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ABSTRACT
Understanding the convergence properties of learning dynamics in

repeated auctions is a timely and important question in the area

of learning in auctions, with numerous applications in, e.g., online

advertising markets. This work focuses on repeated first price auc-

tions where bidders with fixed values for the item learn to bid using

mean-based algorithms – a large class of online learning algorithms

that include popular no-regret algorithms such as Multiplicative

Weights Update and Follow the Perturbed Leader. We completely

characterize the learning dynamics of mean-based algorithms, in

terms of convergence to a Nash equilibrium of the auction, in two

senses: (1) time-average: the fraction of rounds where bidders play

a Nash equilibrium approaches 1 in the limit; (2) last-iterate: the
mixed strategy profile of bidders approaches a Nash equilibrium in

the limit. Specifically, the results depend on the number of bidders

with the highest value:

• If the number is at least three, the bidding dynamics almost

surely converges to a Nash equilibrium of the auction, both

in time-average and in last-iterate.

• If the number is two, the bidding dynamics almost surely

converges to a Nash equilibrium in time-average but not

necessarily in last-iterate.

• If the number is one, the bidding dynamics may not converge

to a Nash equilibrium in time-average nor in last-iterate.

Our discovery opens up new possibilities in the study of conver-

gence dynamics of learning algorithms.
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1 INTRODUCTION
First price auctions are the current trend in online advertising

auctions. A major example is Google Ad Exchange’s switch from

second price auctions to first price auctions in 2019 [23, 41].

Compared to second price auctions, first price auctions are non-

truthful: bidders need to reason about other bidders’ private values

and bidding strategies and choose their own bids accordingly to

maximize their utilities. Finding a good bidding strategy used to
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be a difficult task due to each bidder’s lack of information of other

bidders. But given the repeated nature of online advertising auctions

and with the advance of computing technology, nowadays’ bidders

are able to learn to bid using automated bidding algorithms. As

one bidder adjusts bidding strategies using a learning algorithm,

other bidders’ utilities are affected and thus they will adjust their

strategies as well. Then, a natural question follows: if all bidders in
a repeated first price auction use some learning algorithms to adjust
bidding strategies at the same time, will they converge to a Nash
equilibrium of the auction?

A partial answer to this question is given by [27] which shows

that, in a repeated first price auction where bidders have fixed val-

ues for the item, a Nash equilibrium may or may not be learned by

the Fictitious Play algorithm, where in each round of auctions every

bidder best responds to the empirical distributions of other bidders’

bids in history. Fictitious Play, however, is a deterministic algo-

rithm that does not have the no-regret property — a desideratum

for learning algorithms in adversarial environments. The no-regret

property can only be obtained by randomized algorithms [42]. As

observed by [39] that bidders’ behavior on Bing’s advertising sys-

tem is consistent with no-regret learning, it is hence important,

from both theoretical and practical points of view, to understand

the convergence property of no-regret algorithms in repeated first

price auctions. This motivates our work.

Our contributions. Focusing on repeated first price auctionswhere
bidders have fixed values, we completely characterize the Nash

convergence property of a wide class of randomized online learn-

ing algorithms called “mean-based algorithms” [8]. This class con-

tains most of popular no-regret algorithms, including Multiplicative

Weights Update (MWU), Follow the Perturbed Leader (FTPL), etc..

We systematically analyze two notions of Nash convergence:

(1) time-average: the fraction of rounds where bidders play a Nash

equilibrium approaches 1 in the limit; (2) last-iterate: the mixed

strategy profile of bidders approaches a Nash equilibrium in the

limit. Specifically, the results depend on the number of bidders with

the highest value:

• If the number is at least three, the bidding dynamics of mean-

based algorithms almost surely converges to Nash equilib-

rium, both in time-average and in last-iterate.

• If the number is two, the bidding dynamics almost surely

converges to Nash equilibrium in time-average but not nec-

essarily in last-iterate.



• If the number is one, the bidding dynamics may not converge

to Nash equilibrium in time-average nor in last-iterate.

For the last case, the above non-convergence result is proved for

the Follow the Leader algorithm, which is a mean-based algorithm

that is not necessarily no-regret. We also show by experiments that

no-regret mean-based algorithms such as MWU and 𝜀𝑡 -Greedy may

not last-iterate converge to a Nash equilibrium.

Intuitions and techniques. The intuition behind our convergence

results (the first two cases above) relates to the notion of “iterated

elimination of dominated strategies” in game theory. Suppose there

are three bidders all having a same integer value 𝑣 for the item

and choosing bids from the set {0, 1, . . . , 𝑣 − 1}. The unique Nash
equilibrium is all bidders bidding 𝑣−1. The elimination of dominated

bids is as follows: firstly, bidding 0 is dominated by bidding 1 for

each of the three bidders no matter what other bidders bid, so

bidders will learn to bid 1 or higher instead of bidding 0 at the

beginning; then, given that no bidders bid 0, bidding 1 is dominated

by bidding 2, so all bidders learn to bid at least 2; ...; in this way all

bidders learn to bid 𝑣 − 1.
1

The above intuition is only high-level. In particular, since bidders

use mean-based algorithms which may pick a dominated bid with

a small but positive probability, additional argument is needed to

show that bidders will finally converge to 𝑣 − 1 with high probabil-

ity. To do this we borrow a technique (which is a combination of

time-partitioning and Azuma’s inequality) from [16] which shows

that bidders in a second price auction with multiple Nash equilibria

converge to the truthful equilibrium if they use mean-based algo-

rithms with an initial uniform exploration stage. Their argument

relies on the fact that, in a second price auction, all bidders learn the

truthful Nash equilibrium with high probability during the uniform

exploration stage. In contrast, we allow any mean-based algorithms

without an initial uniform exploration stage.

1.1 Discussion
An assumption made in our work is that each bidder has a fixed

value for the item sold throughout the repeated auction. Seem-

ingly restrictive, this assumption can be justified in several aspects.

First, fixed value is in fact a quite common assumption in the lit-

erature on repeated auctions, in various contexts including value

inference [39], dynamic pricing [2, 14, 29], as well as the study of

bidding equilibrium [5, 27, 30, 33]. An exception is [16] which stud-

ies repeated first price auctions under the Bayesian assumption that

bidders’ values are i.i.d. samples from a distribution at every round.

However, their result is restricted to a 2-symmetric-bidder setting

with the Uniform[0, 1] distribution where the Bayesian Nash equi-

librium (BNE) is simply every bidder bidding half of their values.

For general asymmetric distributions there is no explicit charac-

terization of the BNE [34–36] despite the existence of (inefficient)

numerical approximations [15, 18, 21, 43]. No known algorithms

can compute BNE efficiently for all asymmetric distributions, let

alone a simple, generic learning algorithm.
2

1
This logic has been implicitly spelled out by [27]. But their formal argument only

works for deterministic algorithms like Fictitious Play.

2
Recent work [19] even shows that computing a BNE in a first price auction where

bidders have subjective priors over others’ types is PPAD-complete.

Moreover, in real-life auctions, fixed values do occur if a same

item is sold repeatedly, bidders have stable values for that item, and

the set of bidders is fixed. An example is a few large online travel

agencies (Agoda, Airbnb, and Booking.com) competing for an ad

slot about “hotel booking”. In such Internet advertising auction

scenarios, auctions sometimes happen frequently — a large number

of auctions happen during a short amount of time. Even if the

value of a bidder changes it would not change a lot in this short

time, during which bidders may be able to converge to the Nash

equilibrium before the value changes dramatically.

Finally, as we show, even with the seemingly innocuous assump-

tion of fixed values, the learning dynamics of mean-based algo-

rithms already exhibits complicated behaviors: it may converge to

different equilibria in different runs or not converge at all. One can

envision more unpredictable behaviors when values are not fixed.

Learning in general games. Our work is related to a fundamental

question in the field of Learning in Games [10, 22, 40]: if players

in a repeated game employ online learning algorithms to adjust

strategies, will they converge to an equilibrium? And what kinds of

equilibrium? Classical results include the convergence of no-regret

learning algorithms to a Coarse Correlated Equilibrium (CCE) and
no-internal-regret algorithms to a Correlated Equilibrium in any
game [20, 26]. But given that (coarse) correlated equilibria are much

weaker than the archetypical solution concept of a Nash equilib-

rium, a more appealing and challenging question is the convergence

towards Nash equilibrium. Positive answers to this question are

only known for some special cases of algorithms and games: e.g., no-

regret algorithms converge to Nash equilibria in zero-sum games,

2 × 2 games, and routing games [10, 22, 40]. In contrast, several

works give non-convergence examples: e.g., the non-convergence

of MWU in a 3 × 3 game [11] and Regularized Learning Dynamics

in zero-sum games [37]. In this work we study the Nash equilib-

rium convergence property in first price auctions for a large class

of learning algorithms, namely the mean-based algorithms, and

provide both positive and negative results.

Last v.s. average iterate convergence. We emphasize that previous

results on convergence of learning dynamics to Nash equilibria in

games are mostly attained in an average sense, i.e., the empirical dis-

tributions of players’ actions converge. Our notion of time-average

convergence, which requires players play a Nash equilibrium in

almost every round, is different from the convergence of empirical

distributions; in fact, ours is stronger if the Nash equilibrium is

unique. Nevertheless, time-average convergence fails to capture

the full picture of the dynamics since players’ last-iterate (mixed)

strategy profile may not converge. Existing results about last-iterate

convergence show that most of learning dynamics actually diverge

or enter a limit cycle even in a simple 3 × 3 game [11] or zero-sum

games [37], except for a few convergence examples like optimistic

gradient descent/ascent in two-player zero-sum games [12, 45]. Our

results and techniques, regarding the convergence of any mean-

based algorithm in first price auctions, shed light on further study

of last-iterate convergence in more general settings.



1.2 Additional Related Works
We review additional related works about online learning in re-

peated auctions.
3
A large fraction of such works are from the seller’s

perspective, i.e., studying how a seller can maximize revenue by

adaptively changing the rules of the auction (e.g., reservation price)

over time (e.g., [1, 2, 7–9, 13, 24, 28, 31, 38]). We focus on the bidders’
learning problem.

Existing works from bidders’ perspective are mostly about “learn-

ing to bid”, studying on how to design no-regret algorithms for

a bidder to bid in various formats of repeated auctions, including

first price auctions [3, 4, 25], second price auctions [30, 44], and

more general auctions [17, 32]. Those works take the perspective

of a single bidder, without considering the interaction among mul-
tiple bidders all learning to bid at the same time. We instead study

the consequence of such interaction, showing that the learning

dynamics of multiple bidders may or may not converge to the Nash

equilibrium of the auction.

In addition to the aforementioned works [16] and [27], other

works on Nash equilibrium convergence of online learning algo-

rithms in first price auctions include, e.g., empirical works [5, 6, 23],

and a theoretical work [33]. In particular, [33] shows, indepen-

dently of our work, that in repeated first price auctions with two

mean-based learning bidders, if the dynamics converge to some

limit, then this limit must be a CCE in which the bidder with the

higher value submits bids that are close to the lower value. However,

they do not give conditions under which the dynamics converge.

We prove that the dynamics converge if the two bidders have the

same value and in fact converge to the stronger notion of a Nash

equilibrium.

Finally, a recent work [46] observes that, although no-regret

learning algorithms are able to learn Nash equilibria in iterative-

dominance-solvable games, some such games require an exponen-

tial convergence time for many no-regret algorithms. Our fixed-

value first price auction game is not iterative-dominance-solvable

in all cases. And we do not know the exact convergence rate of

no-regret (or mean-based) algorithms in our game.

Organization of the paper. Section 2 is model and preliminaries.

Section 3 presents main results. Section 4 presents the proof of The-

orem 4, which covers the main proof techniques of all our conver-

gence results. Section 5 includes experiments. Section 6 concludes

and discusses future directions. Missing proofs are in Appendix.

2 MODEL AND PRELIMINARIES
Repeated first price auctions. We consider repeated first-price

sealed-bid auctions where a single seller sells a good to a set of

𝑁 ≥ 2 players (bidders) N = {1, 2, ..., 𝑁 } for infinite rounds. Each
player 𝑖 ∈ N has a fixed private value 𝑣𝑖 for the good throughout.

See Section 1.1 for a discussion on this assumption. We assume

that 𝑣𝑖 is a positive integer in some range {1, . . . ,𝑉 } where 𝑉 is an

upper bound on 𝑣𝑖 . Suppose𝑉 ≥ 3. No player knows other players’

values. Without loss of generality, assume 𝑣1 ≥ 𝑣2 ≥ · · · ≥ 𝑣𝑁 .

At each round 𝑡 ≥ 1 of the repeated auctions, each bidder 𝑖

submits a bid 𝑏𝑖𝑡 ∈ {0, 1, . . . ,𝑉 } to compete for the good. A discrete

set of bids captures the reality that the minimum unit of money

3
We do not review works about the batch learning setting, e.g., sample complexity.

is a cent. The bidder with the highest bid wins the good. If there

are more than one highest bidders, the good is allocated to one of

them uniformly at random. The bidder who wins the good pays

her bid 𝑏𝑖𝑡 , obtaining utility 𝑣𝑖 − 𝑏𝑖𝑡 ; other bidders obtain utility

0. Let 𝑢𝑖 (𝑏𝑖𝑡 , 𝒃−𝑖𝑡 ) denote bidder 𝑖’s (expected) utility when 𝑖 bids

𝑏𝑖𝑡 while other bidders bid 𝒃−𝑖𝑡 = (𝑏1𝑡 , . . . , 𝑏𝑖−1𝑡 , 𝑏𝑖+1𝑡 , . . . , 𝑏𝑁𝑡 ), i.e.,
𝑢𝑖 (𝑏𝑖𝑡 , 𝒃−𝑖𝑡 ) = (𝑣𝑖 − 𝑏𝑖𝑡 )I[𝑏𝑖𝑡 = max𝑗 ∈N 𝑏

𝑗
𝑡 ]

1

| argmax𝑗∈N 𝑏
𝑗
𝑡 |
.

We assume that bidders never bid above or equal to their values

since that brings them negative or zero utility, which is clearly

dominated by bidding 0. We denote the set of possible bids of each

bidder 𝑖 by B𝑖 = {0, 1, . . . , 𝑣𝑖 − 1}.4

Online learning. We assume that each bidder 𝑖 ∈ N chooses her

bids using an online learning algorithm. Specifically, we regard the

set of possible bids B𝑖
as a set of actions (or arms). At each round 𝑡 ,

the algorithm picks (possibly in a random way) an action 𝑏𝑖𝑡 ∈ B𝑖
to

play, and then receives some feedback. The feedback may include

the rewards (i.e., utilities) of all possible actions in B𝑖
(in the experts

setting) or only the reward of the chosen action 𝑏𝑖𝑡 (in themulti-arm
bandit setting). With feedback, the algorithm updates its choice

of actions in future rounds. We do not assume a specific feedback

model in this work. Our analysis will apply to all online learning

algorithms that satisfy the following property, called “mean-based”

[8, 16], which roughly says that the algorithm picks actions with

low average historical rewards with low probabilities.

Definition 1 (mean-based algorithm). Let 𝛼𝑖𝑡 (𝑏) be the aver-
age reward of action 𝑏 in the first 𝑡 rounds: 𝛼𝑖𝑡 (𝑏) =

1

𝑡

∑𝑡
𝑠=1 𝑢

𝑖 (𝑏, 𝒃−𝑖𝑠 ).
An algorithm is 𝛾𝑡 -mean-based if, for any 𝑏 ∈ B𝑖 , whenever there
exists 𝑏 ′ ∈ B𝑖 such that 𝛼𝑖

𝑡−1 (𝑏
′) − 𝛼𝑖

𝑡−1 (𝑏) > 𝑉𝛾𝑡 , the probability
that the algorithm picks 𝑏 at round 𝑡 is at most 𝛾𝑡 . An algorithm
is mean-based if it is 𝛾𝑡 -mean-based for some decreasing sequence
(𝛾𝑡 )∞𝑡=1 such that 𝛾𝑡 → 0 as 𝑡 → ∞.

In this work, we assume that the online learning algorithm may

run for an infinite number of rounds. This captures the scenario

where bidders do not know how long they will be in the auction and

hence use learning algorithms that work for an arbitrary unknown

number of rounds. Infinite-round mean-based algorithms can be

obtained by modifying classical finite-round online learning algo-

rithms (e.g., MWU) with constant learning rates to have decreasing

learning rates, as shown below:

Example 2. Let (𝜀𝑡 )∞𝑡=1 be a decreasing sequence approaching 0.
The following algorithms are mean-based:

• Follow the Leader (or Greedy): at each round 𝑡 ≥ 1, each player
𝑖 ∈ N chooses an action 𝑏 ∈ argmax𝑏∈B𝑖 {𝛼𝑖𝑡−1 (𝑏)} (with a
specific tie-breaking rule).

• 𝜀𝑡 -Greedy: at each round 𝑡 ≥ 1, each player 𝑖 ∈ N with
probability 1 − 𝜀𝑡 chooses 𝑏 ∈ argmax𝑏∈B𝑖 {𝛼𝑖𝑡−1 (𝑏)}, with
probability 𝜀𝑡 chooses an action in B𝑖 uniformly at random.

• Multiplicative Weights Update (MWU): at each round 𝑡 ≥ 1,
each player 𝑖 ∈ N chooses each action 𝑏 ∈ B𝑖 with probability

𝑤𝑡−1 (𝑏)∑
𝑏′∈B𝑖 𝑤𝑡−1 (𝑏′) , where𝑤𝑡 (𝑏) = exp(𝜀𝑡

∑𝑡
𝑠=1 𝑢

𝑖 (𝑏, 𝒃−𝑖𝑠 )).5

4
We could allow a bidder to bid above 𝑣𝑖 − 1. But a rational bidder will quickly learn

to not place such bids.

5
We note that the MWU defined here is different from the standard MWU algorithm

with decreasing parameter where the weight of each action 𝑤𝑡 (𝑏) is updated by



Clearly, Follow the Leader is (𝛾𝑡 = 0)-mean-based and 𝜀𝑡 -Greedy

is 𝜀𝑡 -mean-based. One can see [8] for why MWU is mean-based.

Additionally, MWU is no-regret when the sequence (𝜀𝑡 )∞𝑡=1 is set
to 𝜀𝑡 = 𝑂 (1/

√
𝑡) (see, e.g., Theorem 2.3 in [10]).

Equilibria in first price auctions. Before presenting our main re-

sults, we characterize the set of all Nash equilibria in the first price

auction where bidders have fixed values 𝑣1 ≥ 𝑣2 ≥ · · · ≥ 𝑣𝑁 . We

only consider pure-strategy Nash equilibria in this work.
6
Reusing

the notation 𝑢𝑖 (·), we denote by 𝑢𝑖 (𝑏𝑖 , 𝒃−𝑖 ) the utility of bidder 𝑖

when she bids 𝑏𝑖 while others bid 𝒃−𝑖 = (𝑏1, . . . , 𝑏𝑖−1, 𝑏𝑖+1, . . . , 𝑏𝑁 ).
A bidding profile 𝒃 = (𝑏1, . . . , 𝑏𝑁 ) = (𝑏𝑖 , 𝒃−𝑖 ) is called a Nash equi-
librium if 𝑢𝑖 (𝒃) ≥ 𝑢𝑖 (𝑏 ′, 𝒃−𝑖 ) for any 𝑏 ′ ∈ B𝑖

and any 𝑖 ∈ N . Let

𝑀𝑖
denote the set of bidders who have the same value as bidder 𝑖 ,

𝑀𝑖 = { 𝑗 ∈ N : 𝑣 𝑗 = 𝑣𝑖 }. 𝑀1
is the set of bidders with the highest

value.

