution D. By definition LD (𝜃𝐶 ) ≤
LD (𝜃 ) for all 𝜃 ∈ [0, 1], and LD (0) = P(𝑦 = 1). Thus, for
𝐵 ∈ [0,∞), by continuity and Lemma B.1 we have LD (𝑐,𝐵) (𝜃𝐶 ) =
LD (𝜃 (𝑐,𝐵)

𝐶
∈ [LD (𝜃𝐶 ), P(𝑦 = 1)]. Moreover, since 𝜃𝐶 ≤ 𝜃𝐹 , it

must be the case that for all 𝐵 the relationship 𝜃
(𝑐,𝐵)
𝐶

≤ 𝜃
(𝑐,𝐵)
𝐵

holds.

Thus we can express 𝜃
(𝑐,𝐵)
𝐶

= 𝜃
(𝑐,𝐵)
𝐹

− 𝜀 for some 𝜀 ≥ 0. By lemma

B.1 we can express 𝜃
(𝑐,𝐵)
𝐶

= 𝜃
(𝑐,𝐵)
𝐹

− 𝜀 = 𝜃
(𝑐,𝐵′)
𝐹

for some 𝐵′
with

𝐵 ≤ 𝐵′
.

That is, for any budget 𝐵 we may express 𝜃
(𝑐,𝐵)
𝐶

as 𝜃
(𝑐,𝐵′)
𝐹

for

some larger budget 𝐵′
. This combine with the fact that LD (𝜃 (𝑐,𝐵)

𝐶
takes on all values in [LD (𝜃𝐶 ), P(𝑦 = 0)] indicates that there must

be a region [𝐵1, 𝐵2] ⊂ [0,∞) over which LD (𝜃 (𝑐,𝐵)
𝐶

) is decreasing
for 𝐵 ∈ [𝐵1, 𝐵2] such that when 𝐵′ = 𝐵1, we have LD (𝜃 (𝑐,𝐵

′)
𝐶

≥
LD (𝜃 (𝑐,𝐵

′)
𝐹

> P(𝑦 = 0). Thus for budget 𝐵′
an accuracy reversal

occurs. □

Selectivity. First we provide the sufficient condition under which an

optimal fair classifier 𝑓𝐹 is indeed more selective than its conven-

tional counterpart 𝑓𝐶 . This condition can be interpreted as saying

that if the advantaged group is overrepresented close to, but on the

beneficial side of 𝑓𝐶 , then there exists a range of fairness coefficients

[𝛼1, 𝛼2] such that for 𝛼 ∈ [𝛼1, 𝛼2] the optimal 𝛼-fair classifier is

more selective than the most accurate classifier 𝑓𝐶 .

Theorem B.2. Suppose fairness is defined by PR, TPR, or FPR. Sup-
pose further that P

(
𝑦 = 1|𝑥

)
has a single crossing with P(𝑦 = 1), and

that P
(
𝑔 = 1|𝑥

)
has a single crossing with the respective value given

in Lemmas B.4 and B.5, call this value 𝑝𝑔 . Let 𝑥𝑦 and 𝑥𝑔 be defined by

P
(
𝑦 = 1|𝑥𝑦

)
= P(𝑦 = 1) and P

(
𝑔 = 1|𝑥𝑔

)
= 𝑝𝑔

If 𝑥𝑔 < 𝑥𝑦 , then there exists a nonempty interval [𝛼0, 𝛼1] s.t. for any
𝛼 ∈ [𝛼0, 𝛼1] the optimal 𝛼-fair classifier 𝑓𝐹 , has the propriety that
𝜃𝐶 < 𝜃𝐹 (implying that strategic agent behavior leads to 𝑓𝐹 becoming
less fair than 𝑓𝐶 as outlined by Theorem 4.2).

Proof: (Theorem B.2). Given 𝛼 ∈ (0, 1), fairness metric M ∈
{PR,TPR, FPR}, and data distribution D, the objective of the fair

learning scheme is to find 𝜃𝐹 such that

𝜃𝐹 = argmin𝜃 (1 − 𝛼)P
(
I[𝑥 ≥ 𝜃 ] ≠ 𝑦

)
+ 𝛼𝑈D (𝜃 ) (2)

where

𝑈D (𝜃 ) =
��M(𝜃 |𝑔 = 1) −M(𝜃 |𝑔 = 0)

��
By Lemma B.3 the error term P

(
I[𝑥 ≤ 𝜃 ] = 𝑦

)
is negatively uni-

modal in 𝜃 and achieves a minimum at 𝜃𝐶 where P
(
𝑦 = 1|𝑥 =

𝜃𝐶
)
= P(𝑦 = 1). Similarly, by Lemmas B.4, B.5 the unfairness

term𝑈D (𝜃 ) is positively unimodal in 𝜃 and achieves a maximum

at 𝜃𝑈 where P
(
𝑔 = 1|𝑥 = 𝜃𝑈

)
= P

(
𝑔 = 1

)
. Thus for any 𝛼 the

fair learning objective (Equation 2) is monotonically increasing,

implying 𝜃𝐹 ∉ [𝜃𝑈 , 𝜃𝐶 ]. So either 𝜃𝐹 ∈ [0, 𝜃𝑈 ) or 𝜃𝐹 ∈ (𝜃𝐶 , 1].
By the continuity of Equation 2 w.r.t. to 𝜃 . For some 𝜀 > 0, any

𝜀 ′ < 𝜀 yields P
(
I[𝑥 ≥ 𝜃𝐶 + 𝜀 ′] ≠ 𝑦

)
≤ P

(
I[𝑥 ≥ 𝜃𝑈 ] ≠ 𝑦

)
and

𝑈D (𝜃𝐶 ) ≤ 𝑈D (𝜃𝑈 − 𝜀 ′). Thus implying that for small enough

since both |𝜃𝐶 − 𝜃𝐹 | and |𝜃𝑈 − 𝜃𝐹 | are monotonic w.r.t. to 𝛼 , it

must be the case that that for 𝛼 small enough 𝜃𝐹 = 𝜃𝐶 + 𝜀 ′ is the

optimal 𝛼-fair classifier, thus implying the existence of of fairness

coefficients [𝛼1, 𝛼2] such that 𝛼 ∈ [𝛼1, 𝛼2] implies 𝜃𝐹 > 𝜃𝐶 . □

Next we discuss conditions under which selectivity of the fair

classifier is not only sufficient, but also necessary for fairness and

accuracy reversals. These conditions are motivated by our empirical

findings shown in Figures 21-24. These figures display error and

unfairness of threshold classifiers. In each of figure we see that

almost all ordinal features found in the datasets we study, produce

error and unfairness curves (red and orange respectively) which

achieve a single extrema and are monotonic on either side of said ex-

trema. Functions which exhibit this propriety are know as unimodal
functions (Definition A.3 ).

Empirically we observe that most ordinal features exhibit uni-

modality of error and unfairness, or are simply not predictive fea-

tures (i.e. the most accurate classifier 𝑓𝐶 achieves roughly accuracy

of 0.5). When error and unfairness are unimodal, selectivity of 𝑓𝐶
is both necessary and sufficient for a fairness reversal between 𝑓𝐶
and 𝑓𝐹 .

Naturally, the next step is to investigatewhy error and unfairness
would be unimodal. Ultimately the unimodality L(𝜃 ) and 𝑈 (𝜃 ) is
a function of the underlying distribution, specifically the functions

P(𝑔 = 𝑔′, 𝑦 =′ |𝑥), P(𝑦 = 1|𝑥), and P(𝑔 = 1|𝑥) for 𝑔′, 𝑦′ ∈ {0, 1}.
We theoretically show that when these functions have a single-
crossing (Definition A.4) with there respective unconditioned value

(e.g. P(𝑔 = 1|𝑥) has a single crossing with P(𝑔 = 1)), error and
unfairness will be unimodal. In Figure 20 we see that each of the

features used in Figures 21-24 approximately exhibits this single-

crossing propriety, which causes unimodality, which in turn causes

selectivity to be both necessary and sufficient for fairness reversals

to occur.

Lemma B.3. Suppose that P
(
𝑦 = 1|𝑥) has a single crossing with

P(𝑦 = 1). Then error is negatively unimodal w.r.t. 𝜃 and the optimal
base threshold is 𝜃𝐶 s.t. P

(
𝑦 = 1|𝜃𝐶

)
= P

(
𝑦 = 1

)
.