Proposition 3. The set of (pure-strategy) Nash equilibria in the
first price auctions with fixed values 𝑣1 ≥ 𝑣2 ≥ · · · ≥ 𝑣𝑁 are bidding
profiles 𝒃 = (𝑏1, . . . , 𝑏𝑁 ) that satisfy the following:

• The case of |𝑀1 | ≥ 3: 𝑏𝑖 = 𝑣1 − 1 for 𝑖 ∈ 𝑀1 and 𝑏 𝑗 ≤ 𝑣1 − 2

for 𝑗 ∉ 𝑀1.
• The case of |𝑀1 | = 2:
– If 𝑁 = 2 or 𝑣1 = 𝑣2 > 𝑣3 + 1: there are two types of Nash
equilibria: (1) 𝑏1 = 𝑏2 = 𝑣1−1, with 𝑏 𝑗 ≤ 𝑣1−3 for 𝑗 ∉ 𝑀1;
(2) 𝑏1 = 𝑏2 = 𝑣1 − 2, with 𝑏 𝑗 ≤ 𝑣1 − 3 for 𝑗 ∉ 𝑀1.

– If 𝑁 > 2 and 𝑣1 = 𝑣2 = 𝑣3 + 1: 𝑏1 = 𝑏2 = 𝑣1 − 1 and
𝑏 𝑗 ≤ 𝑣1 − 2 for 𝑗 ∉ 𝑀1.

• The case of |𝑀1 | = 1:
– Bidding profiles that satisfy the following are Nash equilib-
ria: 𝑏1 = 𝑣2, at least one bidder in𝑀2 bids 𝑣2 − 1, all other
bidders bid 𝑏 𝑗 ≤ 𝑣2 − 1.

– If 𝑣1 = 𝑣2 + 1 and |𝑀2 | = 1, then there is another type of
Nash equilibria: 𝑏1 = 𝑏2 = 𝑣2 − 1, 𝑏 𝑗 ≤ 𝑣2 − 2 for 𝑗 ∉ {1, 2}.

There are no other (pure-strategy) Nash equilibria.

The proof of this proposition is straightforward and omitted. In-

tuitively, whenever more than one bidder has the highest value

(|𝑀1 | ≥ 2), they should compete with each other by bidding 𝑣1 − 1

(or 𝑣1 − 2 if |𝑀1 | = 2 and no other bidders are able to compete with

them). When |𝑀1 | = 1, the unique highest-value bidder (bidder 1)

competes with the second-highest bidders (𝑀2
).

3 MAIN RESULTS: CONVERGENCE OF
MEAN-BASED ALGORITHMS

We introduce some additional notations. Let 𝒙𝑖𝑡 ∈ R𝑣
𝑖
be the mixed

strategy of player 𝑖 in round 𝑡 , where the 𝑏-th component of 𝒙𝑖𝑡 is
the probability that player 𝑖 bids 𝑏 ∈ B𝑖

in round 𝑡 . The sequence

(𝒙𝑖𝑡 )∞𝑡=1 is a stochastic process, where the randomness for each

𝒙𝑖𝑡 includes the randomness of bidding by all players in previous

rounds. Let 1𝑏 = (0, ..., 0, 1, 0, ..., 0) where 1 is in the 𝑏-th position.

𝑤𝑡 (𝑏) = 𝑤𝑡−1 (𝑏) · exp(𝜀𝑡𝑢𝑖 (𝑏,𝒃−𝑖
𝑡 )) = exp(∑𝑡

𝑠=1 𝜀𝑠𝑢
𝑖 (𝑏,𝒃−𝑖

𝑠 )) . The standard

algorithm is not mean-based because rewards 𝑢𝑖 (𝑏,𝒃−𝑖
𝑠 ) in earlier rounds matter

more than rewards in later rounds given that 𝜀𝑠 is decreasing. The algorithm we define

here treat rewards at different rounds equally and is hence mean-based.

6
Whether and how our results extend to mixed-strategy Nash equilibria is open.

Our main results about the convergence of mean-based algo-

rithms in repeated first price auctions depend on howmany bidders

have the highest value, |𝑀1 |.

The case of |𝑀1 | ≥ 3.

Theorem 4. If |𝑀1 | ≥ 3 and every bidder follows a mean-based
algorithm, then, with probability 1, both of the following events hap-
pen:

• Time-average convergence of bid sequence:

lim

𝑡→∞
1

𝑡

𝑡∑︁
𝑠=1

I[∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 = 𝑣
1 − 1] = 1. (1)

• Last-iterate convergence of mixed strategy profile:

∀𝑖 ∈ 𝑀1, lim

𝑡→∞
𝒙𝑖𝑡 = 1𝑣1−1 . (2)

Theorem 4 can be interpreted as follows. According to Propo-

sition 3, the bidding profile 𝒃𝑠 at round 𝑠 is a Nash equilibrium if

and only if ∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 = 𝑣1 − 1 (bidders not in 𝑀1
bid ≤ 𝑣1 − 2

by assumption
7
). Hence, the first result of Theorem 4 implies that

the fraction of rounds where bidders play a Nash equilibrium ap-

proaches 1 in the limit. The second result shows that all bidders

𝑖 ∈ 𝑀1
bid 𝑣1 − 1 with certainty eventually, achieving a Nash

equilibrium.

The case of |𝑀1 | = 2.

Theorem 5. If |𝑀1 | = 2 and every bidder follows a mean-based
algorithm, then, with probability 1, one of the following two events
happens:

• lim𝑡→∞ 1

𝑡

∑𝑡
𝑠=1 I[∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 = 𝑣

1 − 2] = 1;
• lim𝑡→∞ 1

𝑡

∑𝑡
𝑠=1 I[∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 = 𝑣1 − 1] = 1 and ∀𝑖 ∈ 𝑀1,

lim𝑡→∞ 𝒙𝑖𝑡 = 1𝑣1−1.

Moreover, if 𝑁 > 2 and 𝑣3 = 𝑣1 − 1 then only the second event
happens.

For the case 𝑣3 < 𝑣1 − 1, according to Proposition 3, 𝒃𝑠 is a

Nash equilibrium if and only if both bidders in 𝑀1
play 𝑣1 − 1 or

𝑣1 − 2 at the same time (with other bidders bidding ≤ 𝑣1 − 3 by

assumption
7
). Hence, the theorem shows that the bidders eventually

converge to one of the two possible types of equilibria. Interestingly,

experiments show that some mean-based algorithms lead to the

equilibrium of 𝑣1−1while some lead to 𝑣1−2. Also, a same algorithm

may converge to different equilibria in different runs. See Section 5

for details.

In the case of time-average convergence to the equilibrium of

𝑣1 − 2, the last-iterate convergence result does not always holds.

Consider an example with 2 bidders, with 𝑣1 = 𝑣2 = 3. We can

construct a 𝛾𝑡 -mean-based algorithm with 𝛾𝑡 = 𝑂 ( 1

𝑡1/4
) such that,

with constant probability, it holds lim𝑡→∞ 1

𝑡

∑𝑡
𝑠=1 I[∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 =

𝑣1 − 2] = 1 but in infinitely many rounds we have 𝒙𝑖𝑡 = 12 = 1𝑣1−1.
The key idea is that, when 𝛼𝑖𝑡 (1) − 𝛼𝑖𝑡 (2) is positive but lower than
𝑉𝛾𝑡 in some round 𝑡 (which happens infinitely often), we can let

the algorithm bid 2 with certainty in round 𝑡 + 1. This does not

violate the 𝛾𝑡 -mean-based property.

7
We note that the bidders not in𝑀1

can follow a mixed strategy and need not converge

to a deterministic bid.



Proposition 6. If |𝑀1 | = 2, then there exists a mean-based algo-
rithm such that, when players follow this algorithm, with constant
probability their mixed strategy profiles do not converge to a Nash
equilibrium in last-iterate.

The case of |𝑀1 | = 1. The dynamics may not converge to a Nash

equilibrium of the auction in time-average nor in last-iterate, as

shown in the following example (see Appendix A for a proof).

Example 7. Let 𝑣1 = 10, 𝑣2 = 𝑣3 = 7. Assume that players use
the Follow the Leader algorithm (which is 0-mean-based) with a
specific tie-breaking rule. They may generate the following bidding
path (𝑏1𝑡 , 𝑏2𝑡 , 𝑏3𝑡 )𝑡 ≥1:

(7, 6, 1), (7, 1, 6), (7, 1, 1), (7, 6, 1), (7, 1, 6), (7, 1, 1), . . .
Note that (7, 1, 1) is not a Nash equilibrium according to Proposition 3
but it appears in 1

3
fraction of rounds, which means that the dynamics

neither converges in the time-average sense nor in the last-iterate
sense to a Nash equilibrium.

Example 7 also shows that, in the case of |𝑀1 | = 1, the bid-

ding dynamics generated by a mean-based algorithm may not con-

verge to Nash equilibrium in the classical sense of “convergence

of empirical distribution”: i.e., letting 𝑝𝑖𝑡 = 1

𝑡

∑𝑡
𝑠=1 1𝑏𝑖𝑠 ∈ Δ(B𝑖 )

denote the empirical distribution of player 𝑖’s bids up to round

𝑡 , the vector of individual empirical distributions (𝑝1𝑡 , 𝑝2𝑡 , 𝑝3𝑡 )𝑡 ≥1
approaches a (mixed-strategy) Nash equilibrium in the limit. To

see this, note that the vector of individual empirical distributions

converges to (𝑝1, 𝑝2, 𝑝3) where 𝑝1 (7) = 1 and for 𝑖 = 2, 3, 𝑝𝑖 (6) = 1

3

and 𝑝𝑖 (1) = 2

3
. It is easy to verify that for bidder 1, bidding 2 has

utility (10− 2) ( 2
3
)2 = 32

9
, which is larger than the utility of bidding

7, which is 10 − 7 = 3. Thus, (𝑝1, 𝑝2, 𝑝3) is not a Nash equilibrium.

The mean-based algorithm in Example 7 is not no-regret. In

Section 5 we show by experiments that such non-convergence

results also hold for no-regret mean-based algorithms, e.g., MWU.

4 PROOF OF THEOREM 4
The proof of Theorem 4 covers the main ideas and proof techniques

of our convergence results, so we present it here. We first provide

a proof sketch. Then in Section 4.1 we provide properties of mean-

based algorithms that will be used in the formal proof. Section 4.2

and Section 4.3 prove Theorem 4.

Proof sketch. The idea of the proof resembles the notion of it-

erative elimination of dominated strategies in game theory. We

first use a step-by-step argument to show that bidders with the

highest value (i.e., those in𝑀1
) will gradually learn to avoid bidding

0, 1, . . . , 𝑣1 − 3. Then we further prove that: if |𝑀1 | = 3, they will

avoid 𝑣1 − 2 and hence converge to 𝑣1 − 1; if |𝑀1 | = 2, the two

bidders may end up playing 𝑣1 − 1 or 𝑣1 − 2.

To see why bidders in 𝑀1
will learn to avoid 0, suppose that

there are two bidders in total and one of them (say, bidder 𝑖) bids 𝑏

with probability 𝑃 (𝑏) in history. For the other bidder (say, bidder

𝑗 ), if bidder 𝑗 bids 0, she obtains utility 𝛼 (0) = (𝑣1 − 0) 𝑃 (0)
2

; if

she bids 1, she obtains utility 𝛼 (1) = (𝑣1 − 1) (𝑃 (0) + 𝑃 (1)
2

). Since
𝛼 (1) − 𝛼 (0) = 𝑣1−2

2
𝑃 (0) + (𝑣1 − 1) 𝑃 (1)

2
> 0 (assuming 𝑣1 ≥ 3),

bidding 1 is better than bidding 0 for bidder 𝑗 . Given that bidder 𝑗 is

using a mean-based algorithm, she will play 0 with small probability

(say, zero probability). The same argument applies to bidder 𝑖 . Hence,

both bidders learn to not play 0. Then we take an inductive step:

assuming that no bidders play 0, . . . , 𝑘 − 1, we note that 𝛼 (𝑘 +
1) − 𝛼 (𝑘) = 𝑣1−𝑘−2

2
𝑃 (𝑘) + 𝑣1−𝑘−1

2
𝑃 (𝑘 + 1) > 0 for 𝑘 ≤ 𝑣1 − 3,

therefore 𝑘 + 1 is a better response than 𝑘 and both players will

avoid bidding 𝑘 . An induction shows that they will finally learn to

avoid 0, 1, . . . , 𝑣1 − 3. Then, for the case of |𝑀1 | ≥ 3, we will use an

additional claim (Claim 9) to show that, if bidders bid 0, 1, . . . , 𝑣1 − 3

rarely in history, they will also avoid bidding 𝑣1 − 2 in the future.

The formal proof uses a time-partitioning technique proposed

by [16]. Roughly speaking, we partition the time horizon into some

periods 1 < 𝑇0 < 𝑇1 < 𝑇2 < · · · . If bidders bid 0, 1, . . . , 𝑘 − 1 with

low frequency from round 1 to 𝑇𝑘−1, then using the mean-based

properties in Claim 8 and Claim 9, we show that they will bid 𝑘 with

probability at most 𝛾𝑡 in each round from 𝑇𝑘−1 + 1,𝑇𝑘−1 + 2, . . . , to

𝑇𝑘 . A use of Azuma’s inequality shows that the frequency of bid 𝑘 in

period (𝑇𝑘−1,𝑇𝑘 ] is also low with high probability, which concludes

the induction. Constructing an appropriate partition allows us to

argue that the frequency of bids less than 𝑣1 − 1 converges to 0 with
high probability.

4.1 Properties of Mean-Based Algorithms in
First Price Auctions

We use the following notations intensively in the proofs. We denote

by 𝑃𝑖𝑡 (𝑘) the frequency of the highest bid submitted by bidders other

than 𝑖 during the first 𝑡 rounds: 𝑃𝑖𝑡 (𝑘) =
1

𝑡

∑𝑡
𝑠=1 I

[
max𝑗≠𝑖 𝑏

𝑗
𝑠 = 𝑘

]
.

By 𝑃𝑖𝑡 (0 : 𝑘) we mean

∑𝑘
ℓ=0 𝑃

𝑖
𝑡 (ℓ). Let 𝑃𝑖𝑡 (0 : −1) be 0. Addition-

ally, let 𝑄𝑖
𝑡 (𝑘) be the probability of bidder 𝑖 winning the item

with ties if she bids 𝑘 in history: 𝑄𝑖
𝑡 (𝑘) = 1

𝑡

∑𝑡
𝑠=1 I[max𝑗≠𝑖 𝑏

𝑗
𝑠 =

𝑘] 1

| argmax𝑗≠𝑖 𝑏
𝑗
𝑠 |+1

. Clearly,

0 ≤ 1

𝑁
𝑃𝑖𝑡 (𝑘) ≤ 𝑄𝑖

𝑡 (𝑘) ≤ 1

2
𝑃𝑡𝑡 (𝑘) ≤ 1

2
. (3)

We can use 𝑃𝑖𝑡 (0 : 𝑘 − 1) and 𝑄𝑡
𝑖
(𝑘) to express 𝛼𝑖𝑡 (𝑘):

𝛼𝑖𝑡 (𝑘) = (𝑣𝑖 − 𝑘)
(
𝑃𝑖𝑡 (0 : 𝑘 − 1) +𝑄𝑖

𝑡 (𝑘)
)
. (4)

We use𝐻𝑡 to denote the history of the first 𝑡 rounds, which includes

the realization of all randomness in the first 𝑡 rounds. Bidders

themselves may not observe the full history 𝐻𝑡 . Given 𝐻𝑡−1, each
bidder’s mixed strategy 𝒙𝑖𝑡 at round 𝑡 is determined, and the 𝑘-th

component of 𝒙𝑖𝑡 is exactly Pr[𝑏𝑖𝑡 = 𝑘 | 𝐻𝑡−1]. The following claim

says that, if other bidders rarely bid 0 to 𝑘 −1 in history, then bidder

𝑖 will not bid 𝑘 with large probability in round 𝑡 , for 𝑖 ∈ 𝑀1
.

Claim 8. Assume 𝑣1 ≥ 3. For any 𝑖 ∈ 𝑀1, any 𝑘 ∈ {0, 1, . . . , 𝑣1 −
3}, any 𝑡 ≥ 1, if the history of the first 𝑡 − 1 rounds 𝐻𝑡−1 satisfies
𝑃𝑖
𝑡−1 (0 : 𝑘 − 1) < 1

2𝑉𝑁
− 2𝛾𝑡 , then Pr[𝑏𝑖𝑡 = 𝑘 | 𝐻𝑡−1] ≤ 𝛾𝑡 .

Proof. Suppose 𝑃𝑖
𝑡−1 (0 : 𝑘−1) ≤

1

2𝑉𝑁
−2𝛾𝑡 holds. If𝛼𝑖𝑡−1 (𝑘+1)−

𝛼𝑖
𝑡−1 (𝑘) > 𝑉𝛾𝑡 , then by the mean-based property, the conditional

probability Pr[𝑏𝑖𝑡 = 𝑘 | 𝛼𝑖
𝑡−1 (𝑘 + 1) − 𝛼𝑖

𝑡−1 (𝑘) > 𝑉𝛾𝑡 , 𝐻𝑡−1] is at
most 𝛾𝑡 . Otherwise, using (4) and (3), we have

𝑉𝛾𝑡 ≥ 𝛼𝑖𝑡−1 (𝑘 + 1) − 𝛼𝑖𝑡−1 (𝑘)

≥ (𝑣1 − 𝑘 − 1)𝑃𝑖𝑡−1 (𝑘) − 𝑃
𝑖
𝑡−1 (0 : 𝑘 − 1) − (𝑣1 − 𝑘) 𝑃

𝑖
𝑡−1 (𝑘)
2

,



which implies

𝑃𝑖𝑡−1 (𝑘) ≤
2

𝑣1−𝑘−2
(
𝑉𝛾𝑡 + 𝑃𝑖𝑡−1 (0 : 𝑘 − 1)

)
. (5)

And hence,

𝛼𝑖𝑡−1 (𝑘) ≤ (𝑣1 − 𝑘)
(
𝑃𝑖𝑡−1 (0 : 𝑘 − 1) + 1

2
𝑃𝑖𝑡−1 (𝑘)

)
by (5) ≤ (𝑣1 − 𝑘)𝑃𝑖𝑡−1 (0 : 𝑘 − 1) + 𝑣1−𝑘

𝑣1−𝑘−2
(
𝑉𝛾𝑡 + 𝑃𝑖𝑡−1 (0 : 𝑘 − 1)

)
= 𝑣1−𝑘

𝑣1−𝑘−2𝑉𝛾𝑡 +
(
𝑣1 − 𝑘 + 𝑣1−𝑘

𝑣1−𝑘−2
)
𝑃𝑖𝑡−1 (0 : 𝑘 − 1)

(since 𝑣1−𝑘
𝑣1−𝑘−2 ≤ 3) ≤ 3𝑉𝛾𝑡 +

(
𝑣1 − 𝑘 + 3

)
𝑃𝑖𝑡−1 (0 : 𝑘 − 1)

≤ 3𝑉𝛾𝑡 + 2𝑉𝑃𝑖𝑡−1 (0 : 𝑘 − 1).

By the assumption that 𝑃𝑖
𝑡−1 (0 : 𝑘 − 1) < 1

2𝑉𝑁
− 2𝛾𝑡 , we get

𝛼𝑖𝑡−1 (𝑘) < 3𝑉𝛾𝑡 + 2𝑉
(

1

2𝑉𝑁
− 2𝛾𝑡

)
= 1

𝑁
−𝑉𝛾𝑡 .

Then, we note that𝛼𝑖
𝑡−1 (𝑣

1−1) = 𝑃𝑖
𝑡−1 (0 : 𝑣

1−2)+𝑄𝑖
𝑡−1 (𝑣

1−1) ≥
1

𝑁
𝑃𝑖
𝑡−1 (0 : 𝑣

1 − 1) = 1

𝑁
· 1 where the last equality holds because no

bidder bids above 𝑣1 − 1 by assumption. Therefore,

𝛼𝑖𝑡−1 (𝑣
1 − 1) − 𝛼𝑖𝑡−1 (𝑘) >

1

𝑁
−

(
1

𝑁
−𝑉𝛾𝑡

)
= 𝑉𝛾𝑡 .

From the mean-based property, Pr[𝑏𝑖𝑡 = 𝑘 | 𝛼𝑖
𝑡−1 (𝑘 +1) −𝛼

𝑖
𝑡−1 (𝑘) ≤

𝑉𝛾𝑡 , 𝐻𝑡−1] ≤ 𝛾𝑡 , implying Pr[𝑏𝑖𝑡 = 𝑘 | 𝐻𝑡−1] ≤ 𝛾𝑡 . □

The following claim is for the case of 𝑘 = 𝑣1 − 2: if bidders rarely

bid 0 to 𝑣1 − 3 in history, then bidder 𝑖 will not bid 𝑣1 − 2 with large

probability in round 𝑡 , for 𝑖 ∈ 𝑀1
, given |𝑀1 | ≥ 3.

Claim 9. Suppose |𝑀1 | ≥ 3 and 𝑣1 ≥ 2. For any 𝑡 ≥ 1 such that
𝛾𝑡 < 1

12𝑁 2𝑉 2
, if the history 𝐻𝑡−1 of the first 𝑡 − 1 rounds satisfies

1

𝑡−1
∑𝑡−1
𝑠=1 I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] ≤ 1

3𝑁𝑉
, then, ∀ 𝑖 ∈ 𝑀1, Pr[𝑏𝑖𝑡 =

𝑣1 − 2 | 𝐻𝑡−1] ≤ 𝛾𝑡 .

4.2 Iteratively Eliminating Bids 0, 1, . . . , 𝑣1 − 3

In this subsection we show that, after a sufficiently long time, bid-

ders in 𝑀1
will rarely bid 0, 1, . . . , 𝑣1 − 3, with high probability

(Corollary 13). We show this by partitioning the time horizon into

𝑣1 − 3 periods and using an induction from 0 to 𝑣1 − 3. Let con-

stants 𝑐 = 1 + 1

12𝑁𝑉
and 𝑑 = ⌈log𝑐 (8𝑁𝑉 )⌉. Let 𝑇𝑏 be any (con-

stant) integer such that 𝛾𝑇𝑏 < 1

12𝑁 2𝑉 2
and exp

(
− (𝑐−1)𝑇𝑏
1152𝑁 2𝑉 2

)
≤ 1

2
.

Let 𝑇0 = 12𝑁𝑉𝑇𝑏 and 𝑇𝑘 = 𝑐𝑑𝑇𝑘−1 = 𝑐𝑑𝑘𝑇0 ≥ (8𝑁𝑉 )𝑘𝑇0 for

𝑘 ∈ {1, 2, · · · , 𝑣1 − 3}. Let 𝐴𝑘 be event

𝐴𝑘 =

[
1

𝑇𝑘

∑𝑇𝑘
𝑡=1
I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑘] ≤ 1

4𝑁𝑉

]
,

which says that bidders in 𝑀1
bid 0, 1, . . . , 𝑘 not too often in the

first 𝑇𝑘 rounds. Our goal is to show that Pr[𝐴𝑣1−3] is high.

Lemma 10. Pr [𝐴0] ≥ 1 − exp

(
− 𝑇𝑏
24𝑁𝑉

)
.

Proof. Consider any round 𝑡 ≥ 𝑇𝑏 . For any 𝑖 ∈ 𝑀1
, given any

history 𝐻𝑡−1 of the first 𝑡 − 1 rounds, it holds that 𝑃𝑖
𝑡−1 (0 : −1) =

0 ≤ 1

2𝑉𝑁
− 2𝛾𝑡 . Hence, by Claim 8, Pr[𝑏𝑖𝑡 = 0 | 𝐻𝑡−1] ≤ 𝛾𝑡 . Using a

union bound over 𝑖 ∈ 𝑀1
,

Pr[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 = 0 | 𝐻𝑡−1] ≤ |𝑀1 |𝛾𝑡 .
Let 𝑍𝑡 = I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 = 0] − |𝑀1 |𝛾𝑡 and let 𝑋𝑡 =

∑𝑡
𝑠=𝑇𝑏+1 𝑍𝑠 .

We have E [𝑍𝑡 | 𝐻𝑡−1] ≤ 0. Therefore, the sequence 𝑋𝑇𝑏+1, 𝑋𝑇𝑏+2,

. . . , 𝑋𝑇0 is a supermartingale (with respect to the sequence of history

𝐻𝑇𝑏 , 𝐻𝑇𝑏+1, . . . , 𝐻𝑇0−1). By Azuma’s inequality, we have

Pr

[ ∑𝑇0
𝑡=𝑇𝑏+1 𝑍𝑡 ≥ Δ

]
≤ exp

(
− Δ2

2(𝑇0−𝑇𝑏 )

)
.

Let Δ = 𝑇𝑏 , so with probability at least 1 − exp

(
− Δ2

2(𝑇0−𝑇𝑏 )

)
≥

1 − exp

(
− 𝑇𝑏
24𝑁𝑉

)
, we have

∑𝑇0
𝑡=𝑇𝑏+1 𝑍𝑡 < 𝑇𝑏 , or

∑𝑇0
𝑡=𝑇𝑏+1 I[∃𝑖 ∈

𝑀1, 𝑏𝑖𝑡 = 0] < 𝑇𝑏 + ∑𝑇0
𝑡=𝑇𝑏+1 |𝑀

1 |𝛾𝑡 , which implies

1

𝑇0

∑𝑇0
𝑡=1
I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 = 0] ≤ 1

𝑇0

(
𝑇𝑏 +∑𝑇0

𝑡=𝑇𝑏+1I[∃𝑖 ∈ 𝑀
1, 𝑏𝑖𝑡 = 0]

)
< 1

𝑇0

(
2𝑇𝑏 +∑𝑇0

𝑡=𝑇𝑏+1 |𝑀
1 |𝛾𝑡

)
≤ 1

4𝑁𝑉
,

where the last inequality holds due to
𝑇𝑏
𝑇0

= 1

12𝑁𝑉
and

1

𝑇0

∑𝑇0
𝑡=𝑇𝑏+1 |𝑀

1 |𝛾𝑡 ≤ |𝑀1 |𝛾𝑇𝑏 ≤ 1

12𝑁𝑉
. □

The following lemma says that, if bidders in 𝑀1
seldom bid

0, 1, . . . , 𝑘 in the first 𝑇𝑘 rounds, then they will also seldom bid

0, 1, . . . , 𝑘, 𝑘 + 1 in the first 𝑇𝑘+1 rounds, with high probability.

Lemma 11. If |𝑀1 | ≥ 2, then for 𝑘 = 0, 1, . . . , 𝑣1 − 4, we have

Pr [𝐴𝑘+1 | 𝐴𝑘 ] ≥ 1 − ∑𝑑
𝑗=1 exp

(
− |Γ 𝑗

ℓ |
1152𝑁 2𝑉 2

)
.

Proof. Suppose 𝐴𝑘 holds. Consider 𝐴𝑘+1. We divide the rounds

in [𝑇𝑘 ,𝑇𝑘+1] to 𝑑 = ⌈log𝑐 (8𝑁𝑉 )⌉ episodes such that 𝑇𝑘 = 𝑇 0

𝑘
<

𝑇 1

𝑘
< · · · < 𝑇𝑑

𝑘
= 𝑇𝑘+1 where 𝑇

𝑗

𝑘
= 𝑐𝑇

𝑗−1
𝑘

for 𝑗 ∈ [1, 𝑑]. Let
Γ
𝑗

𝑘
= [𝑇 𝑗−1

𝑘
+ 1,𝑇

𝑗

𝑘
], with |Γ 𝑗

𝑘
| = 𝑇 𝑗

𝑘
−𝑇 𝑗−1

𝑘
.

We define a series of events 𝐵
𝑗

𝑘
for 𝑗 ∈ [0, 𝑑]. 𝐵0

𝑘
is the same as𝐴𝑘 .

For 𝑗 ∈ [1, 𝑑], 𝐵 𝑗

𝑘
is the event

∑
𝑡 ∈Γ 𝑗

𝑘

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑘 + 1] ≤ |Γ 𝑗

𝑘
|

8𝑁𝑉
.

Claim 12. Pr

[
𝐵
𝑗+1
𝑘

| 𝐴𝑘 , 𝐵1𝑘 , . . . , 𝐵
𝑗

𝑘

]
≥ 1 − exp

(
− |Γ 𝑗+1

𝑘
|

1152𝑁 2𝑉 2

)
.

Proof. Suppose 𝐴𝑘 , 𝐵
1

𝑘
, . . . , 𝐵

𝑗

𝑘
happen. For simplicity, we write

𝐴
𝑗

𝑘
= [𝐴𝑘 , 𝐵1𝑘 , . . . , 𝐵

𝑗

𝑘
]. Fix an 𝑖 ∈ 𝑀1

, consider 𝑃𝑖
𝑇

𝑗

𝑘

(0 : 𝑘). Recall

that 𝑃𝑖
𝑇

𝑗

𝑘

(0 : 𝑘) = 1

𝑇
𝑗

𝑘

∑𝑇
𝑗

𝑘

𝑡=1
I[max𝑖′≠𝑖 𝑏

𝑖′
𝑡 ≤ 𝑘]. Because |𝑀1 | ≥ 2,

the event [max𝑖′≠𝑖 𝑏
𝑖′
𝑡 ≤ 𝑘] implies that there exists 𝑖∗ ∈ 𝑀1

, 𝑖∗ ≠ 𝑖 ,

such that 𝑏𝑖
∗
𝑡 ≤ 𝑘 . Therefore 𝑃𝑖

𝑇
𝑗

𝑘

(0 : 𝑘) ≤ 1

𝑇
𝑗

𝑘

∑𝑇
𝑗

𝑘

𝑡=1
I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤

𝑘]. Given 𝐴 𝑗

𝑘
, we have

𝑃𝑖
𝑇

𝑗

𝑘

(0 : 𝑘) ≤ 1

𝑇
𝑗

𝑘

(
𝑇𝑘

1

4𝑁𝑉
+ (𝑇 𝑗

𝑘
−𝑇𝑘 ) 1

8𝑁𝑉

)
≤ 1

4𝑁𝑉
.

Then, for any round 𝑡 ∈ Γ
𝑗+1
𝑘

= [𝑇 𝑗

𝑘
+ 1,𝑇

𝑗+1
𝑘

], we have

𝑃𝑖𝑡−1 (0 : 𝑘) =
1

𝑡−1

(
𝑇
𝑗

𝑘
𝑃𝑖
𝑇

𝑗

𝑘

(0 : 𝑘) + ∑𝑡−1
𝑠=𝑇

𝑗

𝑘
+1
I[max𝑖′≠𝑖 𝑏

𝑖′
𝑠 ≤ 𝑘]

)
≤ 1

𝑡−1

(
𝑇
𝑗

𝑘
1

4𝑁𝑉
+ (𝑡 − 1 −𝑇 𝑗

𝑘
)
)

(since𝑇
𝑗

𝑘
≤ 𝑡 − 1 ≤ 𝑇

𝑗+1
𝑘

) ≤ 1

4𝑁𝑉
+ 𝑇

𝑗+1
𝑘

−𝑇 𝑗

𝑘

𝑇
𝑗+1
𝑘

(since𝑇
𝑗+1
𝑘

= 𝑐𝑇
𝑗

𝑘
) ≤ 1

3𝑁𝑉

(since 𝛾𝑡 ≤ 𝛾𝑇𝑏 < 1

12𝑁𝑉
) < 1

2𝑁𝑉
− 2𝛾𝑡 .



Therefore, according to Claim 8, for any history 𝐻𝑡−1 that satis-
fies 𝐴

𝑗

𝑘
we have Pr [𝑏𝑖𝑡 = 𝑏 | 𝐻𝑡−1, 𝐴

𝑗

𝑘
] ≤ 𝛾𝑡 for any 𝑏 ∈ [0, 𝑘 + 1].

Consider the event [∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑘 + 1]. Using union bounds over

𝑖 ∈ 𝑀1
and 𝑏 ∈ {0, . . . , 𝑘 + 1},

Pr

[
∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑘 + 1

�� 𝐻𝑡−1, 𝐴
𝑗

𝑘

]
≤ |𝑀1 | · Pr

[
𝑏𝑖𝑡 ≤ 𝑘 + 1

�� 𝐻𝑡−1, 𝐴
𝑗

𝑘

]
≤ |𝑀1 | (𝑘 + 2)𝛾𝑡 ≤ |𝑀1 |𝑉𝛾𝑡 .

Let 𝑍𝑡 = I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑘 + 1] − |𝑀1 |𝑉𝛾𝑡 and let 𝑋𝑡 =
∑𝑡

𝑠=𝑇
𝑗

𝑘
+1
𝑍𝑠 .

We have E [𝑍𝑡 | 𝐴 𝑗

𝑘
, 𝐻𝑡−1] ≤ 0. Therefore, the sequence 𝑋

𝑇
𝑗

𝑘
+1,

𝑋
𝑇

𝑗

𝑘
+2, . . ., 𝑋𝑇 𝑗+1

𝑘

is a supermartingale (with respect to the sequence

of history 𝐻
𝑇

𝑗

𝑘

, 𝐻
𝑇

𝑗

𝑘
+1, . . ., 𝐻𝑇 𝑗+1

𝑘
−1). By Azuma’s inequality, for any

Δ > 0, we have

Pr

[ ∑𝑇
𝑗+1
𝑘

𝑡=𝑇
𝑗

𝑘
+1
𝑍𝑡 ≥ Δ

��� 𝐴 𝑗

𝑘

]
≤ exp

(
− Δ2

2 |Γ 𝑗+1
𝑘

|

)
.

Let Δ =
|Γ 𝑗+1
𝑘

|
24𝑁𝑉

. Then with probability at least 1− exp

(
− |Γ 𝑗+1

𝑘
|

1152𝑁 2𝑉 2

)
we have

∑
𝑡 ∈Γ 𝑗+1

𝑘

𝑍𝑡 <
|Γ 𝑗+1
𝑘

|
24𝑁𝑉

, which implies∑
𝑡 ∈Γ 𝑗+1

𝑘

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑘 + 1] < |Γ 𝑗+1
𝑘

|
24𝑁𝑉

+ ∑
𝑡 ∈Γ 𝑗+1

𝑘

|𝑀1 |𝑉𝛾𝑡

≤ |Γ 𝑗+1
𝑘

|
24𝑁𝑉

+ |𝑀1 |𝑉 |Γ 𝑗+1
𝑘

|
12𝑁 2𝑉 2

≤ |Γ 𝑗+1
𝑘

|
8𝑁𝑉

. □

Suppose 𝐴𝑘 happens. Using Claim 12 with 𝑗 = 0, 1, . . . , 𝑑 − 1, we

have, with probability at least 1 − ∑𝑑
𝑗=1 exp

(
− |Γ 𝑗

𝑘
|

1152𝑁 2𝑉 2

)
, all the

events 𝐵1
𝑘
, . . . , 𝐵𝑑

𝑘
hold, which implies

1

𝑇𝑘+1

∑𝑇𝑘+1
𝑡=1
I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑘 + 1]

≤ 1

𝑇𝑘+1

(
𝑇𝑘 · 1 + ∑

𝑡 ∈Γ1
𝑘
∪···∪Γ𝑑

𝑘

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑘 + 1]
)

≤ 1

𝑇𝑘+1

(
𝑇𝑘 · 1 + (𝑇𝑘+1 −𝑇𝑘 ) · 1

8𝑁𝑉

)
(since 𝑇𝑘+1 ≥ (8𝑁𝑉 )𝑇𝑘 ) ≤ 1

8𝑁𝑉
+

(
1 − 𝑇𝑘

𝑇𝑘+1

)
1

8𝑁𝑉
≤ 1

4𝑁𝑉
.

Thus 𝐴𝑘+1 holds. □

Using an induction from 𝑘 = 0, 1, . . . to 𝑣1 − 4, we get, with

probability at least 1−exp
(
− 𝑇𝑏

24𝑁𝑉

)
−∑𝑣1−4

𝑘=0

∑𝑑
𝑗=1 exp

(
− |Γ 𝑗

𝑘
|

1152𝑁 2𝑉 2

)
,

all events 𝐴0, 𝐴1, . . . , 𝐴𝑣1−3 hold. By bounding the summation∑𝑣1−4
𝑘=0

∑𝑑
𝑗=1 exp

(
− |Γ 𝑗

𝑘
|

1152𝑁 2𝑉 2

)
using the definition of Γ

𝑗

𝑘
, we obtain:

Corollary 13. Pr [𝐴𝑣1−3] ≥ 1 − exp

(
− 𝑇𝑏

24𝑁𝑉

)
− 2 exp

(
−

𝑇𝑏
1152𝑁 2𝑉 2

)
.

4.3 Eliminating 𝑣1 − 2

In this subsection, we continue partitioning the time horizon after

𝑇𝑣1−3, all the way to infinity, to show two points: (1) the frequency

of bids in {0, 1, . . . , 𝑣1 − 3} from bidders in 𝑀1
approaches 0; (2)

the frequency of 𝑣1 − 2 also approaches 0. Again let 𝑐 = 1 + 1

12𝑁𝑉
.

Let 𝑇 0

𝑎 = 𝑇𝑣1−3,𝑇
𝑘+1
𝑎 = 𝑐𝑇𝑘𝑎 , Γ

𝑘+1
𝑎 = [𝑇𝑘𝑎 + 1,𝑇𝑘+1𝑎 ], 𝑘 ≥ 0. Let

𝛿𝑡 = ( 1𝑡 )
1

3 , 𝑡 ≥ 0. For each 𝑘 ≥ 0, define

𝐹
𝑇𝑘
𝑎
= 1

𝑐𝑘
1

4𝑁𝑉
+ ∑𝑘−1

𝑠=0
𝑐−1
𝑐𝑘−𝑠

𝛿𝑇 𝑠
𝑎
+ ∑𝑘−1

𝑠=0 |𝑀1 |𝑉 𝑐−1
𝑐𝑘−𝑠

𝛾𝑇 𝑠
𝑎
,

and

𝐹
𝑇𝑘
𝑎
= 1

𝑐𝑘
+ ∑𝑘−1

𝑠=0
𝑐−1
𝑐𝑘−𝑠

𝛿𝑇 𝑠
𝑎
+ ∑𝑘−1

𝑠=0 |𝑀1 |𝑉 𝑐−1
𝑐𝑘−𝑠

𝛾𝑇 𝑠
𝑎
.

Claim 14. 𝐹
𝑇𝑘+1
𝑎

≤ 𝐹
𝑇𝑘
𝑎
≤ 1

4𝑁𝑉
for every𝑘 ≥ 0 and lim𝑘→∞ 𝐹

𝑇𝑘
𝑎
=

lim𝑘→∞ 𝐹
𝑇𝑘
𝑎
= 0.

Proof sketch. The claim is a direct corollary from the fact that

𝛿𝑡 → 0 and 𝛾𝑡 → 0 as 𝑡 → ∞, and that 𝑇𝑘𝑎 → ∞ as 𝑘 → 0. □

Lemma 15. Suppose |𝑀1 | ≥ 2. Let 𝑇𝑏 be any sufficiently large
constant. Let 𝐴𝑘𝑎 be the event that for all 𝑠 ≤ 𝑘 , 1

𝑇 𝑠
𝑎

∑𝑇 𝑠
𝑎

𝑡=1
I[∃𝑖 ∈

𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3] ≤ 𝐹𝑇 𝑠
𝑎
. Then, Pr[𝐴𝑘𝑎 ] ≥ 1 − exp

(
− 𝑇𝑏
24𝑁𝑉

)
−

2 exp

(
− 𝑇𝑏
1152𝑁 2𝑉 2

)
− 2 exp

(
−( 𝑇𝑏

1152𝑁 2𝑉 2
)
1

3

)
.

Moreover, if |𝑀1 | ≥ 3, we can add the following event to 𝐴𝑘𝑎 : for all
𝑠 ≤ 𝑘 , 1

𝑇 𝑠
𝑎

∑𝑇 𝑠
𝑎

𝑡=1
I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 2] ≤ 𝐹𝑇 𝑠

𝑎
.