Proof: (Lemma B.3). The error of a classifier 𝑓 (𝑥) = I[𝑥 ≥ 𝜃 ] is
given by,

1 − P
(
I[𝑥 ≥ 𝜃 ] = 𝑦

)
= 1 − P

(
𝑥 ≥ 𝜃,𝑦 = 1

)
− P

(
𝑥 ≤ 𝜃,𝑦 = 0

)
= P

(
𝑦 = 0

)
+ P

(
𝑥 ≤ 𝜃,𝑦 = 1

)
− P

(
𝑥 ≤ 𝜃,𝑦 = 0

)
Since 𝑥 is a continuous random variable and the terms involving 𝜃

are joint CDFs with well defined conditional PDFs, the derivative

of the above expression w.r.t. to 𝜃 , exists and is equal to

ℎ𝑦,𝑥 (𝑦 = 1, 𝑥 = 𝜃 ) − ℎ𝑦,𝑥 (𝑦 = 0, 𝑥 = 𝜃 )
= ℎ𝑥 (𝑥 = 𝜃 )

(
P(𝑦 = 1|𝑥 = 𝜃 ) − P(𝑦 = 0|𝑥 = 𝜃 )

)
= ℎ𝑥 (𝑥 = 𝜃 )

(
2P(𝑦 = 1|𝑥 = 𝜃 ) − 1

)
Since P

(
𝑦 = 1|𝑥 = 𝜃

)
has a single crossing with P(𝑦 = 1), the above

derivative is split by the value 0, thus by Lemma A.5 error is nega-
tively unimodalwith globalminima at any𝜃𝐶 s.t. P

(
𝑦 = 1|𝑥 = 𝜃𝐶

)
= P(𝑦 = 1).
□

Lemma B.4. Suppose that fairness is defined in terms of Positive
Rate (PR) and that P

(
𝑔 = 1|𝑥

)
has a single crossing with P

(
𝑔 = 1

)
,

then



(1) PRD (𝜃 |𝑔 = 1) ≥ PRD (𝜃 |𝑔 = 0) for any 𝜃 ∈ [0, 1], (i.e. group
1 is advantaged under any threshold classifier), and

(2) the unfairness term
��PRD (𝜃 |𝑔 = 1) − PRD (𝜃 |𝑔 = 0)

�� is pos-
itively unimodal w.r.t. 𝜃 and is maximized at any 𝜃𝑈 s.t.
P
(
𝑔 = 1|𝑥 = 𝜃𝑈

)
= P

(
𝑔 = 1

)
.

Proof: (Lemma B.4). For a classifier 𝑓 (𝑥) = I[𝑥 ≥ 𝜃 ], we begin
by demonstrating (1) the unimodality ofP

(
𝑥 ≥ 𝜃 |𝑔 = 1

)
−P

(
𝑥 ≥ 𝜃 |𝑔 = 0

)
and then use this propriety to show (2) the equivalence between

P
(
𝑥 ≥ 𝜃 |𝑔 = 1

)
− P

(
𝑥 ≥ 𝜃 |𝑔 = 0

)
and the unfairness term��P(𝑥 ≥ 𝜃 |𝑔 = 1

)
− P

(
𝑥 ≥ 𝜃 |𝑔 = 0

) ��.
First, note that

= P
(
𝑥 ≥ 𝜃 |𝑔 = 1

)
− P

(
𝑥 ≥ 𝜃 |𝑔 = 1

)
=
P
(
𝑔 = 1, 𝑥 ≥ 𝜃

)
P
(
𝑔 = 1

) −
P
(
𝑔 = 0, 𝑥 ≥ 𝜃

)
P
(
𝑔 = 0

)
=
P
(
𝑔 = 1

)
− P

(
𝑔 = 1, 𝑥 ≤ 𝜃

)
P
(
𝑔 = 1

)
−
P
(
𝑔 = 0

)
− P

(
𝑔 = 0, 𝑥 ≤ 𝜃

)
P
(
𝑔 = 0

)
= 1 −

P
(
𝑔 = 1, 𝑥 ≤ 𝜃

)
P
(
𝑔 = 1

) − 1 +
P
(
𝑔 = 0

)
P
(
𝑔 = 0, 𝑥 ≤ 𝜃

)
P
(
𝑔 = 0

)
= −

P
(
𝑔 = 1, 𝑥 ≤ 𝜃

)
P
(
𝑔 = 1

) +
P
(
𝑔 = 0, 𝑥 ≤ 𝜃

)
P
(
𝑔 = 0

)
Since each term involving 𝜃 is a joint CDF, the derivative of this

term w.r.t to 𝜃 exists and is equal to

ℎ𝑔,𝑥 (𝑔 = 0, 𝑥 = 𝜃 )
P
(
𝑔 = 0

) −
ℎ𝑔,𝑥 (𝑔 = 1, 𝑥 = 𝜃 )
P
(
𝑔 = 1

)
=
P
(
𝑔 = 0|𝑥 = 𝜃

)
ℎ𝑥 (𝑥 = 𝜃 )

P
(
𝑔 = 0

) −
P
(
𝑔 = 1|𝑥 = 𝜃

)
ℎ𝑥 (𝑥 = 𝜃 )

P
(
𝑔 = 1

)
=

(
1 − P

(
𝑔 = 1|𝑥 = 𝜃

) )
ℎ𝑥 (𝑥 = 𝜃 )

P
(
𝑔 = 0

)
−
P
(
𝑔 = 1|𝑥 = 𝜃

)
ℎ𝑥 (𝑥 = 𝜃 )

P
(
𝑔 = 1

)
= ℎ𝑥 (𝑥 = 𝜃 )

P
(
𝑔 = 1

)
− P

(
𝑔 = 1|𝑥 = 𝜃

)
P
(
𝑔 = 1

)
P
(
𝑔 = 0

)
Since P

(
𝑔 = 1|𝑥

)
is split by the value P

(
𝑔 = 1

)
the above term is split

by the value 0, thus by Lemma the term P
(
𝑥 ≥ 𝜃 |𝑔 = 1

)
− P

(
𝑥 ≥

𝜃 |𝑔 = 0

)
is positively unimodal, and is maximized at any 𝜃𝑈 s.t.

ℎ𝑥 (𝑥 = 𝜃𝑈 )
P
(
𝑔 = 1

)
− P

(
𝑔 = 1|𝑥 = 𝜃𝑈

)
P
(
𝑔 = 1

)
P
(
𝑔 = 0

) = 0

Since ℎ𝑥 (𝑥 = 𝜃 ) > 0 any such 𝜃𝑈 has the propriety that P
(
𝑔 =

1|𝑥 = 𝜃𝑈
)
= P

(
𝑔 = 1

)
. Thus concluding the proof of (2).

We now use (2) to show that (1) immediately follows. Note that

for 𝜃 ∈ {0, 1} we have P
(
𝑥 ≥ 𝜃 |𝑔 = 1

)
= P

(
𝑥 ≥ 𝜃 |𝑔 = 0

)
. Since the

function is positively unimodal and P
(
𝑔 = 1

)
> 0 neither 𝜃 = 0 nor

𝜃 = 1 can be points corresponding to local maximums, hence for

any 𝜃 we have

P
(
𝑥 ≥ 𝜃 |𝑔 = 1

)
− P

(
𝑥 ≥ 𝜃 |𝑔 = 0

)
≥ P

(
𝑥 ≥ 1|𝑔 = 1

)
− P

(
𝑥 ≥ 1|𝑔 = 0

)
= 0

□

Lemma B.5. Suppose that fairness is defined by either True Positive
Rate or False Positive Rate and that 𝑔,𝑦 are conditionally independent
given 𝑥 . Suppose further that P

(
𝑔 = 1|𝑥

)
has a single crossing with

P
(
𝑔 = 1|𝑦 = 1

)
in the TPR case and by P

(
𝑔 = 1|𝑦 = 0

)
in the FPR case.

Then whenM is TPR or FPR,

(1) MD (𝜃 |𝑔 = 1) ≥ MD (𝜃 |𝑔 = 0) for any 𝜃 ∈ [0, 1], (i.e. group
1 is advantaged under any threshold classifier), and

(2) the unfairness term
��MD (𝜃 |𝑔 = 1) − MD (𝜃 |𝑔 = 0)

�� is pos-
itively unimodal w.r.t. 𝜃 and is maximized at any 𝜃𝑈 s.t.
P
(
𝑔 = 1|𝑥 = 𝜃𝑈

)
= P

(
𝑔 = 1|𝑦 = 1

)
in the TPR case and

P
(
𝑔 = 1|𝑥 = 𝜃𝑈

)
= P

(
𝑔 = 1|𝑦 = 0

)
in the FPR case.