The proof is similar to that of Lemma 11 except that we use Claim 9

to argue that bidders bid 𝑣1 − 2 with low frequency.

Proof of Theorem 4. Suppose |𝑀1 | ≥ 3. We note that the event

𝐴𝑘𝑎 implies that for any time 𝑡 ∈ Γ𝑘𝑎 = [𝑇𝑘−1𝑎 + 1,𝑇𝑘𝑎 ],
1

𝑡

∑𝑡
𝑠=1I[∃𝑖 ∈ 𝑀

1, 𝑏𝑖𝑠 ≤ 𝑣1 − 2] ≤ 1

𝑡

∑𝑇𝑘
𝑎

𝑠=1
I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 2]

≤ 1

𝑡𝑇
𝑘
𝑎 𝐹𝑇𝑘

𝑎

(since 𝑡 ≥ 1

𝑐
𝑇𝑘
𝑎 )

≤ 𝑐𝐹
𝑇𝑘
𝑎
. (6)

We note that 𝐴𝑘−1𝑎 ⊇ 𝐴𝑘𝑎 , so by Lemma 15 with probability at least

Pr[∩∞
𝑘=0

𝐴𝑘𝑎 ] = lim𝑘→∞ Pr[𝐴𝑘𝑎 ] ≥ 1−exp
(
− 𝑇𝑏
24𝑁𝑉

)
−2 exp

(
− 𝑇𝑏
1152𝑁 2𝑉 2

)
−

2 exp

(
−( 𝑇𝑏

1152𝑁 2𝑉 2
)
1

3

)
all events 𝐴0

𝑎, 𝐴
1

𝑎, . . . , 𝐴
𝑘
𝑎 , . . . happen. Then,

according to (6) and Claim 14, we have

lim

𝑡→∞
1

𝑡

𝑡∑︁
𝑠=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 2] ≤ lim

𝑘→∞
𝑐𝐹

𝑇𝑘
𝑎
= 0.

Letting 𝑇𝑏 → ∞ proves the first result of the theorem. The sec-

ond result follows from the observation that, when
1

𝑡

∑𝑡
𝑠=1 I[∃𝑖 ∈

𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 2] ≤ 1

3𝑁𝑉
, all bidders in 𝑀1

will choose bids in

{0, 1, . . . , 𝑣1 − 2} with probability at most (𝑣1 − 1)𝛾𝑡+1 in round 𝑡 + 1
according to Claim 8 and 9, and that (𝑣1−1)𝛾𝑡+1 → 0 as 𝑡 → ∞. □

5 EXPERIMENTAL RESULTS
Code for the experiments can be found at https://github.com/tao-

l/FPA-mean-based.

5.1 |𝑀1 | = 2: Convergence to Two Equilibria
For the case of |𝑀1 | = 2, we showed in Theorem 5 that any mean-

based algorithm must converge to one of the two equilibria where

the two players in𝑀1
bid 𝑣1−1 or 𝑣1−2. One may wonder whether

there is a theoretical guarantee of which equilibrium will be ob-

tained. We give experimental results to show that, in fact, both
equilibria can be obtained under a same randomized mean-based

algorithm in different runs. We demonstrate this by the 𝜀𝑡 -Greedy

algorithm (defined in Example 2). Interestingly, under the same

setting, the MWU algorithm always converges to the equilibrium

of 𝑣1 − 1.

In the experiment, we let 𝑛 = |𝑀1 | = 2, 𝑣1 = 𝑣2 = 𝑉 = 4.

https://github.com/tao-l/FPA-mean-based
https://github.com/tao-l/FPA-mean-based


(a) Player 1’s bid frequency (b) Player 2’s bid frequency

(c) Player 1’s mixed strategy (d) Player 2’s mixed strategy

Figure 1: |𝑀1 | = 2, 𝜀𝑡 -Greedy, 𝑣1 = 𝑣1 = 4, converging to
𝑣1−2 = 2. The four curves in each plot show (a) (b) the changes
of frequencies of bids 0, 1, 2, 3 and (c) (d) the changes of mixed
strategies, in one simulation. The frequency of 2 approaches
1. The two regions show the [10%, 90%]-confidence intervals
of the corresponding curves (the upper is for bid 2, the lower
is for bid 3), among all simulations that converge to 𝑣1 − 2.

𝜀𝑡 -Greedy converges to two equilibria. We run 𝜀𝑡 -Greedy with

𝜀𝑡 =
√︁
1/𝑡 for 1000 times. In each time, we run it for 𝑇 = 2000

rounds. After it finishes, we use the frequency of bids from bidder

1 to determine which equilibrium the algorithm will converge to:

if the frequency of bid 2 is above 0.9, we consider it converging

to the equilibrium of 𝑣1 − 2; if the frequency of bid 3 is above 0.9,

we consider it converging to the equilibrium of 𝑣1 − 1; if neither

happens, we consider it as “not converged yet”. Among the 1000

times we found 868 times of 𝑣1 − 2, 132 times of 𝑣1 − 1, and 0 times

of “not converged yet”; namely, the probability of converging to

𝑣1 − 2 is roughly 87%.

We give two figures of the changes of bid frequencies and mixed

strategies of player 1 and 2: Figure 1 is for the case of converging to

𝑣1 − 2; Figure 2 is for 𝑣1 − 1. The x-axis is round number 𝑡 and the

y-axis is the frequency
1

𝑡

∑𝑡
𝑠=1 I[𝑏𝑖𝑠 = 𝑏] of each bid 𝑏 ∈ {0, 1, 2, 3}

or the mixed strategy 𝒙𝑖𝑡 = (𝑥𝑖𝑡 (0), 𝑥𝑖𝑡 (1), 𝑥𝑖𝑡 (2), 𝑥𝑖𝑡 (3)). For clarity,
we only show the first 500 rounds.

MWU always converges to 𝑣1 − 1. We run MWU with 𝜀𝑡 =
√︁
1/𝑡 .

Same as the previous experiment, we run the algorithm for 1000

times and count how many times the algorithm converges to the

equilibrium of 𝑣1 − 2 and to 𝑣1 − 1. We found that, in all 1000

times, MWU converged to 𝑣1 − 1. Figure 3 shows the changes of

bid frequencies and mixed strategies of both players.

(a) Player 1’s bid frequency (b) Player 2’s bid frequency

(c) Player 1’s mixed strategy (d) Player 2’s mixed strategy

Figure 2: |𝑀1 | = 2, 𝜀𝑡 -Greedy, 𝑣1 = 𝑣1 = 4, converging to
𝑣1−1 = 3. The four curves in each plot show (a) (b) the changes
of frequencies of bids 0, 1, 2, 3 and (c) (d) the changes of mixed
strategies, in one simulation. The frequency of 3 approaches
1. The two regions show the [10%, 90%]-confidence intervals
of the corresponding curves (the upper is for bid 3, the lower
is for bid 2), among all simulations that converge to 𝑣1 − 1.

5.2 |𝑀1 | = 1: Non-Convergence
For the case of |𝑀1 | = 1 we showed that not all mean-based algo-

rithms can converge to equilibrium, using the example of Follow

the Leader (Example 7). Here we experimentally demonstrate that

such non-convergence phenomena can also happen with more nat-

ural (and even no-regret) mean-based algorithms like 𝜀-Greedy and

MWU.

In the experiment we let 𝑛 = 2, 𝑣1 = 8, 𝑣2 = 6. We run 𝜀𝑡 -Greedy

and MWU both with 𝜀𝑡 = 1/
√
𝑡 for 𝑇 = 20000 rounds.

For 𝜀𝑡 -Greedy, Figure 4 shows that the two bidders do not con-

verge to a pure-strategy equilibrium, either in time-average or

last-iterate. According to Proposition 3, a pure-strategy equilibrium

must have bidder 1 bidding 𝑣2 = 6 and bidder 2 bidding 𝑣2 − 1 = 5.

But figure (b) shows that bidder 2’s frequency of bidding 5 does

not converge to 1. The frequency oscillates and we do not know

whether it will stabilize at some limit less than 1. Looking closer,

we see that bidder 2 constantly switches between bids 5 and 3,

and bidder 1 switches between 5 and 6. Intuitively, this is because:

in the 𝜀𝑡 -Greedy algorithm, when bidder 1 bids 𝑣2 = 6 with high

probability, she also sometimes (with probability 𝜀𝑡 ) chooses bids

uniformly at random, in which case the best response for bidder 2

is to bid 𝑣2/2 = 3; but after bidder 2 switches to 3, bidder 1 will find

it beneficial to lower her bid from 6 to 5; then, bidder 2 will switch

to 5 to compete with bidder 1, winning the item with probability

1/2; but then bidder 1 will increase to 6 to outbid bidder 2; ... They

hence enter a cycle.



(a) Player 1’s bid frequency (b) Player 2’s bid frequency

(c) Player 1’s mixed strategy (d) Player 2’s mixed strategy

Figure 3: |𝑀1 | = 2, MWU, 𝑣1 = 𝑣1 = 4, converging to 𝑣1 − 1 =

3. The four curves in each plot show (a) (b) the changes of
frequencies of bids 0, 1, 2, 3 and (c) (d) the changes of mixed
strategies, in one simulation. The frequency of 3 approaches
1. The two regions show the [10%, 90%]-confidence intervals
of the corresponding curves (the upper is for bid 3, the lower
is for bid 2), among 1000 simulations.

(a) Player 1’s bid frequency (b) Player 2’s bid frequency

(c) Player 1’s mixed strategy (d) Player 2’s mixed strategy

Figure 4: |𝑀1 | = 1, 𝜀𝑡 -Greedy, 𝑣1 = 8, 𝑣2 = 6. The curves
shown are results from one simulation. The region around
the curves in (a) (b) are [10%, 90%]-confidence intervals of the
curves among 100 simulations.

(a) Player 1’s bid frequency (b) Player 2’s bid frequency

(c) Player 1’s mixed strategy (d) Player 2’s mixed strategy

Figure 5: |𝑀1 | = 1, MWU, 𝑣1 = 8, 𝑣2 = 6. The curves shown are
results from one simulation. The region around the curves
are [10%, 90%]-confidence intervals of the curves among 100
simulations.

For MWU, Figure 5 shows that: bidder 1’s bid frequency (a) and

mixed strategy (c) seem to converge to bidding 𝑣2 = 6; but bidder 2’s

bid frequency (b) and mixed strategy (d) do not seem to converge.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this work we show that, in repeated fixed-value first price auc-

tions, mean-based learning bidders converge to a Nash equilibrium

in the presence of competition, in the sense that at least two bid-

ders share the highest value. Without competition, we give non-

convergence examples using mean-based algorithms that are not

necessarily no-regret. Understanding the convergence property of

no-regret algorithms in the absence of competition is a natural

and interesting future direction. In fact, [33] shows that some non-

mean-based no-regret algorithms do not converge. It is hence open

to prove (non-)convergence for mean-based no-regret algorithms.

The convergence result we give is in the limit sense. [46] notes

thatmany no-regret algorithms actually need an exponential time to

converge to Nash equilibrium in some iterative-dominance-solvable

game. Our theoretical analysis for the first price auction demon-

strates a 𝑇 = 𝑂 (𝑐𝑂 (𝑣1) ) upper bound on the convergence time for

the case of |𝑀1 | = 3. But the convergence time in experiments is

significantly shorter. The exact convergence rate remains open.

Analyzing repeated first price auctions where bidders have time-

varying values is also a natural, yet possibly challenging, future

direction.
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A MISSING PROOFS FROM SECTION 3
A.1 Proof of Theorem 5
Suppose |𝑀1 | = 2. We will prove that, for any sufficiently large integer𝑇𝑏 , with probability at least 1− exp

(
− 𝑇𝑏

24𝑁𝑉

)
− 2 exp

(
− 𝑇𝑏

1152𝑁 2𝑉 2

)
−

6

𝑒−2
(
48𝑁𝑉
𝑇𝑏

)
3𝑒/4

, one of following two events must happen:

• lim𝑡→∞ 1

𝑡

∑𝑡
𝑠=1 I[∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 = 𝑣

1 − 2] = 1;

• lim𝑡→∞ 1

𝑡

∑𝑡
𝑠=1 I[∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 = 𝑣

1 − 1] = 1 and lim𝑡→∞ Pr[𝑏𝑖𝑡 = 𝑣1 − 1] = 1.

And if 𝑛 ≥ 3 and 𝑣3 = 𝑣1 − 1, only the second event happens. Letting 𝑇𝑏 → ∞ proves Theorem 5.

We reuse the argument in Section 4.2. Assume 𝑣1 ≥ 3.
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Recall that we defined 𝑐 = 1 + 1

12𝑁𝑉
, 𝑑 = ⌈log𝑐 (8𝑁𝑉 )⌉; 𝑇𝑏 is any integer such that

𝛾𝑇𝑏 < 1

12𝑁 2𝑉 2
and exp

(
− (𝑐−1)𝑇𝑏
1152𝑁 2𝑉 2

)
≤ 1

2
; 𝑇0 = 12𝑁𝑉𝑇𝑏 ; 𝑇𝑣1−3 = 𝑐 (𝑣

1−3)𝑑𝑇0. We defined 𝐴𝑣1−3 to be the event
1

𝑇
𝑣1−3

∑𝑇
𝑣1−3

𝑡=1
I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤

𝑣1 − 3] ≤ 1

4𝑁𝑉
. According to Corollary 13, 𝐴𝑣1−3 holds with probability at least 1− exp

(
− 𝑇𝑏
24𝑁𝑉

)
− 2 exp

(
− 𝑇𝑏
1152𝑁 2𝑉 2

)
. Suppose 𝐴𝑣1−3 holds.

Now we partition the time horizon after 𝑇𝑣1−3 as follows: let 𝑇 0

𝑎 = 𝑇𝑣1−3,𝑇
𝑘
𝑎 = 𝐶 (𝑘 + 24𝑁𝑉 )2, ∀𝑘 ≥ 0, where 𝐶 =

𝑇
𝑣1−3

(24𝑁𝑉 )2 , so that

𝑇 0

𝑎 = 𝐶 (0 + 24𝑁𝑉 )2. Denote Γ𝑘+1𝑎 = [𝑇𝑘𝑎 + 1,𝑇𝑘+1𝑎 ], with |Γ𝑘+1𝑎 | = 𝑇𝑘+1𝑎 −𝑇𝑘𝑎 . (We note that the notations here have different meanings than

those in Section 4.3.) We define 𝛿𝑡 = ( 1𝑡 )
1/8, 𝑡 ≥ 0. For each 𝑘 ≥ 0, we define

𝐹
𝑇𝑘
𝑎
=
𝑇 0

𝑎

𝑇𝑘𝑎

1

4𝑁𝑉
+
𝑘−1∑︁
𝑠=0

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇𝑘𝑎

𝛿𝑇 𝑠
𝑎
+
𝑘−1∑︁
𝑠=0

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇𝑘𝑎

|𝑀1 |𝑉𝛾𝑇 𝑠
𝑎
.

Let 𝐴𝑘𝑎 be event

𝐴𝑘𝑎 =


1

𝑇𝑘𝑎

𝑇𝑘
𝑎∑︁

𝑡=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3] ≤ 𝐹
𝑇𝑘
𝑎

 .
We note that 𝐴0

𝑎 = 𝐴𝑣1−3 because 𝐹𝑇 0

𝑎
= 1

4𝑁𝑉
.

In the proof we will always let 𝑇𝑏 to be sufficiently large. This implies that all the times 𝑇0,𝑇𝑣1−3,𝑇
0

𝑎 ,𝑇
𝑘
𝑎 , etc., are sufficiently large.

A.1.1 Additional Notations, Claims, and Lemmas.

Claim 16. When 𝑇𝑏 is sufficiently large,

• 𝐹
𝑇𝑘+1
𝑎

≤ 𝐹
𝑇𝑘
𝑎
≤ 1

4𝑁𝑉
for every 𝑘 ≥ 0.

• lim𝑘→∞ 𝐹
𝑇𝑘
𝑎
= 0.

Proof. Since 𝛿𝑇 0

𝑎
→ 0 and 𝛾𝑇 0

𝑎
→ 0 as 𝑇𝑏 → ∞, when 𝑇𝑏 is sufficiently large we have

𝐹𝑇 1

𝑎
=
𝑇 0

𝑎

𝑇 1

𝑎

1

4𝑁𝑉
+ 𝑇

1

𝑎 −𝑇 0

𝑎

𝑇 1

𝑎

(
𝛿𝑇 0

𝑎
+ |𝑀1 |𝑉𝛾𝑇 0

𝑎

)
≤ 𝑇 0

𝑎

𝑇 1

𝑎

1

4𝑁𝑉
+ 𝑇

1

𝑎 −𝑇 0

𝑎

𝑇 1

𝑎

1

4𝑁𝑉
=

1

4𝑁𝑉
= 𝐹𝑇 0

𝑎
.

Since 𝛿𝑇 𝑠
𝑎
and 𝛾𝑇 𝑠

𝑎
are both decreasing, we have

𝐹
𝑇𝑘
𝑎
>

𝑘−1∑︁
𝑠=0

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇𝑘𝑎

𝛿𝑇 𝑠
𝑎
+
𝑘−1∑︁
𝑠=0

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇𝑘𝑎

|𝑀1 |𝑉𝛾𝑇 𝑠
𝑎

≥
𝑘−1∑︁
𝑠=0

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇𝑘𝑎

𝛿
𝑇𝑘
𝑎
+
𝑘−1∑︁
𝑠=0

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇𝑘𝑎

|𝑀1 |𝑉𝛾
𝑇𝑘
𝑎

= 𝛿
𝑇𝑘
𝑎
+ |𝑀1 |𝑉𝛾

𝑇𝑘
𝑎
.

Thus,

𝐹
𝑇𝑘+1
𝑎

by definition

=
𝑇𝑘𝑎

𝑇𝑘+1𝑎

𝐹
𝑇𝑘
𝑎
+ 𝑇

𝑘+1
𝑎 −𝑇𝑘𝑎
𝑇𝑘+1𝑎

(
𝛿
𝑇𝑘
𝑎
+ |𝑀1 |𝑉𝛾

𝑇𝑘
𝑎

)
<

𝑇𝑘𝑎

𝑇𝑘+1𝑎

𝐹
𝑇𝑘
𝑎
+ 𝑇

𝑘+1
𝑎 −𝑇𝑘𝑎
𝑇𝑘+1𝑎

𝐹
𝑇𝑘
𝑎
= 𝐹

𝑇𝑘
𝑎
.
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If 𝑣1 = 1, Theorem 5 trivially holds. If 𝑣1 = 2, we let𝑇

𝑣1−3 = 𝑇0 = 𝑇𝑏 ;𝐴𝑣1−3 holds with probability 1 since
1

𝑇
𝑣1−3

∑𝑇
𝑣1−3

𝑡=1
I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3] = 0; the argument for 𝑣1 ≥ 3

will still apply.



Then we prove lim𝑘→∞ 𝐹
𝑇𝑘
𝑎
= 0. For every 0 < 𝜀 < 1

4𝑁𝑉
, we can find 𝑘 sufficiently large such that 𝛿

𝑇𝑘
𝑎
≤ 𝜀

6
, and 𝛾

𝑇𝑘
𝑎
≤ 𝜀

6 |𝑀1 |𝑉 . For any

𝑙 ≥ ⌈𝑘/𝜀⌉, we have 𝑇 0

𝑎

𝑇 𝑙
𝑎

≤ 𝑇𝑘
𝑎

𝑇 𝑙
𝑎

≤ 𝜀
6
. Then

𝐹
𝑇 𝑙
𝑎
=
𝑇 0

𝑎

𝑇 𝑙𝑎

1

4𝑁𝑉
+

𝑙−1∑︁
𝑠=0

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇 𝑙𝑎

(𝛿𝑇 𝑠
𝑎
+ |𝑀1 |𝑉𝛾𝑇 𝑠

𝑎
)

≤ 𝜀

3

+ 2

𝑘−1∑︁
𝑠=0

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇 𝑙𝑎

+
𝑙−1∑︁
𝑠=𝑘

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇 𝑙𝑎

(𝛿
𝑇𝑘
𝑎
+ |𝑀1 |𝑉𝛾

𝑇𝑘
𝑎
)

≤ 𝜀

3

+ 2

𝑇𝑘𝑎

𝑇 𝑙𝑎
+ 𝛿

𝑇𝑘
𝑎
+ |𝑀1 |𝑉𝛾

𝑇𝑘
𝑎

≤ 𝜀

3

+ 𝜀

3

+ 𝜀

3

= 𝜀.