Proof: (Lemma B.5). This proof follows identically from Lemma

B.4. □

Theorem B.6. Suppose fairness is defined by PR, TPR, or FPR. Sup-
pose further that P

(
𝑦 = 1|𝑥

)
has a single crossing (Def A.4) with

P(𝑦 = 1), P
(
𝑔 = 1|𝑥

)
has a single crossing with value given in Lem-

mas B.4 and B.5, 𝑐 (𝑥, 𝑥 ′) is monotone in |𝑥 ′ − 𝑥 |, and 𝜃𝐶 , 𝜃𝐹 are
respectively the most accurate and optimal 𝛼-fair thresholds. Then
there exists a range of budgets [𝐵1, 𝐵2] such that strategic behavior
agent behavior, with budget 𝐵 ∈ [𝐵1, 𝐵2], leads to 𝑓𝐹 being less fair
than 𝑓𝐶 if and only if 𝜃𝐶 < 𝜃𝐹 , (i.e. fair classifiers which are more se-
lective than their baseline counterpart become less fair under strategic
manipulation)

Proof: (Theorem B.6). We first show that 𝜃𝐶 < 𝜃𝐹 implies the

existence of a budget interval [𝐵1, 𝐵2] s.t. strategic agent behavior
under any 𝐵 ∈ [𝐵1, 𝐵2] leads to 𝑓𝐹 being less fair than 𝑓𝐶 . We then

show that if 𝜃𝐹 < 𝜃𝐶 , no such budget interval exists.

The unfairness of threshold 𝜃 w.r.t. to the distribution D and

fairness metricM ∈ {PR,TPR, FPR} is expressed as,

𝑈 (𝜃,D) =
��MD (𝜃 |𝑔 = 1) −MD (𝜃 |𝑔 = 0)

��,
For a given threshold𝜃 andmanipulation budget𝐵 the best response

of an agent with true type 𝑎 = (𝑔, 𝑥) is

𝑥
(𝐵)
𝜃

= argmax𝑥 ′
(
I[𝑥 ′ ≥ 𝜃 ] − I[𝑥 ≥ 𝜃 ]

)
s.t. 𝑐 (𝑥, 𝑥 ′) ≤ 𝐵,

When agents, originally distributed in accordance withD, play this

optimal responses w.r.t. 𝜃 and 𝐵, let the resulting distribution be

D (𝐵)
𝜃

. The difference in unfairness, between classifiers, when agents

are strategic, can then be expressed as𝑈 (𝜃𝐶 ,D (𝐵)
𝜃𝐶

) −𝑈 (𝜃𝐹 ,D (𝐵)
𝜃𝐹

).
Lemma B.1 gives a way to express this difference in terms of the

original distribution D by changing the thresholds, namely

𝑈 (𝜃𝐶 ,D (𝐵)
𝜃𝐶

) −𝑈 (𝜃𝐹 ,D (𝐵)
𝜃𝐹

)

=𝑈 (𝜃 (𝐵)
𝐶

,D) −𝑈 (𝜃 (𝐵)
𝐹

,D)



where

𝜃
(𝐵)
𝐶

= argmin𝑥𝑥 s.t. 𝑐 (𝑥, 𝜃𝐶 ) ≤ 𝐵 and,

𝜃
(𝐵)
𝐹

= argmin𝑥𝑥 s.t. 𝑐 (𝑥, 𝜃𝐹 ) ≤ 𝐵

By the monotonicity of 𝑐 (𝑥, 𝑥 ′) w.r.t. 𝑥 ′ − 𝑥 we have that

𝜃𝐶 < 𝜃𝐹 =⇒ 𝜃
(𝐵)
𝐶

≤ 𝜃
(𝐵)
𝐹

∀ 𝐵 ≥ 0

𝜃𝐶 > 𝜃𝐹 =⇒ 𝜃
(𝐵)
𝐶

≥ 𝜃
(𝐵)
𝐹

∀ 𝐵 ≥ 0

i.e. the relative ordering of the thresholds is preserved under strate-

gic behavior for any manipulation budget 𝐵, this fact will be of use

later.

Let 𝜃𝑈 = argmax𝜃𝑈 (𝜃,D), we now proceed to prove the for-

ward direction of our claim by three cases of the relative order of

the thresholds 𝜃𝐶 , 𝜃𝐹 , 𝜃𝑈 :

1.) 𝜃𝐶 < 𝜃𝐹 ≤ 𝜃𝑈

2.) 𝜃𝐶 ≤ 𝜃𝑈 ≤ 𝜃𝐹

3.) 𝜃𝑈 ≤ 𝜃𝐶 < 𝜃𝐹

First note that case (1) is infeasible. By Lemmas B.4 and B.5, we

know that 𝑈 (𝜃,D) is positively unimodal and maximized at 𝜃𝑈 .

Therefore, for 𝜃 ∈ [𝜃𝐶 , 𝜃𝑈 ] we have that𝑈 (𝜃,D) is monotonically

increasing. Thus in case (1) we have𝑈 (𝜃𝐹 ,D) ≥ 𝑈 (𝜃𝐶 ,D), which
is impossible since 𝑓𝐹 is assumed to be strictly more fair than 𝑓𝐶 .

To prove that the claim holds in cases (2) and (3) we use the

fact that the unfairness term 𝑈 (𝜃,D), being positively unimodal
implies that the term is also monotonically increasing on the in-

terval [0, 𝜃𝑈 ] and monotonically decreasing on [𝜃𝑈 , 1]. Hence, as
stated previously, for any 𝜃1 ≤ 𝜃2 ≤ 𝜃𝑈 it must also be the case that

𝑈 (𝜃1,D) ≤ 𝑈 (𝜃2,D) ≤ 𝑈 (𝜃𝑈 ,D). Therefore it suffices to show

that there exists a budget interval [𝐵1, 𝐵2] s.t. for any 𝐵 ∈ [𝐵1, 𝐵2]
we have 𝜃

(𝐵)
𝐶

≤ 𝜃
(𝐵)
𝐹

𝜃𝑈 , and as stated previously, for any 𝐵 ≥ 0

𝜃𝐶 < 𝜃𝐹 implies that 𝜃
(𝐵)
𝐶

≤ 𝜃
(𝐵)
𝐹

. Hence we need only show that

in cases (2), (3) having 𝐵 ∈ [𝐵1, 𝐵2] implies 𝜃
(𝐵)
𝐹

≤ 𝜃𝑈 .

In both cases, (2) and (3), this follows immediately form Lemma

B.1, which gives the existence of a budget 𝐵𝑈 , such that 𝜃
(𝐵𝑈 )
𝐹

= 𝜃𝑈 ,

and implies that 𝜃𝐹 (𝐵) is monotonically decreasing w.r.t. to 𝐵.

Therefore, for any𝐵 ∈ [𝐵𝑈 ,∞) it must be the case that𝑈 (𝜃 (𝐵)
𝐶

,D) ≤
𝑈 (𝜃 (𝐵)

𝐹
,D).

To prove the reverse direction, we need to show that when

𝜃𝐹 < 𝜃𝐶 it is the case that for any 𝐵 ≥ 0 we have 𝑈 (𝜃 (𝐵)
𝐹

,D) ≤
𝑈 (𝜃 (𝐵)

𝐶
,D). We again show this by three cases on the relative order

of the thresholds 𝜃𝐹 , 𝜃𝐶 , 𝜃𝑈 :

1.) 𝜃𝐹 < 𝜃𝐶 ≤ 𝜃𝑈

2.) 𝜃𝐹 ≤ 𝜃𝑈 ≤ 𝜃𝐶

3.) 𝜃𝑈 ≤ 𝜃𝐹 < 𝜃𝐶

Similar to the forward direction of the proof, one case is infeasible,

namely case (3). This can be seen be a symmetric argument to the

previous one, specifically that on the interval [𝜃𝑈 , 𝜃𝐶 ] both error

and unfairness are monotonically decreasing, and thus 𝜃𝐹 could

not be an optimal fair threshold.

As shown previously, when𝜃𝐹 < 𝜃𝐶 it is also the case that for any

𝐵 ≥ 0 we have 𝜃
(𝐵)
𝐹

≤ 𝜃
(𝐵)
𝐶

, and if 𝜃
(𝐵)
𝐶

≥ 𝜃𝑈 then 𝑈 (𝜃 (𝐵)
𝐹

,D) ≤

𝑈 (𝜃 (𝐵)
𝐶

,D). Thus the claim holds for case (1), leaving only case (2)

left to prove.