Since 𝐹
𝑇𝑘
𝑎
is non-negative, we have lim𝑘→∞ 𝐹

𝑇𝑘
𝑎
= 0. □

Claim 17.

∑∞
𝑠=0 exp

(
− 1

2
|Γ𝑠+1𝑎 |𝛿2

𝑇 𝑠
𝑎

)
≤ 2

𝑒−2
1

𝐶3𝑒/4 ≤ 2

𝑒−2
(
48𝑁𝑉
𝑇𝑏

)
3𝑒/4.

Proof. Recall that |Γ𝑠+1𝑎 | = 𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎 , 𝛿2𝑇 𝑠
𝑎
= ( 1

𝑇 𝑠
𝑎
)1/8, and 𝑇 𝑠𝑎 = 𝐶 (𝑠 + 24𝑁𝑉 )2. Hence,

∞∑︁
𝑠=0

exp

(
−1

2

|Γ𝑠+1𝑎 |𝛿2
𝑇 𝑠
𝑎

)
=

∞∑︁
𝑠=0

exp

(
−1

2

(
𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎

) ( 1
𝑇 𝑠𝑎

)
1/4

)
=

∞∑︁
𝑠=0

exp

(
−1

2

𝐶
(
2(𝑠 + 24𝑁𝑉 ) + 1

) ( 1

𝐶 (𝑠 + 24𝑁𝑉 )2
)
1/4

)
≤

∞∑︁
𝑠=0

exp

(
−𝐶3/4 (𝑠 + 24𝑁𝑉

) ( 1

𝑠 + 24𝑁𝑉

)
1/2

)
=

∞∑︁
𝑠=0

exp

(
−𝐶3/4√𝑠 + 24𝑁𝑉

)
≤

∞∑︁
𝑥=2

exp

(
−𝐶3/4√𝑥

)
≤

∫ ∞

𝑥=1

exp

(
−𝐶3/4√𝑥

)
d𝑥

(using 𝑒𝑥 ≥ 𝑥𝑒 for 𝑥 ≥ 0) ≤
∫ ∞

𝑥=1

1

(𝐶3/4√𝑥)𝑒
d𝑥 =

1

𝐶3𝑒/4 · 2

𝑒 − 2

.

Substituting 𝐶 =
𝑇
𝑣1−3

(24𝑁𝑉 )2 =
𝑐 (𝑣

1−3)𝑑
12𝑁𝑉𝑇𝑏

(24𝑁𝑉 )2 ≥ 12𝑁𝑉𝑇𝑏
(24𝑁𝑉 )2 =

𝑇𝑏
48𝑁𝑉

proves the claim. □

Fact 18.
𝑇𝑘
𝑎

𝑇𝑘+1
𝑎

≥ 1 − 2

𝑘+24𝑁𝑉
.

Proof. By definition,

𝑇𝑘𝑎

𝑇𝑘+1𝑎

=
(𝑘 + 24𝑁𝑉 )2

(𝑘 + 24𝑁𝑉 + 1)2
= 1 − 2(𝑘 + 24𝑁𝑉 ) + 1

(𝑘 + 24𝑁𝑉 + 1)2
≥ 1 − 2

𝑘 + 24𝑁𝑉 + 1

≥ 1 − 2

𝑘 + 24𝑁𝑉
.

□

Claim 19. When 𝐴𝑘𝑎 holds, we have, for every 𝑡 ∈ Γ𝑘+1𝑎 = [𝑇𝑘𝑎 + 1,𝑇𝑘+1𝑎 ],

1

𝑡 − 1

𝑡−1∑︁
𝑠=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] ≤ 𝐹
𝑇𝑘
𝑎
+ 2

𝑘 + 24𝑁𝑉
≤ 1

2𝑁𝑉
− 2𝛾𝑡 .



Proof. When 𝐴𝑘𝑎 holds, for every 𝑡 ∈ Γ𝑘+1𝑎 ,

1

𝑡 − 1

𝑡−1∑︁
𝑠=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] ≤ 1

𝑡 − 1

(
𝑇𝑘𝑎 𝐹𝑇𝑘

𝑎
+ (𝑡 − 1 −𝑇𝑘𝑎 )

)
(since 𝑇𝑘𝑎 ≤ 𝑡 − 1 ≤ 𝑇𝑘+1𝑎 ) ≤ 𝐹

𝑇𝑘
𝑎
+ 𝑇

𝑘+1
𝑎 −𝑇𝑘𝑎
𝑇𝑘+1𝑎

(by Fact 18) ≤ 𝐹
𝑇𝑘
𝑎
+ 2

𝑘 + 24𝑁𝑉
.

Since 𝐹
𝑇𝑘
𝑎
≤ 1

4𝑁𝑉
by Claim 16 and 𝛾𝑡 ≤ 1

12𝑁 2𝑉 2
by assumption, the above expression is further bounded by

1

4𝑁𝑉
+ 2

𝑘+24𝑁𝑉
≤ 1

4𝑁𝑉
+ 2

24𝑁𝑉
=

1

3𝑁𝑉
≤ 1

2𝑁𝑉
− 2𝛾𝑡 . □

Lemma 20. For every 𝑘 ≥ 0, Pr[𝐴𝑘+1𝑎 | 𝐴𝑘𝑎 ] ≥ 1 − exp

(
− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

)
.

Proof. Given 𝐴𝑘𝑎 , according to Claim 19, it holds that for every 𝑡 ∈ Γ𝑘+1𝑎 ,
1

𝑡−1
∑𝑡−1
𝑠=1 I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] ≤ 1

2𝑁𝑉
− 2𝛾𝑡 . Then according

to Claim 8, for any history 𝐻𝑡−1,

Pr[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3 | 𝐻𝑡−1, 𝐴𝑘𝑎 ] ≤ |𝑀1 |𝑉𝛾𝑡 .

Let 𝑍𝑡 = I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3] − |𝑀1 |𝑉𝛾𝑡 and let 𝑋𝑡 =
∑𝑡

𝑠=𝑇𝑘
𝑎 +1 𝑍𝑠 . We have E [𝑍𝑡 | 𝐻𝑡−1, 𝐴𝑘𝑎 ] ≤ 0. Therefore, the sequence

𝑋
𝑇𝑘
𝑎 +1, 𝑋𝑇𝑘

𝑎 +2, . . . , 𝑋𝑇𝑘+1
𝑎

is a supermartingale (with respect to the sequence of history 𝐻
𝑇𝑘
𝑎
, 𝐻

𝑇𝑘
𝑎 +1, . . . , 𝐻𝑇𝑘+1

𝑎 −1). By Azuma’s inequality, for

any Δ > 0, we have

Pr

[ ∑︁
𝑡 ∈Γ𝑘+1𝑎

𝑍𝑡 ≥ Δ

���� 𝐴𝑘𝑎 ] ≤ exp

(
− Δ2

2|Γ𝑘+1𝑎 |

)
.

Let Δ = |Γ𝑘+1𝑎 |𝛿
𝑇𝑘
𝑎
. Then with probability at least 1− exp

(
− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

)
, we get

∑
𝑡 ∈Γ𝑘+1𝑎

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 −3] < Δ+ |𝑀1 |𝑉 ∑
𝑡 ∈Γ𝑘+1𝑎

𝛾𝑡 ≤

|Γ𝑘+1𝑎 |𝛿
𝑇𝑘
𝑎
+ |𝑀1 |𝑉 |Γ𝑘+1𝑎 |𝛾

𝑇𝑘
𝑎
, which implies

1

𝑇𝑘+1𝑎

𝑇𝑘+1
𝑎∑︁
𝑡=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3]

=
1

𝑇𝑘+1𝑎

( 𝑇𝑘
𝑎∑︁

𝑡=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3] +
∑︁

𝑡 ∈Γ𝑘+1𝑎

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3]
)

≤ 1

𝑇𝑘+1𝑎

(
𝑇𝑘𝑎 𝐹𝑇𝑘

𝑎
+ |Γ𝑘+1𝑎 |𝛿

𝑇𝑘
𝑎
+ |𝑀1 |𝑉 |Γ𝑘+1𝑎 |𝛾

𝑇𝑘
𝑎

)
(by definition) = 𝐹

𝑇𝑘+1
𝑎

and thus 𝐴𝑘+1𝑎 holds. □

Denote by 𝑓 𝑖𝑡 (𝑏) the frequency of bid 𝑏 in the first 𝑡 rounds for bidder 𝑖:

𝑓 𝑖𝑡 (𝑏) =
1

𝑡

𝑡∑︁
𝑠=1

I[𝑏𝑖𝑠 = 𝑏] .

Let 𝑓 𝑖𝑡 (0 : 𝑣1 − 3) = 1

𝑡

∑𝑡
𝑠=1 I[𝑏𝑖𝑠 ≤ 𝑣1 − 3].

Claim 21. If the history 𝐻𝑡−1 satisfies 𝑓 𝑖𝑡−1 (𝑣
1 − 1) > 2(𝑋 +𝑉𝛾𝑡 ) and 1

𝑡−1
∑𝑡−1
𝑠=1 I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] ≤ 𝑋 for some 𝑋 ∈ [0, 1], then we

have Pr[𝑏𝑖′𝑡 = 𝑣1 − 2 | 𝐻𝑡−1] ≤ 𝛾𝑡 for the other 𝑖 ′ ≠ 𝑖 ∈ 𝑀1.

Proof. Consider 𝛼𝑖
′
𝑡−1 (𝑣

1 − 1) and 𝛼𝑖′
𝑡−1 (𝑣

1 − 2). On the one hand,

𝛼𝑖
′
𝑡−1 (𝑣

1 − 1) = 1 × (1 − 𝑓 𝑖𝑡−1 (𝑣
1 − 1)) + 1

2

× 𝑓 𝑖𝑡−1 (𝑣
1 − 1) = 1 − 1

2

𝑓 𝑖𝑡−1 (𝑣
1 − 1). (7)



On the other hand, since having more bidders with bids no larger than 𝑣1 − 2 only decreases the utility of a bidder who bids 𝑣1 − 2, we can

upper bound 𝛼𝑖
′
𝑡−1 (𝑣

1 − 2) by

𝛼𝑖
′
𝑡−1 (𝑣

1 − 2) ≤ 2 × 𝑓 𝑖𝑡−1 (0 : 𝑣
1 − 3) + 1 × (1 − 𝑓 𝑖𝑡−1 (𝑣

1 − 1) − 𝑓 𝑖𝑡−1 (0 : 𝑣
1 − 3))

= 1 − 𝑓 𝑖𝑡−1 (𝑣
1 − 1) + 𝑓 𝑖𝑡−1 (0 : 𝑣

1 − 3)
≤ 1 − 𝑓 𝑖𝑡−1 (𝑣

1 − 1) + 𝑋, (8)

where the last inequality holds because 𝑓 𝑖
𝑡−1 (0 : 𝑣

1 − 3) ≤ 1

𝑡−1
∑𝑡−1
𝑠=1 I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] ≤ 𝑋 . Combining (7) and (8), we get

𝛼𝑖
′
𝑡−1 (𝑣

1 − 1) − 𝛼𝑖
′
𝑡−1 (𝑣

1 − 2) ≥ (1 − 1

2

𝑓 𝑖𝑡−1) − (1 − 𝑓 𝑖𝑡−1 + 𝑋 ) =
1

2

𝑓 𝑖𝑡−1 (𝑣
1 − 1) − 𝑋 > 𝑉𝛾𝑡 .

This implies Pr[𝑏𝑖′𝑡 = 𝑣1 − 2 | 𝐻𝑡−1] ≤ 𝛾𝑡 according to the mean-based property. □

A.1.2 Proof of the General Case. We consider 𝑘 = 0, 1, . . . to∞. For each 𝑘 , we suppose 𝐴0

𝑎, 𝐴
1

𝑎, . . . , 𝐴
𝑘
𝑎 hold, which happens with probability

at least 1 − ∑𝑘−1
𝑠=0 exp

(
− 1

2
|Γ𝑠+1𝑎 |𝛿2

𝑇 𝑠
𝑎

)
according to Lemma 20, given that 𝐴0

𝑎 = 𝐴𝑣1−3 already held. The proof is divided into two cases based

on 𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1).

Case 1: For all 𝑘 ≥ 0, 𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1) ≤ 16(𝐹
𝑇𝑘
𝑎
+ 2

𝑘+24𝑁𝑉
+𝑉𝛾

𝑇𝑘
𝑎
) for both 𝑖 ∈ 𝑀1.

We argue that the two bidders in𝑀1
converge to playing 𝑣1 − 2 in this case.

According to Lemma 20, all events𝐴0

𝑎, 𝐴
1

𝑎, . . . , 𝐴
𝑘
𝑎 , . . . happen with probability at least 1−∑∞

𝑘=0
exp

(
− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

)
. Claim 19 and Claim 16

then imply that, for both 𝑖 ∈ 𝑀1
,

lim

𝑡→∞
𝑓 𝑖𝑡 (0 : 𝑣1 − 3) ≤ lim

𝑘→∞

(
𝐹
𝑇𝑘
𝑎
+ 2

𝑘 + 24𝑁𝑉

)
= 0.

Because for every 𝑡 ∈ Γ𝑘+1𝑎 = [𝑇𝑘𝑎 + 1,𝑇𝑘+1𝑎 ] we have 𝑓 𝑖𝑡 (𝑣1 − 1) ≤ 𝑇𝑘+1
𝑎

𝑡 𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1) ≤ 𝑇𝑘+1
𝑎

𝑇𝑘
𝑎

𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1) ≤ 2𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1) and by condition

𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1) → 0 as 𝑘 → ∞, we have

lim

𝑡→∞
𝑓 𝑖𝑡 (𝑣1 − 1) = 0.

Therefore,

lim

𝑡→∞
𝑓 𝑖𝑡 (𝑣1 − 2) = lim

𝑡→∞
1 − 𝑓 𝑖𝑡 (0 : 𝑣1 − 3) − 𝑓 𝑖𝑡 (𝑣1 − 1) = 1,

which implies

lim

𝑡→∞
1

𝑡

𝑡∑︁
𝑠=1

I[∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 = 𝑣
1 − 2] = 1.

Case 2: There exists 𝑘 ≥ 0 such that 𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1) > 16(𝐹
𝑇𝑘
𝑎
+ 2

𝑘+24𝑁𝑉
+𝑉𝛾

𝑇𝑘
𝑎
) for some 𝑖 ∈ 𝑀1.

If this case happens, we argue that the two bidders in𝑀1
converge to playing 𝑣1 − 1.

We first prove that, after ℓ = 𝑘 + 24𝑁𝑉 periods (i.e., at time 𝑇𝑘+ℓ𝑎 ), the frequency of 𝑣1 − 1 for both bidders in 𝑀1
is greater than

4(𝐹
𝑇𝑘+ℓ
𝑎

+ 2

(𝑘+ℓ)+24𝑁𝑉
+𝑉𝛾

𝑇𝑘+ℓ
𝑎

), with high probability.

Lemma 22. Suppose that, at time 𝑇𝑘𝑎 , 𝐴
𝑘
𝑎 holds and for some 𝑖 ∈ 𝑀1, 𝑓 𝑖

𝑇𝑘
𝑎

(𝑣1 − 1) > 16(𝐹
𝑇𝑘
𝑎
+ 2

𝑘+24𝑁𝑉
+𝑉𝛾

𝑇𝑘
𝑎
) holds. Then, with probability

at least 1 − 2

∑𝑘+ℓ−1
𝑗=𝑘

exp

(
− 1

2
|Γ 𝑗+1𝑎 |𝛿2

𝑇
𝑗
𝑎

)
, the following events happen at time 𝑇𝑘+ℓ𝑎 , where ℓ = 𝑘 + 24𝑁𝑉 :

• 𝐴𝑘+ℓ𝑎 ;
• For both 𝑖 ∈ 𝑀1, 𝑓 𝑖

𝑇𝑘+ℓ
𝑎

(𝑣1 − 1) > 4(𝐹
𝑇𝑘+ℓ
𝑎

+ 2

(𝑘+ℓ)+24𝑁𝑉
+𝑉𝛾

𝑇𝑘+ℓ
𝑎

).

Proof. We prove by an induction from 𝑗 = 𝑘 to 𝑘 + ℓ − 1. Given 𝐴
𝑗
𝑎 , 𝐴

𝑗+1
𝑎 happens with probability at least 1 − exp

(
− 1

2
|Γ 𝑗+1𝑎 |𝛿2

𝑇
𝑗
𝑎

)
according to Lemma 20. Hence, with probability at least 1 − ∑𝑘+ℓ−1

𝑗=𝑘
exp

(
− 1

2
|Γ 𝑗+1𝑎 |𝛿2

𝑇
𝑗
𝑎

)
, all events 𝐴𝑘𝑎 , 𝐴

𝑘+1
𝑎 , . . . , 𝐴𝑘+ℓ𝑎 happen.



Now we consider the second event. For all 𝑡 ∈ Γ
𝑗+1
𝑎 , noticing that

𝑇𝑘
𝑎

𝑡−1 ≥ 𝑇𝑘
𝑎

𝑇
𝑗+1
𝑎

≥ 𝑇𝑘
𝑎

𝑇𝑘+ℓ
𝑎

=
(𝑘+24𝑁𝑉 )2

(2(𝑘+24𝑁𝑉 ))2 = 1

4
, we have

𝑓 𝑖𝑡−1 (𝑣
1 − 1) ≥ 𝑇𝑘𝑎

𝑡 − 1

𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1) ≥ 1

4

𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1)

(by condition) > 4(𝐹
𝑇𝑘
𝑎
+ 2

𝑘 + 24𝑁𝑉
+𝑉𝛾

𝑇𝑘
𝑎
) (9)

(𝐹
𝑇𝑘
𝑎
and 𝛾

𝑇𝑘
𝑎
are decreasing in 𝑘) ≥ 4(𝐹

𝑇
𝑗
𝑎
+ 2

𝑗 + 24𝑁𝑉
+𝑉𝛾

𝑇
𝑗
𝑎
) .

According to Claim 19, given 𝐴
𝑗
𝑎 we have

1

𝑡−1
∑𝑡−1
𝑠=1 I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] ≤ 𝐹

𝑇
𝑗
𝑎
+ 2

𝑗+24𝑁𝑉
≤ 1

2𝑁𝑉
− 2𝛾𝑡 . Using Claim 21 with

𝑋 = 𝐹
𝑇

𝑗
𝑎
+ 2

𝑗+24𝑁𝑉
, we have, for bidder 𝑖 ′ ≠ 𝑖, 𝑖 ′ ∈ 𝑀1

, Pr[𝑏𝑖′𝑡 = 𝑣1 − 2 | 𝐻𝑡−1] ≤ 𝛾𝑡 . By Claim 8, Pr[𝑏𝑖′𝑡 ≤ 𝑣1 − 3 | 𝐻𝑡−1] ≤ (𝑉 − 1)𝛾𝑡 .
Combining the two, we get

Pr[𝑏𝑖
′
𝑡 = 𝑣1 − 1 | 𝐻𝑡−1] ≥ 1 −𝑉𝛾𝑡 .