In case (2) we have 𝜃𝐹 ≤ 𝜃𝑈 ≤ 𝜃𝐶 . Let 𝐵𝑈 the budget s.t.

𝜃𝐶 (𝐵𝑈 ) = 𝜃𝑈 , then for 𝐵 ∈ [0, 𝐵𝑈 ] the term 𝑈 (𝜃 (𝐵)
𝐶

,D) is mono-

tone increasing, while 𝑈 (𝜃 (𝐵)
𝐹

,D) is monotone decreasing, and

thus 𝑈 (𝜃 (𝐵)
𝐹

,D) ≤ 𝑈 (𝜃 (𝐵)
𝐶

,D). Moreover for 𝐵 ∈ [𝐵𝑈 ,∞) we
have already have show that𝑈 (𝜃 (𝐵)

𝐹
,D) ≤ 𝑈 (𝜃 (𝐵)

𝐶
,D).

Therefore the reverse direction of the claim holds, and thus

there exists an interval [𝐵1, 𝐵2] s.t. 𝑈 (𝜃 (𝐵)
𝐶

,D) ≥ 𝑈 (𝜃 (𝐵)
𝐹

,D) for
𝐵 ∈ [𝐵1, 𝐵2] iff 𝜃𝐶 < 𝜃𝐹 . □

C GENERAL CLASSIFIERS AND
OUTCOME-MONOTONIC MANIPULATION
COSTS

Here we restate and provide full proofs for the results in Section

4.2.1.

Theorem (4.6). Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and optimal fair

classifiers respectively. Suppose that 𝑐 (x, x′) is outcome monotonic.

Let 𝑝𝐶 = minx P(𝑦 = 1|x) such that 𝑓𝐶 (x) = 1 and 𝑝𝐹 = minx P(𝑦 =

1|x) such that 𝑓𝐹 (x) = 1. If 𝑝𝐶 < 𝑝𝐹 , then there exists a budget 𝐵

such that a fairness reversal occurs between 𝑓𝐶 and 𝑓𝐹 .

Proof: (Theorem 4.6). When agents best respond to classifier

𝑓 with budget 𝐵 and outcome-monotonic cost function 𝑐 (x, x′), the
resulting classifier 𝑓 (𝑐,𝐵) can be expressed in terms of the underly-

ing distribution of true label 𝑦 conditioned on feature x. Namely,

𝑓 (𝑐,𝐵) can be expressed in terms of two quantities: the example

x′ with lowest true probability of being positive (but is positively

classified by 𝑓 ), and the example x∗ who has the highest cost to

report x′ (with 𝑐 (x∗, x′) ≤ 𝐵). Note that the values x∗ and x′ need
not be distinct, but ultimately we will care about P(𝑦 = 1|x′) and
P(𝑦 = 1|x∗), not specific features themselves. That is, let

x′
𝑓 (𝑐,𝐵) = argmin

x
P(𝑦 = 1|x)

s.t. 𝑓 (x) = 1

and

x∗
𝑓 (𝑐,𝐵) = argmax 𝑐 (x, x′

𝑓 (𝑐,𝐵) )

s.t. 𝑐 (x, x′
𝑓 (𝑐,𝐵) ) ≤ 𝐵

Then the classifier 𝑓 (𝑐,𝐵) can be written as

𝑓 (𝑐,𝐵) (x) =
{
1 if P(𝑦 = 1|x) ≥ P(𝑦 = 1|x∗

𝑓 (𝑐,𝐵) )
0 otherwise

When viewing 𝑓 in this way, we see that strategic agent behavior

results in classifiers which are thresholds on the underlying condi-

tional distribution given by P(𝑦 = 1|x). Moreover as 𝐵 increases,

P(𝑦 = 1|x∗
𝑓 (𝑐,𝐵) ) decreases.

Now, given that 𝑓𝐶 and 𝑓𝐹 are respectively the most accurate

and optimal 𝛼-fair classifiers, with 𝑝𝐶 < 𝑝𝐹 , we can express 𝑓
(𝑐,𝐵)
𝐶

and 𝑓
(𝑐,𝐵)
𝐹

as a thresholds on P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐶

) and P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐹

)

respectively. Since 𝑝𝐶 < 𝑝𝐹 , the monotonicity of P(𝑦 = 1|x∗
𝑓 (𝑐,𝐵) )



with respect to 𝐵, implies that P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐶

) ≤ P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐹

)

for all 𝐵. Thus, for any 𝐵, there exists a corresponding 𝐵′
(with

𝐵 < 𝐵′
) such that P(𝑦 = 1|x∗

𝑓
(𝑐,𝐵)
𝐶

) = P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵′)
𝐹

).

Similar to the single variable case, unfairness 𝑈D (𝑓 (𝑐,𝐵) ) is

continuous with respect to 𝐵. For sufficiently large 𝐵, we have

𝑓
(𝑐,𝐵)

𝐶
(x) = 1 for all x, (i.e., all agents are capable of constructing

manipulations which result in positive classification). For such a

budget, the resulting unfairness 𝑈D (𝑓 (𝑐,𝐵
∗)

𝐶
) is 0 for PR, TPR, and

FPR based fairness. Suppose that 𝐵∗ is the largest budget such that

𝑈D (𝑓 (𝑐,𝐵
∗)

𝐶
) > 0. If 𝑈D (𝑓 (𝑐,𝐵

∗)
𝐶

) ≤ 𝑈D (𝑓 (𝑐,𝐵
∗)

𝐹
), the proof is com-

plete. If not then 𝑈D (𝑓 (𝑐,𝐵
∗)

𝐶
) > 𝑈D (𝑓 (𝑐,𝐵

∗)
𝐹

≥ 0. However, for

some 𝐵′ < 𝐵∗ we have P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵′)
𝐶

) = P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵∗ )
𝐹

), imply-

ing 𝑈D (𝑓 (𝑐,𝐵
′)

𝐶
) = 𝑈D (𝑓 (𝑐,𝐵

∗)
𝐹

. Thus 𝑈D (𝑓 (𝑐,𝐵
′)

𝐶
) ≤ 𝑈D (𝑓 (𝑐,𝐵

′)
𝐹

),
resulting in a fairness reversal at 𝐵′

. □

Theorem (4.7). Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and optimal fair

classifiers respectively. Suppose that 𝑐 (x, x′) is outcome-monotonic.

Let 𝑝𝐶 = minx P(𝑦 = 1|x) such that 𝑓𝐶 (x) = 1 and 𝑝𝐹 = minx P(𝑦 =

1|x) such that 𝑓𝐹 (x) = 1. If 𝑝𝐶 < 𝑝𝐹 , then there exists a budget 𝐵

that 𝑓𝐹 becomes more accurate than 𝑓𝐶 .

(Proof: Theorem 4.7). Let LD (𝑓 ) be the error of classifier 𝑓

on distribution D. As shown in the proof of Theorem 4.6, when

agents best respond to 𝑓 with outcome-monotonic cost 𝑐 (x, x′) and
budget 𝐵, the resulting classifier 𝑓 (𝑐,𝐵) can be expressed as

𝑓 (𝑐,𝐵) (x) =
{
1 if P(𝑦 = 1|x) ≥ P(𝑦 = 1|x∗

𝑓 (𝑐,𝐵) )
0 otherwise

where

x′
𝑓 (𝑐,𝐵) = argmin

x
P(𝑦 = 1|x)

s.t. 𝑓 (x) = 1

and

x∗
𝑓 (𝑐,𝐵) = argmax 𝑐 (x, x′

𝑓 (𝑐,𝐵) )

s.t. 𝑐 (x, x′
𝑓 (𝑐,𝐵) ) ≤ 𝐵

Moreover, for any classifier 𝑓1 where 𝑓1 (x) = 1 for all x, the error
of 𝑓1 is L(𝑓1) = P(𝑦 = 0). For sufficiently large budget, all agents

will be capable of manipulating their features and being positively

classified, implying that for large enough 𝐵 results in L(𝑓 (𝑐,𝐵) ) =
P(𝑦 = 0). Let 𝐵∗ be the largest 𝐵 for which L(𝑓 (𝑐,𝐵) ) < P(𝑦 = 0).
Since 𝑝𝐶 < 𝑝𝐹 , it must be the case that

P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐶

) ≤ P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐹

) for all 𝐵.