Let Δ = |Γ𝑘+1𝑎 |𝛿
𝑇𝑘
𝑎
. Similar to the proof of Lemma 20, we can use Azuma’s inequality to argue that, with probability at least 1 −

exp(− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

), it holds that ∑︁
𝑡 ∈Γ 𝑗+1

𝑎

I[𝑏𝑖
′
𝑡 = 𝑣1 − 1] ≥

∑︁
𝑡 ∈Γ 𝑗+1

𝑎

(1 −𝑉𝛾𝑡 − 𝛿𝑇 𝑗
𝑎
) ≥ |Γ 𝑗+1𝑎 | (1 −𝑉𝛾

𝑇
𝑗
𝑎
− 𝛿

𝑇
𝑗
𝑎
) .

An induction shows that, with probability at least 1 −∑𝑘+ℓ−1
𝑗=𝑘

exp

(
− 1

2
|Γ 𝑗+1𝑎 |𝛿2

𝑇
𝑗
𝑎

)
,

∑
𝑡 ∈Γ 𝑗+1

𝑎
I[𝑏𝑖′𝑡 = 𝑣1 − 1] ≥ |Γ 𝑗+1𝑎 | (1 −𝑉𝛾

𝑇
𝑗
𝑎
− 𝛿

𝑇
𝑗
𝑎
) holds for

all 𝑗 ∈ {𝑘, . . . , 𝑘 + ℓ − 1}. Therefore,

𝑓 𝑖
′

𝑇𝑘+ℓ
𝑎

(𝑣1 − 1) ≥ 1

𝑇𝑘+ℓ𝑎

©­«0 +
∑︁

𝑡 ∈Γ𝑘+1𝑎 ∪···∪Γ𝑘+ℓ𝑎

I[𝑏𝑖
′
𝑡 = 𝑣1 − 1]ª®¬

≥ 1

𝑇𝑘+ℓ𝑎

(
|Γ𝑘+1𝑎 | (1 −𝑉𝛾

𝑇𝑘
𝑎
− 𝛿

𝑇𝑘
𝑎
) + · · · + |Γ𝑘+ℓ𝑎 | (1 −𝑉𝛾

𝑇𝑘+ℓ−1
𝑎

− 𝛿
𝑇𝑘+ℓ−1
𝑎

)
)

≥ 1

𝑇𝑘+ℓ𝑎

(
( |Γ𝑘+1𝑎 | + · · · + |Γ𝑘+ℓ𝑎 |) · (1 −𝑉𝛾

𝑇𝑘
𝑎
− 𝛿

𝑇𝑘
𝑎
)
)

=
𝑇𝑘+ℓ𝑎 −𝑇𝑘𝑎
𝑇𝑘+ℓ𝑎

(1 −𝑉𝛾
𝑇𝑘
𝑎
− 𝛿

𝑇𝑘
𝑎
)

=
4(𝑘 + 24𝑁𝑉 )2 − (𝑘 + 24𝑁𝑉 )2

4(𝑘 + 24𝑁𝑉 )2
(1 −𝑉𝛾

𝑇𝑘
𝑎
− 𝛿

𝑇𝑘
𝑎
)

=
3

4

(1 −𝑉𝛾
𝑇𝑘
𝑎
− 𝛿

𝑇𝑘
𝑎
)

(assuming𝑇𝑏 is large enough)

> 4

(
𝐹
𝑇𝑘+ℓ
𝑎

+ 2

(𝑘 + ℓ) + 24𝑁𝑉
+𝑉𝛾

𝑇𝑘+ℓ
𝑎

)
.

This proves the claim for 𝑖 ′ ∈ 𝑀1
. The claim for 𝑖 ∈ 𝑀1

follows from (9) and the fact that 𝐹
𝑇𝑘
𝑎
and 𝛾

𝑇𝑘
𝑎
are decreasing in 𝑘 . □

We denote by 𝑘0 = 𝑘 + ℓ the time period at which 𝑓 𝑖

𝑇
𝑘
0

𝑎

(𝑣1 − 1) > 4(𝐹
𝑇
𝑘
0

𝑎

+ 2

𝑘0+24𝑁𝑉
+𝑉𝛾

𝑇
𝑘
0

𝑎

) for both 𝑖 ∈ 𝑀1
. We continuing the analysis

for each period 𝑘 ≥ 𝑘0. Define sequence (𝐺𝑇𝑘
𝑎
):

𝐺
𝑇𝑘
𝑎
=
𝑇
𝑘0
𝑎

𝑇𝑘𝑎
· 4

(
𝐹
𝑇
𝑘
0

𝑎

+ 2

𝑘0 + 24𝑁𝑉
+𝑉𝛾

𝑇
𝑘
0

𝑎

)
+

𝑘−1∑︁
𝑠=𝑘0

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇𝑘𝑎

(1 −𝑉𝛾𝑇 𝑠
𝑎
− 𝛿𝑇 𝑠

𝑎
), for 𝑘 ≥ 𝑘0,

where we recall that 𝛿𝑡 = ( 1𝑡 )
1/8

. We note that 𝑓 𝑖

𝑇
𝑘
0

𝑎

(𝑣1 − 1) > 𝐺
𝑇
𝑘
0

𝑎

= 4

(
𝐹
𝑇
𝑘
0

𝑎

+ 2

𝑘0+24𝑁𝑉
+𝑉𝛾

𝑇
𝑘
0

𝑎

)
.

Claim 23. When 𝑇𝑏 is sufficiently large,
• 𝐺

𝑇𝑘
𝑎
≥ 4

(
𝐹
𝑇
𝑘
0

𝑎

+ 2

𝑘0+24𝑁𝑉
+𝑉𝛾

𝑇
𝑘
0

𝑎

)
for every 𝑘 ≥ 𝑘0.

• lim𝑘→∞𝐺𝑇𝑘
𝑎
= 1.

Proof. Since 1 −𝑉𝛾𝑇 𝑠
𝑎
− 𝛿𝑇 𝑠

𝑎
→ 1 as 𝑇𝑏 → ∞, for sufficiently large 𝑇𝑏 we have 1 −𝑉𝛾𝑇 𝑠

𝑎
− 𝛿𝑇 𝑠

𝑎
≥ 4

(
𝐹
𝑇
𝑘
0

𝑎

+ 2

𝑘0+24𝑁𝑉
+𝑉𝛾

𝑇
𝑘
0

𝑎

)
and hence

𝐺
𝑇𝑘
𝑎
≥ 4

(
𝐹
𝑇
𝑘
0

𝑎

+ 2

𝑘0+24𝑁𝑉
+𝑉𝛾

𝑇
𝑘
0

𝑎

)
.



Now we prove lim𝑘→∞𝐺𝑇𝑘
𝑎
= 1. Consider the second term in 𝐺

𝑇𝑘
𝑎
,

∑𝑘−1
𝑠=𝑘0

𝑇 𝑠+1
𝑎 −𝑇 𝑠

𝑎

𝑇𝑘
𝑎

(1 −𝑉𝛾𝑇 𝑠
𝑎
− 𝛿𝑇 𝑠

𝑎
). Since

𝑘−1∑︁
𝑠=

√
𝑘

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇𝑘𝑎

=

𝑘−1∑︁
𝑠=

√
𝑘

2(𝑠 + 24𝑁𝑉 ) + 1

(𝑘 + 24𝑁𝑉 )2
=

(𝑘 +
√
𝑘 + 48𝑁𝑉 ) (𝑘 −

√
𝑘)

(𝑘 + 24𝑁𝑉 )2
→ 1

and 1 − 𝑉𝛾
𝑇𝑘
𝑎
− 𝛿

𝑇𝑘
𝑎

→ 1 as 𝑘 → ∞, for any 𝜀 > 0 we can always find 𝐾 ≥ 𝑘0 such that

∑𝑘−1
𝑠=

√
𝑘

𝑇 𝑠+1
𝑎 −𝑇 𝑠

𝑎

𝑇𝑘
𝑎

≥ 1 − 𝜀/2 for every 𝑘 ≥ 𝐾 and

1 −𝑉𝛾𝑇 𝑠
𝑎
− 𝛿𝑇 𝑠

𝑎
≥ 1 − 𝜀/2 for every 𝑠 ≥

√
𝑘 . Hence,

𝐺
𝑇𝑘
𝑎
≥

𝑘−1∑︁
𝑠=

√
𝑘

𝑇 𝑠+1𝑎 −𝑇 𝑠𝑎
𝑇𝑘𝑎

(1 −𝑉𝛾𝑇 𝑠
𝑎
− 𝛿𝑇 𝑠

𝑎
) ≥ (1 − 𝜀/2) (1 − 𝜀/2) ≥ 1 − 𝜀,

In addition, 𝐺
𝑇𝑘
𝑎
≤ 1 when 𝑇𝑏 is sufficiently large. Therefore lim𝑘→∞𝐺𝑇𝑘

𝑎
= 1. □

Lemma 24. Fix any 𝑘 . Suppose𝐴𝑘𝑎 holds and 𝑓
𝑇𝑘
𝑎
(𝑣1 − 1) > 𝐺

𝑇𝑘
𝑎
holds for both 𝑖 ∈ 𝑀1. Then, the following four events happen with probability

at least 1 − 3 exp

(
− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

)
:

• 𝐴𝑘+1𝑎 ;
• 𝑓 𝑖

𝑇𝑘+1
𝑎

(𝑣1 − 1) > 𝐺
𝑇𝑘+1
𝑎

holds for both 𝑖 ∈ 𝑀1;

• 𝑓 𝑖𝑡 (𝑣1 − 1) > (1 − 2

𝑘+24𝑁𝑉
)𝐺

𝑇𝑘
𝑎
holds for both 𝑖 ∈ 𝑀1, for any 𝑡 ∈ Γ𝑡+1𝑎 .

• 𝒙𝑖𝑡 (𝑣1 − 1) = Pr[𝑏𝑖𝑡 = 𝑣1 − 1 | 𝐻𝑡−1] ≥ 1 −𝑉𝛾𝑡 for both 𝑖 ∈ 𝑀1, for any 𝑡 ∈ Γ𝑘+1𝑎 .

Proof. By Lemma 20, 𝐴𝑘+1𝑎 holds with probability at least 1 − exp

(
− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

)
. Now we consider the second event. For every 𝑡 ∈ Γ𝑘+1𝑎 ,

we have

𝑓 𝑖𝑡−1 (𝑣
𝑖 − 1) ≥ 𝑇𝑘𝑎

𝑇𝑘+1𝑎

𝑓
𝑇𝑘
𝑎
(𝑣𝑖 − 1)

(by condition) >
𝑇𝑘𝑎

𝑇𝑘+1𝑎

𝐺
𝑇𝑘
𝑎

(by Fact 18) ≥
(
1 − 2

𝑘 + 24𝑁𝑉

)
𝐺
𝑇𝑘
𝑎

(10)

≥ 1

2

𝐺
𝑇𝑘
𝑎

(by Claim 23) ≥ 2

(
𝐹
𝑇𝑘
𝑎
+ 2

𝑘 + 24𝑁𝑉
+𝑉𝛾

𝑇𝑘
𝑎

)
.

In addition, according to Claim 19 𝐴𝑘𝑎 implies

1

𝑡 − 1

𝑡−1∑︁
𝑠=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] ≤ 𝐹
𝑇𝑘
𝑎
+ 2

𝑘 + 24𝑁𝑉
≤ 1

2𝑁𝑉
− 2𝛾𝑡 .

Using Claim 21with𝑋 = 𝐹
𝑇𝑘
𝑎
+ 2

𝑘+24𝑁𝑉
, we get Pr[𝑏𝑖𝑡 = 𝑣1−2 | 𝐻𝑡−1] ≤ 𝛾𝑡 . Additionally, by Claim 8we have Pr[𝑏𝑖𝑡 ≤ 𝑣1−3 | 𝐻𝑡−1] ≤ (𝑉 −1)𝛾𝑡 .

Therefore,

Pr[𝑏𝑖𝑡 = 𝑣1 − 1 | 𝐻𝑡−1] ≥ 1 −𝑉𝛾𝑡 . (11)

Using Azuma’s inequality with Δ = |Γ𝑘+1𝑎 |𝛿
𝑇𝑘
𝑎
, we have with probability at least 1 − exp(− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

),∑︁
𝑡 ∈Γ𝑘+1𝑎

I[𝑏𝑖𝑡 = 𝑣1 − 1] >
∑︁

𝑡 ∈Γ𝑘+1𝑎

(1 −𝑉𝛾𝑡 − 𝛿𝑇𝑘
𝑎
) ≥ |Γ𝑘+1𝑎 | (1 −𝑉𝛾

𝑇𝑘
𝑎
− 𝛿

𝑇𝑘
𝑎
) .

It follows that

𝑓 𝑖
𝑇𝑘+1
𝑎

(𝑣1 − 1) > 1

𝑇𝑘+1𝑎

(
𝑇𝑘𝑎 𝐺𝑇𝑘

𝑎
+ |Γ𝑘+1𝑎 | (1 −𝑉𝛾

𝑇𝑘
𝑎
− 𝛿

𝑇𝑘
𝑎
)
)
= 𝐺

𝑇𝑘+1
𝑎

by definition.

Using a union bound, the first event 𝐴𝑘+1𝑎 and the second event that 𝑓 𝑖
𝑇𝑘+1
𝑎

(𝑣1 − 1) > 𝐺
𝑇𝑘+1
𝑎

holds for both 𝑖 ∈ 𝑀1
happen with probability

at least 1 − 3 exp(− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

). The third event is given by (10) and the forth event is given by (11). □



We use Lemma 24 from 𝑘 to∞; from its third and fourth events, combined with Claim 23, we get

lim

𝑡→∞
𝑓 𝑖𝑡 (𝑣1 − 1) ≥ lim

𝑘→∞

(
1 − 2

𝑘 + 24𝑁𝑉

)
𝐺
𝑇𝑘
𝑎
= 1 and lim

𝑡→∞
𝒙𝑖𝑡 = 1𝑣1−1,

which happens with probability at least 1 − 3

∑∞
𝑘=0

exp(− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

). This concludes the analysis for Case 2.
Combining Case 1 and Case 2, we have that either lim𝑡→∞ 1

𝑡

∑𝑡
𝑠=1 I[∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 = 𝑣

1 − 2] = 1 happens or lim𝑡→∞ 1

𝑡

∑𝑡
𝑠=1 I[∀𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 =

𝑣1−1] = 1 happens (in which case we also have lim𝑡→∞ 𝒙𝑖𝑡 = 1𝑣1−1) with overall probability at least 1−exp

(
− 𝑇𝑏

24𝑁𝑉

)
−2 exp

(
− 𝑇𝑏

1152𝑁 2𝑉 2

)
−

3

∑∞
𝑘=0

exp(− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

). Using Claim 17 concludes the proof.

A.1.3 The special case of 𝑣3 = 𝑣1 − 1.

Claim 25. Given 𝑓 𝑖𝑡 (𝑣1 − 2) ≥ 1 − 1

4+2𝑁𝑉
for all 𝑖 ∈ 𝑀1, we have Pr[𝑏3𝑡 = 𝑣1 − 2 | 𝐻𝑡−1] ≥ 1 −𝑉𝛾𝑡 .

Proof. If 𝑓 𝑖𝑡 (𝑣1 − 2) ≥ 1− 𝜀, 𝜀 = 1

4+2𝑁𝑉
, for all 𝑖 ∈ 𝑀1

then the frequency of the maximum bid to be 𝑣1 − 2 is at least 1− 2𝜀, which implies

𝛼3𝑡−1 (𝑣
1 − 2) ≥ 2

1

𝑁
(1 − 2𝜀).

For any 𝑏 ≤ 𝑣1 − 3,

𝛼3𝑡−1 (𝑏) ≤ 𝑉 2𝜀.

Since 𝛾𝑡 <
1

12𝑁 2𝑉 2
< 1

𝑁𝑉
, we have 𝛼3

𝑡−1 (𝑣
1 − 2) − 𝛼3

𝑡−1 (𝑏) ≥ 2
1

𝑁
(1 − 2𝜀) − 2𝑉𝜀 > 𝑉𝛾𝑡 , which implies, according to mean-based property,

Pr[𝑏3𝑡 = 𝑣1 − 2] ≥ 1 −𝑉𝛾𝑡 . □

Claim 26. If history 𝐻𝑡−1 satisfies 𝑓 𝑖𝑡−1 (𝑣
1 − 2) ≥ 9

10
for 𝑖 ∈ 𝑀1 and 𝑓 3

𝑡−1 (𝑣
1 − 2) ≥ 9

10
, then Pr[𝑏𝑖′

𝑡−1 = 𝑣
1 − 2 | 𝐻𝑡−1] ≤ 𝛾𝑡 .

Proof. If 𝑓 𝑖
𝑡−1 (𝑣

1 − 2) ≥ 9

10
for 𝑖 ∈ 𝑀1

and 𝑓 3
𝑡−1 (𝑣

1 − 2) ≥ 9

10
, then we have

1

𝑡 − 1

𝑡−1∑︁
𝑠=1

I[|{𝑖 ∉ 𝑀1
: 𝑏𝑖𝑠 = 𝑣

1 − 2}| ≥ 2] ≥ 1 − 2 × 1

10

=
4

5

,

𝑃𝑖
′
𝑡−1 (0 : 𝑣

1 − 3) ≤ 1 − 𝑓 3𝑡−1 (𝑣
1 − 2) ≤ 1

10

.

Recall that 𝑃𝑖𝑡 (𝑘) =
1

𝑡

∑𝑡
𝑠=1 I[max𝑗≠𝑖 𝑏

𝑗
𝑠 = 𝑘]. By 𝑃𝑖𝑡 (0 : 𝑘) we mean

∑𝑘
ℓ=0 𝑃

𝑖
𝑡 (ℓ). And we can calculate

𝛼𝑖
′
𝑡−1 (𝑣

1 − 1) − 𝛼𝑖
′
𝑡−1 (𝑣

1 − 2)

≥ 𝑃𝑖
′
𝑡−1 (𝑣

1 − 1) × ( 1
2

− 0) + 1

𝑡 − 1

𝑡−1∑︁
𝑠=1

I[|{𝑖 ∉ 𝑀1
: 𝑏𝑖𝑠 = 𝑣

1 − 2}| ≥ 2] × (1 − 2

3

)

+ 𝑃𝑖
′
𝑡−1 (0 : 𝑣

1 − 3) × (1 − 2)

≥ 0 + 1

3

× 4

5

− 1

10

=
1

6

> 𝑉𝛾𝑡 ,

which implies Pr[𝑏𝑖′
𝑡−1 = 𝑣

1 − 2 | 𝐻𝑡−1] ≤ 𝛾𝑡 according to mean-based property. □

We only provide a proof sketch here; the formal proof is complicated but similar to the above proof for Case 2 and hence omitted. We

prove by contradiction. Suppose Case 1 happens, that is, at each time step 𝑇𝑘𝑎 the frequency of 𝑣1 − 1 for both bidders 𝑖 ∈ 𝑀1
, 𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1), is

upper bounded by the threshold 16(𝐹
𝑇𝑘
𝑎
+ 2

𝑘+24𝑁𝑉
+𝑉𝛾

𝑇𝑘
𝑎
), which approaches 0 as 𝑘 → ∞. Assuming 𝐴0

𝑎, . . . , 𝐴
𝑘
𝑎 happen (which happens

with high probability), the frequency of 0 : 𝑣1 − 3 is also low. Thus, 𝑓 𝑖𝑡 (𝑣1 − 2) must be close to 1. Then, according to Claim 25, bidder 3

will bid 𝑣1 − 2 with high probability. Using Azuma’s inequality, with high probability, the frequency of bidder 3 bidding 𝑣1 − 2 in all future

periods will be approximately 1, which increases 𝑓 3𝑡 (𝑣1 − 2) to be close to 1 after several periods. Then, according Claim 26, bidder 𝑖 ∈ 𝑀1

will switch to bid 𝑣1 − 1. After several periods, the frequency 𝑓 𝑖
𝑇𝑘
𝑎

(𝑣1 − 1) will exceed 16(𝐹
𝑇𝑘
𝑎
+ 2

𝑘+24𝑁𝑉
+𝑉𝛾

𝑇𝑘
𝑎
) and thus satisfy Case 2. This

leads to a contradiction.