If for some 𝐵, we have P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐶

) = P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐹

), then

L(𝑓 (𝑐,𝐵)
𝐶

) = L(𝑓 (𝑐,𝐵)
𝐹

, i.e. both classifiers have equal accuracy and

the theorem holds. Thus assume P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐶

)< P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐹

),

then by the monotonicity of P(𝑦 = 1|x∗
𝑓 (𝑐,𝐵) ) as a function of 𝐵,

there exists 𝐵′ > 𝐵 such that P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐶

)= P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵′)
𝐹

).

When this 𝐵′
corresponds to 𝐵∗ we get, L(𝑓 (𝑐,𝐵

′)
𝐹

) = L(𝑓 (𝑐,𝐵
∗

𝐶
).

Again if L(𝑓 (𝑐,𝐵
∗)

𝐹
) ≤ L(𝑓 (𝑐,𝐵

∗

𝐶
) the proof is complete. If not

then L(𝑓 (𝑐,𝐵
′)

𝐹
) < L(𝑓 (𝑐,𝐵

∗)
𝐹

) which implies that L(𝑓 (𝑐,𝐵
′)

𝐹
) ≤

L(𝑓 (𝑐,𝐵
′)

𝐹
implying that either the accuracy reversal occurs at 𝐵∗

or occurs at 𝐵′
. □

Theorem (4.8). Let 𝑓𝐶 and 𝑓𝐹 the optimal conventional and fair

classifiers respectively. Suppose fairness is defined in terms of PR,

TPR, or FPR fairness, and 𝑐 (𝑥, 𝑥 ′) is outcome-monotonic. When

error and unfairness are unimodal with respect to the manipulation

budget 𝐵, a fairness and accuracy reversal will occur between 𝑓𝐹
and 𝑓𝐶 if and only if 𝑓𝐹 is more selective than 𝑓𝐶 .

Proof: Theorem 4.8. Let 𝑓𝐶 and 𝑓𝐹 be respectively the most

accurate and 𝛼-fair classifiers. Suppose that for 𝑓 ∈ {𝑓𝐶 , 𝑓𝐹 } the
error term L(𝑓 (𝑐,𝐵) ) is negatively unimodal w.r.t. to 𝐵 and the

unfairness term 𝑈 (𝑓 (𝑐,𝐵) ) is positively unimodal w.r.t. to 𝐵. As

shown previously when 𝑝𝐶 < 𝑝𝐹 (i.e. 𝑓𝐹 is more selective than 𝑓𝐶 ),

both a fairness and accuracy reversal occurs.

Now, suppose that a fairness and accuracy reversal does occur be-

tween 𝑓𝐶 and 𝑓𝐹 . Then, for some 𝐵, we have𝑈 (𝑓 (𝑐,𝐵)
𝐹

) ≥ 𝑈 (𝑓 (𝑐,𝐵)
𝐶

)
and L(𝑓 (𝑐,𝐵)

𝐹
) ≤ L(𝑓 (𝑐,𝐵)

𝐹
. First we focus on the unfairness term.

As per our assumption𝑈 (𝑓 (𝑐,𝐵)
𝐶

) and𝑈 (𝑓 (𝑐,𝐵)
𝐹

are both unimodal

w.r.t. 𝐵 and𝑈 (𝑓𝐶 ) > 𝑈 (𝑓𝐹 ). Assume by way of contradiction that

𝑝𝐶 > 𝑝𝐹 (i.e., 𝑓𝐶 is more selective than 𝑓𝐹 ). As show previously, this

implies P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐶

) > P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐹

). Moreover, since both

quantities of the inequality are monotonic w.r.t. 𝐵 and unfairness is

positively unimodal w.r.t. to 𝐵, both𝑈 (𝑓 (𝑐,𝐵)
𝐶

) and𝑈 (𝑓 (𝑐,𝐵)
𝐹

) are re-
spectively unimodal w.r.t P(𝑦 = 1|x∗

𝑓
(𝑐,𝐵)
𝐶

) and P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐹

).

That is P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐶

) > P(𝑦 = 1|x∗
𝑓
(𝑐,𝐵)
𝐹

) for all 𝐵 implies

𝑈 (𝑓 (𝑐,𝐵)
𝐶

) ≥ 𝑈 (𝑓 (𝑐,𝐵)
𝐹

) for all 𝐵, and no fairness reversals occur.

Thus a fairness reversal occurs if and only if 𝑝𝐶 < 𝑝𝐹 when unfair-

ness is positively unimodal in 𝐵. A symmetric argument holds for

error. □

D MULTIVARIABLE CLASSIFIERS AND
FEATURE-MONOTONIC COSTS

Theorem (4.10). Let 𝑓𝐶 and 𝑓𝐹 be the most accurate and optimal

𝛼-fair classifiers respectively, 𝑐 (x, x′) be feature monotonic. Sup-

pose fairness is defined by PR, FPR, or TPR. If {x ∈ X : 𝑓𝐹 (x) =
1}⊂ {x ∈ X : 𝑓𝐶 (x) = 1} (i.e., the set of positively predicted exam-

ples of 𝑓𝐹 is a subset of the positively predicted examples of 𝑓𝐶 ),

then there exists a budget 𝐵 for which a fairness reversal occurs

between 𝑓𝐹 and 𝑓𝐶 .

Proof. Note that for PR, TPR, and FPR fairness, the constant

function 𝑓 = 1 achieves 0 unfairness. Let 𝑓𝐶 and 𝑓𝐹 be the most

accurate and optimal 𝛼-fair classifiers respectively. This proof fol-

lows similar ideas to that of the previous proofs involving fairness

reversals. However, there is a key difference: in the single variable

case or outcome-monotonic cost case, both classifiers “share" and

error and unfairness curve with respect to 𝐵. Meaning that when

𝑓𝐹 is more selective than 𝑓𝐶 , we are able to express the decisions of

the conventional classifier 𝑓
(𝑐,𝐵)
𝐶

in terms of fair classifier 𝑓
(𝑐,𝐵′)
𝐹



for some 𝐵′ > 𝐵. In the case of multivariate classifiers with feature-

monotonic costs, this is no longer the case. In stead we will make

use of the fact that for some range of budgets the unfairness of

𝑓
(𝑐,𝐵)
𝐶

can be expressed as the unfairness of 𝑓
(𝑐,𝐵′)
𝐹

for 𝐵′ > 𝐵.

Let the set of positive examples for both classifiers be X𝐹 =

{x ∈ X : 𝑓𝐹 (x) = 1} and X𝐶 = {x ∈ X : 𝑓𝐶 (x) = 1}, and for

the manipulated classifiers let X (𝑐,𝐵)
𝐹

= {x ∈ X : 𝑓
(𝑐,𝐵)
𝐹

(x) = 1}
and X (𝑐,𝐵)

𝐶
= {x ∈ X : 𝑓

(𝑐,𝐵)
𝐶

(x) = 1}. In the case that X𝐹 ⊂ X𝐶
and cost functions are feature monotonic, X (𝑐,𝐵)

𝐹
⊂ X (𝑐,𝐵)

𝐶
for

all 𝐵 ≥ 0. To see this, take any x′ ∈ X (𝑐,𝐵)
𝐹

, then there exists

x ∈ X𝐹 with 𝑐 (x, x′) ≤ 𝐵 and 𝑓
(𝑐,𝐵)
𝐹

(x′) = 1. Since x ∈ X𝐹 we

also have x ∈ X𝐶 , implying 𝑓𝐶 (x) = 1 and thus for any x′ with
𝑐 (x, x′) ≤ 𝐵 𝑓

(𝑐,𝐵)
𝐶

(x′) = 1 and x′ ∈ X (𝑐,𝐵)
𝐶

. That is, for any budget

𝐵 the resulting manipulated classifiers will maintain this subset

propriety: {x ∈ X : 𝑓
(𝑐,𝐵)
𝐹

(x) = 1} ⊂ {x ∈ X : 𝑓
(𝑐,𝐵)
𝐶

(x) = 1}.
Since X (𝑐,𝐵)

𝐹
⊂ X (𝑐,𝐵)

𝐶
for all 𝐵 ≥ 0 we can write X (𝑐,𝐵)

𝐶
=

X (𝑐,𝐵)
𝐹

∪ X (𝑐,𝐵)
𝑟 where X (𝑐,𝐵)

𝐹
∩ X (𝑐,𝐵)

𝑟 = ∅. If X (𝑐,𝐵)
𝑟 = ∅ then

X (𝑐,𝐵)
𝐹

= X (𝑐,𝐵)
𝐶

and thus 𝑈 (𝑓 (𝑐,𝐵)
𝐹

) = 𝑈 (𝑓 (𝑐,𝐵)
𝐶

) and the theorem

holds, so assume X (𝑐,𝐵)
𝑟 ≠ ∅. For PR fairness (TPR and FPR follow

an identical argument) the difference in unfairness between 𝑓
(𝑐,𝐵)
𝐹

and 𝑓
(𝑐,𝐵)
𝐶

as

𝑈 (𝑓 (𝑐,𝐵)
𝐹

) −𝑈 (𝑓 (𝑐,𝐵)
𝐶

)

=
��P(𝑓 (𝑐,𝐵)

𝐹
(x) = 1|𝑔 = 1) − P(𝑓 (𝑐,𝐵)

𝐹
(x) = 1|𝑔 = 0)

��
−
��P(𝑓 (𝑐,𝐵)

𝐶
(x) = 1|𝑔 = 1) − P(𝑓 (𝑐,𝐵)

𝐶
(x) = 1|𝑔 = 0)

��
Since 𝑔 = 1 is the advantaged group

P(𝑓 (𝑐,0)
𝐶

(x) = 1|𝑔 = 1) − P(𝑓 (𝑐,0)
𝐶

(x) = 1|𝑔 = 0)
= P(𝑓𝐶 (x) = 1|𝑔 = 1) − P(𝑓𝐶 (x) = 1|𝑔 = 0)
> 0

Moreover, since 0 ≤ 𝑈 (𝑓 (𝑐,𝐵)
𝐹

), if

P(𝑓 (𝑐,𝐵
′)

𝐶
(x) = 1|𝑔 = 1) − P(𝑓 (𝑐,𝐵

′)
𝐶

(x) = 1|𝑔 = 0) ≤ 0

a fairness reversal must have occurred for some 𝐵 ≤ 𝐵′
. So assume

P(𝑓 (𝑐,𝐵)
𝐶

(x) = 1|𝑔 = 1) − P(𝑓 (𝑐,𝐵)
𝐶

(x) = 1|𝑔 = 0) > 0

In this case we can write the difference in fairness as

P(𝑓 (𝑐,𝐵)
𝐹

(x) = 1|𝑔 = 1) − P(𝑓 (𝑐,𝐵)
𝐹

(x) = 1|𝑔 = 0)

− P(𝑓 (𝑐,𝐵)
𝐶

(x) = 1|𝑔 = 1) − P(𝑓 (𝑐,𝐵)
𝐶

(x) = 1|𝑔 = 0)

= P(x ∈ X (𝑐,𝐵)
𝐹

|𝑔 = 1) − P(x ∈ X (𝑐,𝐵)
𝐹

|𝑔 = 0)

− P(x ∈ X (𝑐,𝐵)
𝐶

|𝑔 = 1) − P(x ∈ X (𝑐,𝐵)
𝐶

|𝑔 = 0)

= P(x ∈ X (𝑐,𝐵)
𝑟 |𝑔 = 1) − P(x ∈ X (𝑐,𝐵)

𝑟 |𝑔 = 0)

Thus if P(x ∈ X (𝑐,𝐵)
𝑟 |𝑔 = 1) − P(x ∈ X (𝑐,𝐵)

𝑟 |𝑔 = 0) ≥ 0 then

𝑈 (𝑓 (𝑐,𝐵)
𝐹

) ≥ 𝑈 (𝑓 (𝑐,𝐵)
𝐶

) ≥ 0. As the size of X (𝑐,𝐵)
𝑟 decreases, (i.e.

𝑓
(𝑐,𝐵)
𝐹

is closer to 𝑓
(𝑐,𝐵)
𝐶

both P(x ∈ X (𝑐,𝐵)
𝑟 |𝑔 = 1) and P(x ∈

X (𝑐,𝐵)
𝑟 |𝑔 = 0) tend towards 0. Thus we ultimately care aboutX (𝑐,𝐵)

𝑟

as a function of 𝐵. For notational simplicity denote 𝑈 (X (𝑐,𝐵)
𝑟 ) =

P(x ∈ X (𝑐,𝐵)
𝑟 |𝑔 = 1)−P(x ∈ X (𝑐,𝐵)

𝑟 |𝑔 = 0), then𝑈 (X (𝑐,𝐵)
𝑟 ) ≥ 0 indi-

cates a fairness reversal. For large enough 𝐵 we have𝑈 (𝑓 (𝑐,𝐵)
𝐶

) = 0.

Let 𝐵′
be such that 𝑈 (𝑓 (𝑐,𝐵

′)
𝐶

) but for small 𝜀 > 0𝑈 (𝑓 (𝑐,𝐵
′+𝜀)

𝐶
) = 0.

Then if𝑈 (𝑋 (𝑐,𝐵′+𝜀)
𝑟 ) = 0 the proof is complete, otherwise𝑈 (𝑋 (𝑐,𝐵′+𝜀)

𝑟 )< 0.

In this case it must be the case that𝑈 (𝑋 (𝑐,𝐵′)
𝑟 ) ≥ 0, resulting in a

fairness reversal. □

Theorem (4.11). For distributionD over X×Y ×𝐺 let 𝑓𝐶 and 𝑓𝐹 be

the most accurate and optimal 𝛼-fair classifier respectively. Then

for PR, FPR, and TPR fairness there exists 𝛼∗ such that, the set of

examples positively predicted by 𝑓𝐹 will be a subset of the set of

those positively predicted by 𝑓𝐶 if and only if 0 ≤ 𝛼 ≤ 𝛼∗. The
value of 𝛼∗ will depend on the fairness metric, for PR fairness (for

notational simplicity, let P(𝑔 = 𝑔′) = 𝑃𝐺𝑔′ , 𝑃 (𝑔 = 1|x) = 𝑔(x)),

𝛼∗ = min

x

𝑃𝐺
0
𝑃𝐺

1
(2P(𝑦=1 |x)−1)

𝑔 (x)+𝑃𝐺
1

(
𝑃𝐺

1
−2𝑔 (x)−2𝑃𝐺

1
P(𝑦=1 |x)

)
(Proof: Theorem 4.11). Both the conventional and fair objec-

tives can be written as follows:

𝑓𝐶 =argmin𝑓 P(𝑓 (x) ≠ 𝑦)
𝑓𝐹 =argmin𝑓 (1 − 𝛼)P(𝑓 (x) ≠ 𝑦)

+ 𝛼
��P(𝑓 (x) = 1|𝑔 = 1) − P(𝑓 (𝑥) = 1|𝑔 = 0)

��
Assuming the optimal 𝑓𝐹 has higher positive rate for group 1, the

argument of the fair objective can be simplified to,

(1 − 𝛼)
∑︁
x∈X

(
(1 − 𝑓 (x))P(𝑦 = 1|x) + 𝑓 (x)P(𝑦 = 0|x)

)
P(x)

+𝛼
∑︁
x∈X

𝑓 (x)
(
P(𝑔 = 1|x)
P(𝑔 = 1) − P(𝑔 = 0|x)

P(𝑔 = 0)

)
P(x)

Thus 𝑓𝐹 (x) = 1 is optimal if

𝛼
(P(𝑔 = 1|x) + (P(𝑔 = 1) − 2)P(𝑔 = 1))

(1 − P(𝑔 = 1))P(𝑔 = 1) (3)

− (1 − 𝛼)2P(𝑦 = 1|x) + 1

≥ 0,

and 𝑓𝐶 (x) = 1 is optimal if P(𝑦 = 1|x) ≥ P(𝑦 = 1). Thus, 𝑓𝐹 will

positively classify an example x, which is negatively classified by

𝑓𝐶 (i.e., 𝑓𝑓 (x) = 1 ≠ 𝑓𝐶 (X) = 0) , only if Equation 3 is nonnegative

and P(𝑦 = 1|x) ≥ P(𝑦 = 1). Simplifying the condition in Equation

3 yields 𝛼∗. □

E EXPERIMENTS
E.1 Selectivity and fairness reversals
Recall that for feature monotonic costs the fair classifier 𝑓𝐹 is

said to be more selective if the set of examples positively pre-

dicted by 𝑓𝐹 is a subset of those positively predicted by 𝑓𝐶 . That

is {x ∈ X : 𝑓𝐹 (x) = 1}⊂ {x ∈ X : 𝑓𝐶 (x) = 1}. While this strict def-

inition of selectivity rarely holds in practice. Selectivity can be more

generally defined by Px
(
𝑓𝐶 (x) = 1, 𝑓𝐹 (x) = 0

)
−Px

(
𝑓𝐶 (x) = 0, 𝑓𝐹 (x) = 1

)
,

i.e. for any example x, how much more likely is x to be positively

classified by 𝑓𝐶 and not 𝑓𝐹 , compared to positively classified by 𝑓𝐹
and not 𝑓𝐶 .