A.2 Proof of Proposition 6
We consider a simple case where there are only two bidders with the same type 𝑣1 = 𝑣2 = 3. Let 𝑉 = 3. The set of possible bids is

B1 = B2 = {0, 1, 2}. Denote 𝑓 𝑖𝑡 (𝑏) =
1

𝑡

∑𝑡
𝑠=1 I[𝑏𝑖𝑠 = 𝑏] the frequency of bidder 𝑖’s bid in the first 𝑡 rounds.

Claim 27. For 𝑖 ∈ {1, 2}, 𝛼𝑖𝑡 (1) − 𝛼𝑖𝑡 (2) = 𝑓 3−𝑖𝑡 (0) − 𝑓 3−𝑖𝑡 (2)
2

and 𝛼𝑖𝑡 (1) − 𝛼𝑖𝑡 (0) = 𝑓 3−𝑖𝑡 (1) + 𝑓 3−𝑖𝑡 (0)
2

.

Proof. We can express 𝛼𝑖𝑡 (𝑏) using the frequencies as the following.

𝛼𝑖𝑡 (0) =
3𝑓 3−𝑖𝑡 (0)

2

;

𝛼𝑖𝑡 (1) = 𝑓 3−𝑖𝑡 (1) + 2𝑓 3−𝑖𝑡 (0) = 1 + 𝑓 3−𝑖𝑡 (0) − 𝑓 3−𝑖𝑡 (2);

𝛼𝑖𝑡 (2) =
𝑓 3−𝑖𝑡 (2)

2

+ 1 − 𝑓 3−𝑖𝑡 (2) .

Then the claim follows from direct calculation. □

We construct a 𝛾𝑡 -mean-based algorithm Alg (Algorithm 1) with 𝛾𝑡 = 𝑂 ( 1

𝑡1/4
) such that, with constant probability, lim𝑡→∞ 𝑓 𝑖𝑡 (1) = 1 but

in infinitely many rounds the mixed strategy 𝒙𝑖𝑡 = 12. The key idea is that, when 𝛼𝑖𝑡 (1) − 𝛼𝑖𝑡 (2) is positive but lower than 𝑉𝛾𝑡 in some round

𝑡 (which happens infinitely often), we let the algorithm bid 2 with certainty in round 𝑡 + 1. This does not violate the mean-based property.

Algorithm 1 A mean-based bidding algorithm

Require: 𝑇0 > 640 such that exp

(
− 𝑇

1/3
0

900

)
≤ 1

16
.

1: for 𝑡 = 1, 2, . . . do
2: if 𝑡 ≤ 𝑇0 −𝑇 2/3

0
then

3: Bid 𝑏𝑡 = 1.

4: else if 𝑇0 −𝑇 2/3
0

+ 1 ≤ 𝑡 ≤ 𝑇0 then
5: Bid 𝑏𝑡 = 0.

6: else
7: Find 𝑘 such that 32

𝑘𝑇0 + 1 ≤ 𝑡 ≤ 32
𝑘+1𝑇0.

8: if 𝑡 = 32
𝑘𝑇0 + 1, argmax𝑏 𝛼𝑡−1 (𝑏) = 1, and 𝛼𝑖

𝑡−1 (1) − 𝛼
𝑖
𝑡−1 (2) < 𝑉𝛾𝑡 then

9: Bid 𝑏𝑡 = 2.

10: else
11: Bid 𝑏𝑡 = argmax𝑏∈{0,1,2} 𝛼𝑡−1 (𝑏) (break ties arbitrarily) with probability 1 −𝑇−1/3

𝑘+1 and 0 with probability 𝑇
−1/3
𝑘+1 .

12: end if
13: end if
14: end for

We note that this algorithm has no randomness in the first 𝑇0 rounds. It bids 1 in the first 𝑇0 −𝑇 2/3
0

rounds and bid 0 in the remaining

𝑇
2/3
0

rounds. Define round 𝑇𝑘 = 32
𝑘𝑇0 for 𝑘 ≥ 0. Let 𝛾𝑡 = 1 for 1 ≤ 𝑡 ≤ 𝑇0 and 𝛾𝑡 = 𝑇−1/4

𝑘
= 𝑂 (𝑡−1/4) for 𝑡 ∈ [𝑇𝑘 + 1,𝑇𝑘+1] and all 𝑘 ≥ 0.

Claim 28. Algorithm 1 is a 𝛾𝑡 -mean-based algorithm with 𝛾𝑡 = 𝑂 (𝑡−1/4).

Proof. We only need to verify the mean-based property in round 𝑡 ≥ 𝑇0 + 1 since 𝛾𝑡 = 1 for 𝑡 ≤ 𝑇0. The proof follows by the definition

and is straightforward: If the condition in Line 8 holds, where argmax𝑏 𝛼𝑡−1 (𝑏) = 1 and 𝛼𝑖
𝑡−1 (1) − 𝛼

𝑖
𝑡−1 (2) ≤ 𝑉𝛾𝑡 , then the mean-based

property does not apply to bids 1 and 2 and the algorithm bids 0 with probability 0 ≤ 𝛾𝑡 . Otherwise, according to Line 11, the algorithm bids

𝑏 ′ ∉ argmax𝑏 𝛼𝑡−1 (𝑏) with probability at most 𝑇
−1/3
𝑘+1 ≤ 𝛾𝑡 . □

For 𝑘 ≥ 0, denote 𝐴𝑘 the event that for both 𝑖 ∈ {1, 2}, it holds that 𝑇− 1

3

𝑘
≤ 𝑓 𝑖

𝑇𝑘
(0) ≤ 2𝑇

− 1

3

𝑘
and 𝑓 𝑖

𝑇𝑘
(2) = 𝑘

𝑇𝑘
. Since both bidders submit

deterministic bids in the first 𝑇0 rounds, it is easy to check that 𝐴0 holds probability 1.

The following two claims show that if 𝐴0, 𝐴1, . . . all happen, then the dynamics time-average converges to 1 while in the meantime, both

of the bidders bid 2 at round 𝑇𝑘 + 1 for all 𝑘 ≥ 0.

Claim 29. If 𝐴𝑘 happens, then both of the bidders bid 2 in round 𝑇𝑘 + 1.

Proof. According to Claim 27, we know that for any 𝑖 ∈ {1, 2} and any 𝑡 > 𝑇0,

𝛼𝑖𝑡−1 (1) − 𝛼
𝑖
𝑡−1 (0) = 𝑓

3−𝑖
𝑡−1 (1) +

𝑓 3−𝑖
𝑡−1 (0)
2

> 0.



Thus argmax𝑏 {𝛼𝑖𝑡−1 (𝑏)} ≠ 0 for any history 𝐻𝑡−1. Again by Claim 27, we have for any 𝑖 ∈ {1, 2}.

0 < 𝑇
− 1

3

𝑘
− 𝑘

𝑇𝑘
≤ 𝛼𝑖𝑇𝑘 (1) − 𝛼

𝑖
𝑇𝑘
(2) = 𝑓 3−𝑖𝑇𝑘

(0) −
𝑓 3−𝑖
𝑇𝑘

(2)
2

≤ 𝑓 3−𝑖𝑇𝑘
(0) ≤ 2𝑇

− 1

3

𝑘+1 < 3𝑇
− 1

4

𝑘+1 = 3𝛾𝑇𝑘+1 .

It follows by the definition of Algorithm 1 that both bidders bid 2 in round 𝑇𝑘 + 1. □

Claim 30. For any 𝑘 ≥ 0 and 𝑖 ∈ {1, 2}, if 𝐴𝑘+1 holds, then 𝑓 𝑖𝑡 (1) ≥ 1 − 64𝑇
− 1

3

𝑘+1 −
32𝑘
𝑇𝑘+1

holds for any 𝑡 ∈ [𝑇𝑘 ,𝑇𝑘+1].

Proof. Let 𝐴𝑘+1 holds. Then

2𝑇
− 1

3

𝑘+1 ≥ 𝑓 𝑖𝑇𝑘+1
(0) ≥

𝑡 𝑓 𝑖𝑡 (0)
𝑇𝑘+1

≥
𝑓 𝑖𝑡 (0)
32

,

which implies that 𝑓 𝑖
𝑇𝑘
(0) ≤ 64𝑇

− 1

3

𝑘+1. Similarly, we have 𝑓 𝑖𝑡 (2) ≤
32𝑘
𝑇𝑘+1

. The claim follows by 𝑓 𝑖𝑡 (1) = 1 − 𝑓 𝑖𝑡 (0) − 𝑓 𝑖𝑡 (2). □

We now bound the probability of 𝐴𝑘+1 given the fact that 𝐴𝑘 happens, which is used later to derive a constant lower bound on the

probability that 𝐴𝑘 happens for all 𝑘 ≥ 0.

Claim 31. For any 𝑘 ≥ 0,

Pr[𝐴𝑘+1 | 𝐴𝑘 ] ≥ 1 − 4 exp

©­­«
𝑇

1

3

𝑘+1
900

ª®®¬ .
Proof. Suppose that 𝐴𝑘 happens. We know from Claim 29 that both bidders bid 2 in round 𝑇𝑘 + 1. The following claim shows the

behaviour of the algorithm in rounds [𝑇𝑘 + 2,𝑇𝑘+1] .

Claim 32. For any 𝑖 ∈ {1, 2} and any 𝑡 ∈ [𝑇𝑘 + 2,𝑇𝑘+1],

Pr[𝑏𝑖𝑡 = 1 | 𝐴𝑘 ] = 1 −𝑇− 1

3

𝑘+1

Pr[𝑏𝑖𝑡 = 0 | 𝐴𝑘 ] = 𝑇
− 1

3

𝑘+1 .

Proof. According to the definition of Algorithm 1, it suffices to prove that for any 𝑡 ∈ [𝑇𝑘 + 2,𝑇𝑘+1] and 𝑖 ∈ {1, 2}, argmax𝑏 {𝛼𝑖𝑡−1 (𝑏)} = 1

holds.

We prove it by induction. For the base case, it is easy to verify that 𝛼𝑖
𝑇𝑘+1 (1) − 𝛼

𝑖
𝑇𝑘+1 (2) = 𝑓

3−𝑖
𝑇𝑘+1 (0) −

𝑓 3−𝑖
𝑇𝑘 +1 (2)

2
> 0,∀𝑖 ∈ {1, 2}. Suppose the

claim holds for all of the rounds [𝑇𝑘 + 2, 𝑡]. Then none of the bidders bids 2 in rounds [𝑇𝑘 + 2, 𝑡]. It follows that for any 𝑖 ∈ {1, 2},

𝛼𝑖𝑡 (1) − 𝛼𝑖𝑡 (2) = 𝑓 3−𝑖𝑡 (0) −
𝑓 3−𝑖𝑡 (2)

2

≥
𝑓 3−𝑖
𝑇𝑘

(0)
32

− 𝑘 + 1

2𝑇𝑘

≥ 1

32𝑇
1

3

𝑘

− 𝑘 + 1

𝑇𝑘

> 0 (since 𝑇0 > 64

3

2 ).

Therefore argmax𝑏 {𝛼𝑖𝑡−1 (𝑏)} = 1. This completes the induction step. □

From the above proof we can also conclude that for 𝑖 ∈ {1, 2}, 𝑓 𝑖
𝑇𝑘+1

(2) = 𝑘+1
𝑇𝑘+1

.

Note that the bidding strategies of a bidder at different rounds in [𝑇𝑘 + 2,𝑇𝑘+1] are independent. According to Chernoff bound, we have

for 𝑖 ∈ {1, 2},

Pr

[
29

30

𝑇𝑘+1 −𝑇𝑘 − 1

𝑇
1

3

𝑘+1

≤
𝑇𝑘+1∑︁

𝑠=𝑇𝑘+2
1[𝑏𝑖𝑠 = 0] ≤ 31

30

𝑇𝑘+1 −𝑇𝑘 − 1

𝑇
1

3

𝑘+1

���� 𝐴𝑘 ] ≥ 1 − 2 exp

©­­«
𝑇𝑘+1 −𝑇𝑘 − 1

450𝑇
2

3

𝑘+1

ª®®¬
≥ 1 − 2 exp

©­­«−
𝑇

1

3

𝑘+1
900

ª®®¬ .



Therefore, with probability at least 1 − 4 exp

(
−𝑇

1

3

𝑘+1
900

)
, both of the above event happens. It implies that for 𝑖 ∈ {1, 2}

𝑓 𝑖𝑇𝑘+1
(0) ≥ 1

𝑇𝑘+1

©­­«𝑇𝑘 𝑓 𝑖𝑇𝑘 (0) +
29

30

𝑇𝑘+1 −𝑇𝑘 − 1

𝑇
1

3

𝑘+1

ª®®¬
≥ 1

𝑇𝑘+1

©­­«
𝑇𝑘

𝑇
1

3

𝑘

+ 29

30

𝑇𝑘+1 −𝑇𝑘 − 1

𝑇
1

3

𝑘+1

ª®®¬
≥ 32

1

3

32𝑇
1

3

𝑘+1

+ 29

32𝑇
1

3

𝑘+1

≥ 1

𝑇
1

3

𝑘+1

,

and

𝑓 𝑖𝑇𝑘+1
(0) ≤ 1

𝑇𝑘+1

©­­«𝑇𝑘 𝑓 𝑖𝑇𝑘 (0) +
31

30

𝑇𝑘+1 −𝑇𝑘 − 1

𝑇
1

3

𝑘+1

ª®®¬
≤ 1

𝑇𝑘+1

©­­«
2𝑇𝑘

𝑇
1

3

𝑘

+ 31

30

𝑇𝑘+1 −𝑇𝑘 − 1

𝑇
1

3

𝑘+1

ª®®¬
≤ 2 × 32

1

3

32𝑇
1

3

𝑘+1

+ 31

30𝑇
1

3

𝑘+1

≤ 2

𝑇
1

3

𝑘+1

.

Therefore, 𝐴𝑘+1 holds. This completes the proof. □

Using a union bound, we have

Pr[∀𝑘 ≥ 0, 𝐴𝑘 holds] ≥ Pr[𝐴0]
∞∏
𝑘=0

Pr[𝐴𝑘+1 | 𝐴𝑘 ]

≥ 1 − 4

∞∑︁
𝑗=1

exp

©­­«−
𝑇

1

3

𝑗

900

ª®®¬
≥ 1 − 4

∞∑︁
𝑗=1

exp
©­«−
𝑇

1

3

0
3
𝑗

900

ª®¬
= 1 − 4 exp

©­«−
𝑇

1

3

0

300

ª®¬ ©­«1 +
∞∑︁
𝑗=2

exp
©­«−
𝑇

1

3

0
(3𝑗 − 3)
900

ª®¬ª®¬
≥ 1 − 8 exp

©­«−
𝑇

1

3

0

300

ª®¬
≥ 1

2

.

Therefore, with probability at least
1

2
, the dynamics time-average converges to the equilibrium of 1, while both bidders’ mixed strategies do

not converge in the last-iterate sense. This completes the proof.



A.3 Proof of Example 7
We only need to verify that the 0-mean-based property is satisfied for player 1 because players 2 and 3 always get zero utility no matter what

they bid. Let 𝑞𝑡 denote the fraction of the first 𝑡 rounds where one of players 2 and 3 bids 6 (in the other 1 − 𝑞𝑡 fraction of rounds both

players 2 and 3 bid 1); clearly, 𝑞𝑡 ≥ 2

3
for any 𝑡 ≥ 1. For player 1, at each round 𝑡 her average utility by bidding 7 is 𝛼1

𝑡−1 (7) = 10 − 7 = 3; by

bidding 6, 𝛼1
𝑡−1 (6) = (10 − 6) ( 1

2
𝑞𝑡−1 + (1 − 𝑞𝑡−1)) = 4(1 − 𝑞𝑡−1

2
) ≤ 8

3
< 3; by bidding 2, 𝛼1

𝑡−1 (2) = (10 − 2) (1 − 𝑞𝑡−1) ≤ 8

3
< 3; and clearly

𝛼1
𝑡−1 (𝑏) < 3 for any other bid. Hence, 7 = argmax𝑏∈B1 {𝛼1𝑡−1 (𝑏)}.

B MISSING PROOFS FROM SECTION 4
B.1 Proof of Claim 9
Let Γ = {𝑠 ≤ 𝑡 − 1|∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3}. It follows that the premise of the claim becomes

|Γ |
𝑡−1 ≤ 1

3𝑁𝑉
. First, note that

𝑃𝑖𝑡−1 (0 : 𝑣
1 − 3) = 1

𝑡 − 1

𝑡−1∑︁
𝑠=1

I[max

𝑖′≠𝑖
𝑏𝑖

′
𝑠 ≤ 𝑣1 − 3]

≤ 1

𝑡 − 1

𝑡−1∑︁
𝑠=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] = |Γ |
𝑡 − 1

≤ 1

3𝑁𝑉
. (12)

Then, according to (4),

𝛼𝑖𝑡−1 (𝑣
1 − 1) − 𝛼𝑖𝑡−1 (𝑣

1 − 2)
= 𝑄𝑖

𝑡−1 (𝑣
1 − 1) + 𝑃𝑖𝑡−1 (𝑣

1 − 2) − 2𝑄𝑖
𝑡−1 (𝑣

1 − 2) − 𝑃𝑖𝑡−1 (0 : 𝑣
1 − 3). (13)

Using 𝑄𝑖
𝑡−1 (𝑣

1 − 1) ≥ 1

𝑁
𝑃𝑖
𝑡−1 (𝑣

1 − 1) and 𝑄𝑖
𝑡−1 (𝑣

1 − 2) ≤ 1

2
𝑃𝑖
𝑡−1 (𝑣

1 − 2) from (3), we can lower bound (13) by

1

𝑁
𝑃𝑖𝑡−1 (𝑣

1 − 1) − 𝑃𝑖𝑡−1 (0 : 𝑣
1 − 3).

With (12), we get

𝛼𝑖𝑡−1 (𝑣
1 − 1) − 𝛼𝑖𝑡−1 (𝑣

1 − 2) ≥ 1

𝑁
𝑃𝑖𝑡−1 (𝑣

1 − 1) − 1

3𝑁𝑉
.

If
1

𝑁
𝑃𝑖
𝑡−1 (𝑣

1 − 1) − 1

3𝑁𝑉
> 𝑉𝛾𝑡 , then 𝛼

𝑖
𝑡−1 (𝑣

1 − 1) − 𝛼𝑖
𝑡−1 (𝑣

1 − 2) > 𝑉𝛾𝑡 . Therefore, Pr[𝑏𝑖𝑡 = 𝑣1 − 2 | 𝐻𝑡−1] ≤ 𝛾𝑡 .
Suppose

1

𝑁
𝑃𝑖
𝑡−1 (𝑣

1 − 1) − 1

3𝑁𝑉
≤ 𝑉𝛾𝑡 , which is equivalent to

𝑃𝑖𝑡−1 (𝑣
1 − 1) ≤ 1

3𝑉
+ 𝑁𝑉𝛾𝑡 .

Consider 𝑄𝑖
𝑡−1 (𝑣

1 − 2). By the definition of Γ, in all rounds 𝑠 ∉ Γ and 𝑠 ≤ 𝑡 − 1, we have that all bidders in𝑀1
bid 𝑣1 − 2 or 𝑣1 − 1. If bidder 𝑖

wins with bid 𝑣1 − 2 in round 𝑠 ∉ Γ, she must be tied with at least two other bidders in𝑀1
since |𝑀1 | ≥ 3; if bidder 𝑖 wins with bid 𝑣1 − 2

(tied with at least one other bidder) in round 𝑠 ∈ Γ, that round contributes at most
1

2
to the summation in 𝑄𝑖

𝑡−1 (𝑣
1 − 2). Therefore,

𝑄𝑖
𝑡−1 (𝑣

1 − 2) ≤ 1

𝑡 − 1

(
(𝑡 − 1) − |Γ |

3

+ |Γ |
2

)
=

1

3

+ 1

6

|Γ |
𝑡 − 1

≤ 1

3

+ 1

18𝑁𝑉
. (14)

We then consider 𝑃𝑖
𝑡−1 (𝑣

1 − 2). Since 𝑃𝑖
𝑡−1 (0 : 𝑣1 − 3) + 𝑃𝑖

𝑡−1 (𝑣
1 − 2) + 𝑃𝑖

𝑡−1 (𝑣
1 − 1) = 1, and recalling that 𝑃𝑖

𝑡−1 (0 : 𝑣1 − 3) ≤ 1

3𝑁𝑉
and

𝑃𝑖
𝑡−1 (𝑣

1 − 1) ≤ 1

3𝑉
+ 𝑁𝑉𝛾𝑡 , we get

𝑃𝑖𝑡−1 (𝑣
1 − 2) = 1 − 𝑃𝑖𝑡−1 (0 : 𝑣

1 − 3) − 𝑃𝑖𝑡−1 (𝑣
1 − 1) ≥ 1 − 1

3𝑁𝑉
− 1

3𝑉
− 𝑁𝑉𝛾𝑡 . (15)

Combining (13) with (12), (14), and (15), we get

𝛼𝑖𝑡−1 (𝑣
1 − 1) − 𝛼𝑖𝑡−1 (𝑣

1 − 2)

≥ 0 +
(
1 − 1

3𝑁𝑉
− 1

3𝑉
− 𝑁𝑉𝛾𝑡

)
− 2

(
1

3

+ 1

18𝑁𝑉

)
− 1

3𝑁𝑉

=
1

3

− 3𝑁 + 7

9𝑁𝑉
− 𝑁𝑉𝛾𝑡

≥ 1

3

− 13

18𝑉
− 1

12𝑁𝑉
(since 𝑁 ≥ 2 and 𝛾𝑡 ≤ 1

12𝑁 2𝑉 2
)

≥ 5

54

− 1

12𝑁𝑉

(since𝑉 ≥ 3)

≥ 1

12𝑁𝑉
> 𝑉𝛾𝑡 .

Therefore, by the mean-based property, Pr[𝑏𝑖𝑡 = 𝑣1 − 2 | 𝐻𝑡−1] ≤ 𝛾𝑡 .



B.2 Proof of Corollary 13
Using Lemma 10 and Lemma 11 from 𝑘 = 0 to 𝑣1 − 4, we get

Pr

[
𝐴𝑣1−3

]
≥ Pr

[
𝐴0, 𝐴1, . . . , 𝐴𝑣1−3

]
≥ 1 − exp

(
− 𝑇𝑏

24𝑁𝑉

)
−

𝑣1−4∑︁
𝑘=0

𝑑∑︁
𝑗=1

exp

(
−

|Γ 𝑗
𝑘
|

1152𝑁 2𝑉 2

)
.

Note that |Γ 𝑗
𝑘
| = 𝑇 𝑗

𝑘
− 𝑇 𝑗−1

𝑘
= 𝑐𝑇

𝑗−1
𝑘

− 𝑐𝑇 𝑗−2
𝑘

= 𝑐 |Γ 𝑗−1
𝑘

|, for any 𝑘 ∈ {0, 1, 2, . . . , 𝑣1 − 4} and 𝑗 ∈ {2, . . . , 𝑑}, and that |Γ1
𝑘
| = 𝑐 |Γ𝑑

𝑘−1 | for any
𝑘 ∈ {1, 2, . . . , 𝑣1 − 4}. We also note that |Γ1

0
| = (𝑐 − 1)𝑇0 = 𝑇𝑏 . Thus,

𝑣1−4∑︁
𝑘=0

𝑑∑︁
𝑗=1

exp

(
−

|Γ 𝑗
𝑘
|

1152𝑁 2𝑉 2

)
=

(𝑣1−3)𝑑−1∑︁
𝑠=0

exp

(
− 𝑐𝑠𝑇𝑏

1152𝑁 2𝑉 2

)
.

We then upper bound the above equation by

≤
∞∑︁
𝑠=0

exp

(
− 𝑐𝑠𝑇𝑏

1152𝑁 2𝑉 2

)
= exp

(
− 𝑇𝑏

1152𝑁 2𝑉 2

) (
1 +

∞∑︁
𝑠=1

exp

(
− (𝑐𝑠 − 1)𝑇𝑏
1152𝑁 2𝑉 2

))
.

It suffices to prove that

∑∞
𝑠=1 exp

(
− (𝑐𝑠−1)𝑇𝑏
1152𝑁 2𝑉 2

)
≤ 1. Since 𝑐𝑠 − 1 ≥ 𝑐 − 1 + (𝑠 − 1) (𝑐2 − 𝑐),∀𝑠 ≥ 1, we have

∞∑︁
𝑠=1

exp

(
− (𝑐𝑠 − 1)𝑇𝑏
1152𝑁 2𝑉 2

)
≤

∞∑︁
𝑠=1

exp

(
− (𝑐 − 1)𝑇𝑏
1152𝑁 2𝑉 2

) (
exp

(
− (𝑐2 − 𝑐)𝑇𝑏
1152𝑁 2𝑉 2

))𝑠−1
≤

∞∑︁
𝑠=1

(
1

2

)𝑠
= 1,

where the second inequality holds because exp

(
− (𝑐2−𝑐)𝑇𝑏
1152𝑁 2𝑉 2

)
≤ exp

(
− (𝑐−1)𝑇𝑏
1152𝑁 2𝑉 2

)
≤ 1

2
by the assumption on 𝑇𝑏 . □

B.3 Proof of Claim 14
Since 𝛿𝑇 0

𝑎
→ 0 and 𝛾𝑇 0

𝑎
→ 0 as 𝑇𝑏 → ∞, when 𝑇𝑏 is sufficiently large we have

𝐹𝑇 1

𝑎
=

1

𝑐

1

4𝑁𝑉
+ 𝑐 − 1

𝑐

(
𝛿𝑇 0

𝑎
+ |𝑀1 |𝑉𝛾𝑇 0

𝑎

)
≤ 1

𝑐

1

4𝑁𝑉
+ 𝑐 − 1

𝑐

1

4𝑁𝑉
≤ 1

4𝑁𝑉
= 𝐹𝑇 0

𝑎
.

By definition, for every 𝑘 ≥ 1

𝐹
𝑇𝑘+1
𝑎

=
1

𝑐
𝐹
𝑇𝑘
𝑎
+ 𝑐 − 1

𝑐

(
𝛿
𝑇𝑘
𝑎
+ |𝑀1 |𝑉𝛾

𝑇𝑘
𝑎

)
, 𝐹

𝑇𝑘
𝑎
=

1

𝑐
𝐹
𝑇𝑘−1
𝑎

+ 𝑐 − 1

𝑐

(
𝛿
𝑇𝑘−1
𝑎

+ |𝑀1 |𝑉𝛾
𝑇𝑘−1
𝑎

)
.

Using the fact that 𝐹
𝑇𝑘
𝑎
≤ 𝐹

𝑇𝑘−1
𝑎

and that 𝛿
𝑇𝑘
𝑎
+ |𝑀1 |𝑉𝛾

𝑇𝑘
𝑎
is decreasing in 𝑘 , we have 𝐹

𝑇𝑘+1
𝑎

≤ 𝐹
𝑇𝑘
𝑎
≤ 1

4𝑁𝑉
. Similarly, we have 𝐹

𝑇𝑘+1
𝑎

≤ 𝐹
𝑇𝑘
𝑎

for any 𝑘 ≥ 0.

Note that 𝛿
𝑇𝑘
𝑎
→ 0 and 𝛾𝑇 0

𝑎
→ 0 as 𝑘 → +∞. Therefore, for any 0 < 𝜀 ≤ 1

4𝑁𝑉
, we can find 𝑘 sufficiently large such that

1

𝑐𝑘/2
≤ 𝜀

6
, 𝛿𝑇 𝑠

𝑎
≤ 𝜀

6
,

and 𝛾𝑇 𝑠
𝑎
≤ 𝜀

6 |𝑀1 |𝑉 . Then we have

𝐹
𝑇𝑘
𝑎
≤ 𝐹

𝑇𝑘
𝑎
=

1

𝑐𝑘
+
𝑘−1∑︁
𝑠=0

𝑐 − 1

𝑐𝑘−𝑠
𝛿𝑇 𝑠

𝑎
+
𝑘−1∑︁
𝑠=0

|𝑀1 |𝑉 𝑐 − 1

𝑐𝑘−𝑠
𝛾𝑇 𝑠

𝑎

≤ 𝜀

3

+ 2

𝑘/2−1∑︁
𝑠=0

𝑐 − 1

𝑐𝑘−𝑠
+

𝑘−1∑︁
𝑠=𝑘/2

𝑐 − 1

𝑐𝑘−𝑠
(𝛿
𝑇
𝑘/2
𝑎

+ |𝑀1 |𝑉 𝑐 − 1

𝑐𝑘−𝑠
𝛾
𝑇
𝑘/2
𝑎

)

≤ 𝜀

3

+ 2

1

𝑐𝑘/2
+ 𝜀

3

𝑘−1∑︁
𝑠=𝑘/2

𝑐 − 1

𝑐𝑘−𝑠

≤ 𝜀

3

+ 𝜀

3

+ 𝜀

3

= 𝜀.

Thus for any 𝑙 ≥ 𝑘 , we have 𝐹
𝑇 𝑙
𝑎
≤ 𝐹

𝑇 𝑙
𝑎
≤ 𝜀. Since 𝐹

𝑇𝑘
𝑎
and 𝐹

𝑇𝑘
𝑎
are both positive, we have lim𝑘→∞ 𝐹

𝑇𝑘
𝑎
= lim𝑘→∞ 𝐹

𝑇𝑘
𝑎
= 0. □



B.4 Proof of Lemma 15
We use an induction to prove the following:

Pr[𝐴𝑘+1𝑎 ] ≥ 1 − exp

(
− 𝑇𝑏

24𝑁𝑉

)
− 2 exp

(
− 𝑇𝑏

1152𝑁 2𝑉 2

)
−

𝑘∑︁
𝑠=0

exp

(
−1

2

|Γ𝑠+1𝑎 |𝛿2
𝑇 𝑠
𝑎

)
.

We do not assume |𝑀1 | ≥ 3 for the moment. The base case follows from Corollary 11 because 𝐴0

𝑎 is the same as 𝐴𝑣1−3. Suppose 𝐴
𝑘
𝑎 happens.

Consider 𝐴𝑘+1𝑎 . For any round 𝑡 ∈ Γ𝑘+1𝑎 ,

𝑃𝑖𝑡−1 (0 : 𝑣
1 − 3) ≤ 1

𝑡 − 1

𝑡−1∑︁
𝑠=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3]

=
1

𝑡 − 1

( 𝑇𝑘
𝑎∑︁

𝑠=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] +
𝑡−1∑︁

𝑠=𝑇𝑘
𝑎 +1
I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3]

)
(𝐹
𝑇𝑘
𝑎

≤ 1

4𝑁𝑉
) ≤ 1

𝑡 − 1

(
𝑇𝑘𝑎

4𝑁𝑉
+ (𝑡 − 1 −𝑇𝑘𝑎 )

)
(𝑇𝑘
𝑎 ≤ 𝑡 − 1 ≤ 𝑇𝑘+1

𝑎 ) ≤ 1

𝑇𝑘𝑎

(
𝑇𝑘𝑎

4𝑁𝑉
+𝑇𝑘+1𝑎 −𝑇𝑘𝑎

)
(𝑇𝑘+1
𝑎 = 𝑐𝑇𝑘

𝑎 ) =
1

3𝑁𝑉

(𝛾𝑡 < 1

12𝑁𝑉
)

<
1

2𝑁𝑉
− 2𝛾𝑡 .

By Claim 8 and a similar analysis to Claim 12, for any history 𝐻𝑡−1 that satisfies 𝐴𝑘𝑎 ,

Pr[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3 | 𝐻𝑡−1, 𝐴𝑘𝑎 ] ≤ |𝑀1 |𝑉𝛾𝑡 . (16)

Let 𝑍𝑡 = I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3] − |𝑀1 |𝑉𝛾𝑡 and let 𝑋𝑡 =
∑𝑡

𝑠=𝑇𝑘
𝑎 +1 𝑍𝑠 . We have E [𝑍𝑡 | 𝐴𝑘𝑎 , 𝐻𝑡−1] ≤ 0. Therefore, the sequence

𝑋
𝑇𝑘
𝑎 +1, 𝑋𝑇𝑘

𝑎 +2, . . . , 𝑋𝑇𝑘+1
𝑎

is a supermartingale (with respect to the sequence of history 𝐻
𝑇𝑘
𝑎
, 𝐻

𝑇𝑘
𝑎 +1, . . . , 𝐻𝑇𝑘+1

𝑎 −1). By Azuma’s inequality, for

any Δ > 0, we have

Pr


∑︁

𝑡 ∈Γ𝑘+1𝑎

𝑍𝑡 ≥ Δ
��� 𝐴𝑘𝑎 ≤ exp

(
− Δ2

2|Γ𝑘+1𝑎 |

)
.

Let Δ = |Γ𝑘+1𝑎 |𝛿
𝑇𝑘
𝑎
. Then with probability at least 1 − exp

(
− 1

2
|Γ𝑘+1𝑎 |𝛿2

𝑇𝑘
𝑎

)
, we have∑︁

𝑡 ∈Γ𝑘+1𝑎

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3] < Δ + |𝑀1 |𝑉
∑︁

𝑡 ∈Γ𝑘+1𝑎

𝛾𝑡 ≤ |Γ𝑘+1𝑎 |𝛿
𝑇𝑘
𝑎
+ |𝑀1 |𝑉 |Γ𝑘+1𝑎 |𝛾

𝑇𝑘
𝑎
, (17)

which implies

1

𝑇𝑘+1𝑎

𝑇𝑘+1
𝑎∑︁
𝑡=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3]

=
1

𝑇𝑘+1𝑎

( 𝑇𝑘
𝑎∑︁

𝑡=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3] +
∑︁

𝑡 ∈Γ𝑘+1𝑎

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 3]
)

≤ 1

𝑇𝑘+1𝑎

(
𝑇𝑘𝑎 𝐹𝑇𝑘

𝑎
+ |Γ𝑘+1𝑎 |𝛿

𝑇𝑘
𝑎
+ |𝑀1 |𝑉 |Γ𝑘+1𝑎 |𝛾

𝑇𝑘
𝑎

)
(since𝑇𝑘+1

𝑎 = 𝑐𝑇𝑘
𝑎 ) =

1

𝑐
𝐹
𝑇𝑘
𝑎
+ 𝑐 − 1

𝑐
𝛿
𝑇𝑘
𝑎
+ |𝑀1 |𝑉 𝑐 − 1

𝑐
𝛾
𝑇𝑘
𝑎

(by definition) = 𝐹
𝑇𝑘+1
𝑎

and thus 𝐴𝑘+1𝑎 holds.

Now we suppose |𝑀1 | ≥ 3, then we can change (16) to

Pr[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 2 | 𝐻𝑡−1, 𝐴𝑘𝑎 ] ≤ |𝑀1 |𝑉𝛾𝑡



because of Claim 9 and the fact that
1

𝑡−1
∑𝑡−1
𝑠=1 I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑠 ≤ 𝑣1 − 3] ≤ 1

3𝑁𝑉
. The definition of 𝑍𝑡 is changed accordingly, and (17) becomes∑︁

𝑡 ∈Γ𝑘+1𝑎

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 2] < |Γ𝑘+1𝑎 |𝛿
𝑇𝑘
𝑎
+ |𝑀1 |𝑉 |Γ𝑘+1𝑎 |𝛾

𝑇𝑘
𝑎
,

which implies

1

𝑇𝑘+1𝑎

𝑇𝑘+1
𝑎∑︁
𝑡=1

I[∃𝑖 ∈ 𝑀1, 𝑏𝑖𝑡 ≤ 𝑣1 − 2] ≤ 1

𝑇𝑘+1𝑎

(
𝑇𝑘𝑎 𝐹𝑘 + |Γ𝑘+1𝑎 |𝛿

𝑇𝑘
𝑎
+ |𝑀1 |𝑉 |Γ𝑘+1𝑎 |𝛾

𝑇𝑘
𝑎

)
= 𝐹

𝑇𝑘+1
𝑎

.

To conclude, by induction,

Pr[𝐴𝑘+1𝑎 ] = Pr[𝐴𝑘𝑎 ] Pr[𝐴𝑘+1𝑎 |𝐴𝑘𝑎 ] ≥ Pr[𝐴𝑘𝑎 ] − exp

(
−1

2

|Γ𝑘+1𝑎 |𝛿2
𝑇𝑘
𝑎

)
≥ 1 − exp

(
− 𝑇𝑏

24𝑁𝑉

)
− 2 exp

(
− 𝑇𝑏

1152𝑁 2𝑉 2

)
−

𝑘∑︁
𝑠=0

exp

(
−1

2

|Γ𝑠+1𝑎 |𝛿2
𝑇 𝑠
𝑎

)
.

As 𝛿𝑡 = ( 1𝑡 )
1

3 and |Γ𝑠𝑎 | = 𝑐𝑠+𝑑 (𝑣
1−3)−1 (𝑐 − 1)𝑇0, 𝑇 𝑠𝑎 = 𝑐𝑠+𝑑 (𝑣

1−3)𝑇0 (we abuse the notation and let 𝑣1 − 3 = 0 if 𝑣1 < 3), we have

𝑘∑︁
𝑠=0

exp

(
−1

2

|Γ𝑠+1𝑎 |𝛿2
𝑇 𝑠
𝑎

)
=

𝑘∑︁
𝑠=0

exp

(
−1

2

𝑐
1

3
(𝑠+𝑑 (𝑣1−3)) (𝑐 − 1) (𝑇0)

1

3

)
= exp

(
−1

2

𝑐
1

3
𝑑 (𝑣1−3) (𝑐 − 1) (𝑇0)

1

3

) (
1 +

𝑘∑︁
𝑠=1

exp

(
−1

2

𝑐
1

3
𝑑 (𝑣1−3) (𝑐 − 1) (𝑇0)

1

3 (𝑐
𝑠
3 − 1)

))
≤ exp

(
−1

2

𝑐
1

3
𝑑 (𝑣1−3) (𝑐 − 1) (𝑇0)

1

3

) (
1 +

𝑘∑︁
𝑠=1

exp

(
−1

2

𝑐
1

3
𝑑 (𝑣1−3) (𝑐 − 1) (𝑇0)

1

3 𝑠 (𝑐
1

3 − 1)
))

≤ exp

(
−1

2

𝑐
1

3
𝑑 (𝑣1−3) (𝑐 − 1) (𝑇0)

1

3

) (
1 +

𝑘∑︁
𝑠=1

( 1
2

)𝑠
)

≤ 2 exp

(
−1

2

𝑐
1

3
𝑑 (𝑣1−3) (𝑐 − 1) (𝑇0)

1

3

)
,

where in the last but one inequality we suppose that 𝑇0 is large enough so that exp

(
− 1

2
𝑐
1

3
𝑑 (𝑣1−3) (𝑐 − 1) (𝑇0)

1

3 𝑠 (𝑐
1

3 − 1)
)
≤ 1

2
. Substituting

𝑇0 = 12𝑁𝑉𝑇𝑏 = 1

𝑐−1𝑇𝑏 , 𝑐 = 1 + 1

12𝑁𝑉
, and 𝑐𝑑 = 8𝑁𝑉 gives

𝑘∑︁
𝑠=0

exp

(
−1

2

|Γ𝑠+1𝑎 |𝛿2
𝑇 𝑠
𝑎

)
≤ 2 exp

©­«−
(
(8𝑁𝑉 ) (𝑣1−3)𝑇𝑏
1152𝑁 2𝑉 2

) 1

3 ª®¬
≤ 2 exp

(
−

(
𝑇𝑏

1152𝑁 2𝑉 2

) 1

3

)
,

concluding the proof. □
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