Under this definition of selectivity Figure 4 shows the magnitude

of the maximum fairness reversal (y-axis) as a function of selectivity

(x-axis). The maximum fairness reversal is defined as

max

𝐵

��M(𝑓𝐹 ;𝑔 = 0) −M(𝑓𝐹 ;𝑔 = 1)
��

−
��M(𝑓𝐶 ;𝑔 = 0) −M(𝑓𝐶 ;𝑔 = 1)

��
forM defined as ther PR, TPR, or FPR. Each plot show the selectivity

and and fairness reversal for a difference combination of classifier

type,𝛼 and fairness definition for𝛼 ∈ {0.05, 0.1, 0.15 . . . 0.95}. There
is a general positive correlation between selectivity and fairness

reversals. This relationship is is more prominent in datasets such

as Law School and Community Crime. We postulate that this is

due to these two datasets possessing features which have higher

correlation to both group and label, than the other datasets.

E.2 Accuracy reversals
We also observe that when strategic agent behavior results in a

fairness reversal between 𝑓𝐹 and 𝑓𝐶 , the relative accuracy of the

classifiers is also reversed. Figure 5 shows the error and unfairness

of the fair (𝑓𝐹 ) and conventional (𝑓𝐶 ) classifier. The shaded part indi-

cates the region (and magnitude) of fairness reversal. We see that in

cases where a fairness reversal occurs, there is also an accuracy re-

versal. In the cases corresponding to the Adult and Credit datasets,

we see that 𝑓𝐹 is always the more fair classifier and 𝑓𝐶 is always

the more accurate classifier. In contrast, the cases corresponding

to the Crime and Law School datasets we see that for a range of

budgets, 𝑓𝐶 becomes more fair than 𝑓𝐹 , and over a range of budgets,

𝑓𝐹 becomes more accurate than 𝑓𝐶 . In essence the functionality of

the two classifiers has been swapped. These observations suggest

that there is a fundamental trade-off between a classifiers accu-

racy and fairness in the presence of strategic manipulation. This

phenomenon is theoretically explained in Theorems 4.3, 4.7.

E.3 Group aware classifiers
Figures 15-18 show the relative unfairness of 𝑓𝐶 and 𝑓𝐹 on each

dataset when EqOdds is used as the fair learning scheme and fair-

ness is defined in terms of GFPR. We observe that fairness reversals

are common across datasets and classifier type. Moreover, we ob-

serve that unfairness is unimodal.

Figures 17 and 19 show unfairness in terms of GFPR and GFTPR

respectively on the Law School dataset. While the GFPR case tends

to lead to fairness reversals, the GTPR case does not. This discrep-

ancy is due to the way that EqOdds remedies fairness in either case.

Specifically: in the case GFPR fairness EqOdds achieves fairness

by specifically decreasing the predicted positive probabilities on

the advantaged group, while in the case of GTPR by increasing the

predicted positive probabilities of the disadvantaged group. That

is, when fairness is defined in terms of GTPR it is typically more

desirable to be classified as a member of group 0, compared to

the GFPR case. This also ties into our observations of selectivity,

namely that the classifier decreasing positive predictions (the GFPR

case) incurs a higher rate of fairness reversals than the classifier

increasing positive predictions (the GTPR case).

E.4 Single crossing and unimodality
Figure 20 show the single crossing conditions between P

(
𝑦 = 1|𝑥

)
,

and P
(
𝑔 = 1|𝑥

)
, and their respective constant functions given in

Lemmas B.3, B.4, B.5. We see that in all three datasets the single

crossing conditions approximately holds in the sense that when

the condition is violated, (i.e. crossing the respective horizontal

line more than once) the violation is small in magnitude. Recall

that the single crossing propriety implies the unimodality of the

error and unfairness terms. Small violations (both in magnitude

and duration) of the single crossing condition amount to small

changes in the derivative of error or unfairness, which in term does

not consequentially impact the unimodality of either term from an

empirical perspective.

E.5 Fair learning schemes
We make use of three fair learning algorithms to generate the fair

models (denoted as 𝑓𝐹 ), namely GerryFair, Reductions, and EqOdds.

Each algorithm takes as input a base-learner (not to be confused

with the conventional classifier which we denote as 𝑓𝐶 ). This base-

learner is used solve the fair learning objective through cost sensi-

tive learning. Each algorithm uses their respective base learner in a

unique way, and the fair models produced by each learning scheme

different considerably in terms of their structure. Reductions uses

the base-learner to perform traditional cost sensitive learning and

outputs a model which is of the same type of the base-learner. For

example if the base-learner is Logistic Regression, then 𝑓𝐹 is also

a Logistic Regression model. Thus the Projected Gradient Decent

attack (PDG) is effective at computing an agents best response to 𝑓𝐹
when 𝑓𝐹 is learned via reductions and a differentiable base-learner

(e.g. Logistic Regression, SVM, and Neural Networks). In the case of

GerryFair the returned fair model 𝑓𝐹 has a different structure from

the base learner, namely 𝑓𝐹 is an ensemble of models produced from

the base learner. Thus the resulting model may not be smooth and

PGD will not work to compute agents best response. In this case,

we use the same local search attack used against Gradient Boosted

Trees. In the case of EqOdds the resulting classifier is stochastic

and predicts using the base-leaner with probability 𝑝𝑔 and uses a

trivial classifier (i.e. one that predicts the base rate) with probability

(1−𝑝𝑔), for𝑔 ∈ {0, 1}. For each agent, it is always optimal to submit

the features constituting an optimal response to the base-learner.

The one difference when using EqOdds is that group membership

now factors into classification. Since the agents utility is linear with

respect to group selective, the best group in expectation is trivially

computable.

E.6 Costs and agent best responses
For feature-monotonic costs we use 𝑐 (x, x′)= | |x − x′ | |2 and for

outcome-monotonic costs we use 𝑐 (x, x′) = max

{
0,
P(𝑦=1 |x′)−P(𝑦=1 |x)

2

}
.

All features are scaled to have range [0, 1] and non-ordinal fea-

tures are one-hot encoding. When computing the cost of a ma-

nipulation for feature-monotonic costs, we scale one-hot encoded

and binary features by a factor of 0.2 (that is when computing the

norm 𝑥𝑖 ∈ {0, 0.2} if 𝑥𝑖 corresponds to a binary or one-hot feature.

This scaling is intended to make manipulating categorical variables

feasible. We noticed when categorical variables where not scaled



Figure 4: Maximum fairness reversal (𝑦-axis) as a function of fair classifier selectivity (𝑥-axis). Each point in each figure
corresponds to a comparison between 𝑓𝐶 and 𝑓𝐹 (for a particular choice of 𝛼 and fairness definition). Selectivity is defined
as P

(
𝑓𝐶 (x) = 1, 𝑓𝐹 (x) = 0

)
− P

(
𝑓𝐶 (x) = 0, 𝑓𝐹 (x) = 1

)
, (i.e. selectivity shows the difference in the fraction of individuals who are

positively classified by 𝑓𝐶 but negatively classified by 𝑓𝐹 , and the fraction of individuals who are positively included classified
by 𝑓𝐹 but negatively classified by 𝑓𝐶 ).

Figure 5: Unfairness (solid line) and error (dashed line) of the conventional classifier (blue) and fair classifier (orange), when the
fair classifier is learned via the GerryFair algorithm. For both error and unfairness lower values are better. The shaded orange
region indicates range of the manipulation budget 𝐵 such that the relative fairness and accurate of the classifiers has swapped.

Figure 6: Fairness reversals on the Adult dataset with Reductions Classifiers. The 𝑦-axis displays unfairness between groups
(lower is better). A fairness reversal occurs when a colored line (corresponding to 𝑓𝐹 ) is above the black dotted line (corresponding
to 𝑓𝐶 ). Costs are feature-monotonic and Reductions is used as 𝑓𝐹 . Only values of 𝛼 leading to sufficiently distinct classifiers,
compared to other values of 𝛼 , are shown. The unfairness of most classifiers is approximately unimodal.

in this manner, the vast majority of agents manipulated only their

ordinal features.

For outcome-monotonic costs we exclusively use the Community

Crime dataset. Of the datasets we study, this is the only dataset

for which computing the distribution of true labels P(𝑦 = 1|x), is
feasible since the dataset has originally contains continuous labels (

crimes per capita) which where made binary by thresholding on the

70
th

percentile. As in [21] we normalize this value to lie between 0

and 1 and treat the value as a probability. Results relating to this

outcome-monotonic costs are shown in 25.

E.7 Datasets
The following datasets are used in our experiments:



Figure 7: Fairness reversals on the Community Crime dataset with Reductions Classifiers.

Figure 8: Fairness reversals on the Law School dataset with Reductions Classifiers.

Figure 9: Fairness reversals on the Student dataset with Reductions Classifiers.

Figure 10: Fairness reversals on the Credit dataset with Reductions Classifiers.



Figure 11: Fairness reversals on the Adult dataset with GerryFair. Costs are feature-monotonic. Only values of 𝛼 resulting in
sufficiently distinct classifiers are displayed.

Figure 12: Fairness reversals on the Law School dataset with GerryFair.

Figure 13: Fairness reversals on the Student dataset with GerryFair

Adult:Dataset of working professionals where the goal is to predict
high or low income (protected feature: gender).

Community Crime: Dataset of communities where the objective

is to predict if the community has high crime (protected feature:

race).

Law School: Dataset of law students where the objective is to

predict bar-exam passage (protected feature: race).

Student: Dataset of students where the objective is to predict a

student receiving high math grades (protected feature: race).

Credit: Dataset of people applying for credit where the objective
is to predict creditworthiness (protected feature: age).

Each dataset is prepossessed in the following manner. All sensi-

tive features are removed from 𝑋 , this includes age, race, gender,

ethnicity, and other, (the feature which defines groups is saved,

but included in 𝑋 ). If a dataset has class imbalance, such as the

Law School or Crime datasets, the dataset is down-sampled to have

P(𝑦 = 1) = 0.5. All ordinal features are normalized and then scaled

to have range [0, 1], all non-ordinal categorical features are one-hot
encoded.

In both the Community Crime and Credit dataset, the protected

features (race and age respectively) is real valued. These are made

binary by threshold on a particular value. In the case Community



Figure 14: Fairness reversals on the Credit dataset with GerryFair

Figure 15: Fairness reversals on the Adult dataset when EqOdds (with GFPR fairness) is used as the fair learning scheme and
costs are feature-monotonic. Misreporting group membership carries a flat cost of 1.

Figure 16: Fairness reversals on the Crime dataset when EqOdds (with GFPR fairness) is used for 𝑓𝐹 .

Crime a community is said to be White if more than 70% of the

population is classified asWhite. In the Credit dataset an applicant is

considered to be Young if they are 25 or younger and Old otherwise.

Some datasets posses features which would be unrealistic to

manipulate, such as information reported by law enforcement in

the Community Crime dataset. We remove each non-manipulable

feature from the dataset. Adult dataset, all features are considered

manipulable. Community Crime: crime statistics, and police sta-

tistics are removed. Law School: which law school the student is

attending (given in terms of school cluster) is removed. Student:

number of filers is removed. Credit: all features are considered

manipulable.

E.8 Fairness Reversal
Recall that in the single variable case, strategic manipulation leads

to a fairness reversal between the base and fair thresholds 𝜃𝐶 and

𝜃𝐹 respectively, if and only if 𝜃𝐶 < 𝜃𝐹 . Figures 21-24 show the

relationship between 𝜃𝐶 and 𝜃𝐹 for each of the variables, dataset,

and fairnessmetrics we study. In these figures we see that𝜃𝐶 < 𝜃𝐹 is

a common. Moreover, we see that the cases where this relationship

does not hold are cases in which either 𝜃𝐶 < 𝜃𝑈 (meaning the



Figure 17: Fairness reversals on the Law School dataset when EqOdds (with GFPR fairness) is used for 𝑓𝐹 .

Figure 18: Fairness reversals on the Student dataset when EqOdds (with GFPR fairness) is used for 𝑓𝐹 .

Figure 19: Fairness reversals on the Law School dataset when EqOdds (with GTPR fairness) is used for 𝑓𝐹 .

sufficient condition of Theorem B.2 does not hold), the fair classifier

is trivial (i.e. 𝜃𝐹 = 0), or there is negligible unfairness regardless

of the value selected for 𝜃 . Moreover, we see that both error and

unfairness are unimodal w.r.t. 𝜃 , thus Lemma B.1 implies that error

and unfairness will remain unimodal w.r.t. the manipulation budget

𝐵 for any manipulation cost function 𝑐 (𝑥, 𝑥 ′) which is monotone

in |𝑥 ′ − 𝑥 |.
With respect to Figures 20-24, agent manipulation amounts to

“moving" each threshold to the left. We can see that when 𝜃𝐶 < 𝜃𝐹 ,

moving 𝜃𝐶 to the left decreases unfairness, while moving 𝜃𝐹 to left

increases unfairness, until the manipulated 𝜃𝐹 has been moved all

the way to 𝜃𝑈 (the most unfair threshold). Additionally in these

figures we see that not only does this leftward shift increase the

unfairness of 𝜃𝐹 , but also increased the accuracy of 𝜃𝐹 : a phenome-

non outlined by Theorem 4.3. That is, in the cases where 𝜃𝐶 < 𝜃𝐹 ,

strategic manipulation leads to both a fairness, and an accuracy,

reversal between 𝜃𝐶 and 𝜃𝐹 .

In the multivariate case, Figures 6-18, show that again the fair-

ness reversal is common. Moreover, as was the case in the single

variable case, we see that in the multivariate case both error and

unfairness exhibit unimodality w.r.t. to the budget 𝐵.

In the single variable case, we would expect that once 𝑓𝐶 and 𝑓𝐹
respectively hit the point with maximum unfairness (as a function

of 𝐵) their unfairness would decrease at an equal rate from that



Figure 20: Probabilities of group membership 𝑔 (green) and true label 𝑦 (orange). Probabilities conditioned on the feature 𝑥 are
given as solid lines, while those unconditioned are given as dotted, or dashed, lines. Recall that if the conditioned probabilities
P(𝑔 = 1|𝑥) and P(𝑦 = 1|𝑥) having a single crossing with the respective unconditioned value (outlined in Lemmas B.3, B.4, B.5)
then error and unfairness will be unimodal w.r.t. to the threshold 𝜃 . For example, in the case of PRfairness, if P(𝑔 = 1|𝑥) has a
single crossing with P(𝑔 = 1) and P(𝑦 = 1|𝑥) has a single crossing with P(𝑦 = 1) then error and unfairness are unimodal w.r.t. to 𝜃 .

Figure 21: Unfairness and error of threshold classifiers.
Both error and unfairness are approximately unimodal w.r.t.
threshold 𝜃 = 𝑥 . Thus error and unfairness are also unimodal
w.r.t. the manipulation budget 𝐵 for any manipulation cost
function 𝑐 (𝑥, 𝑥 ′) which is monotone in |𝑥 ′−𝑥 |. When this uni-
modality holds 𝜃𝐶 < 𝜃𝐹 implies that strategic manipulation
will lead to 𝜃𝐶 becoming more fair than 𝜃𝐹 . This fairness re-
versal is due to the fact that strategic manipulation amounts
to lowering (shifting to the left) the threshold. In this figure,
as well as the subsequent figures, we see that 𝜃𝐶 < 𝜃𝐹 is a
common occurrence (namely 30 our of the 36 combinations
of variable, fairness metric, and dataset studied).

Figure 22

point onward since both classifiers are effectively sharing the same

unfairness curve, but sit at different points. In the multivariate case,

we make this same observation. After reaching the most unfair 𝐵,

both classifiers decreases at similar rates. However, 𝑓𝐶 requires a



Figure 23 Figure 24

larger 𝐵, than 𝑓𝐶 , to reach this point. Which ultimately leads to

𝑓𝐹 becoming less fair, since the unfairness of 𝑓𝐹 is still increasing

while the unfairness of 𝑓𝐶 has already begun to fall.



Figure 25: Fairness reversals on the Community Crime dataset when costs are outcome-monotonic. Each line represents the
the difference in PR, FPR, or TPR between groups (defined by race) as a function of the manipulation budget 𝐵. Costs are
outcome-monotonic. The 𝑦-intercept of each plots shows the respective unfairness of each classifier with no strategic behavior.
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