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ABSTRACT
Policy gradient is one of the most famous algorithms in reinforce-

ment learning. In this paper, we study the mean dynamics of the

soft-max policy gradient algorithm in multi-agent settings by resort-

ing to evolutionary game theory and dynamical system tools. Such

a study is crucial to understand the algorithm’s weaknesses when

employed in multi-agent settings. Unlike most multi-agent rein-

forcement learning algorithms, whose mean dynamics is a slight

variant of the replicator dynamics not affecting the properties of the

original dynamics, the soft-max policy gradient dynamics presents a

structure significantly different from that of the replicator. Neverthe-

less, we show that the soft-max policy gradient dynamics in a given

game is equivalent to the replicator dynamics in a different game

derived by a non-linear, non-convex transformation of the payoffs

of the original game. In this work, we first recover the properties—

already known for the discrete-time soft-max policy gradient—for

the continuous-time mean dynamics in the case of learning a best

response. As it commonly happens, the continuous-time dynam-

ics allow for a simpler analysis and deeper understanding of the

algorithm. Indeed, using such an approach, we can provide a com-

plete characterization of the set of the bad initializations (points for
which the dynamics initially moves towards sub-optimal strategies)

for such dynamics, while this result was previously known only

empirically. In the context of multi-agent environments, we also

give a method that an agent can use to choose an initial strategy

making the opponent to start always in a bad initialization region,

thus slowing its learning process. Then, we resort to models based

on single- and multi-population games, showing that the dynamics

preserve the volume as prove that, in arbitrary instances, it is not

possible to obtain last-iterate convergence when the equilibrium of

the game is fully mixed. Furthermore, we give empirical evidence

that dynamics starting from close initial points may expand over

time, thus showing that the behaviour of the dynamics in games

with fully-mixed equilibrium is chaotic1.
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1 INTRODUCTION
Multi-Agent Reinforcement Learning (MARL) recently demonstrated

to be one of the most effective research fields in tackling complex

multi-agent settings and leading to major Artificial Intelligence (AI)

achievements, such as AlphaStar [47] and Libratus [5]. In MARL, ev-

ery agent learns independently of the others how to play a strategic

interaction situation (a.k.a. strategic game) in a shared environ-

ment. In particular, every agent acts in an unknown non-stationary

Markov Decision Problem, where the non-stationarity is due to

the evolution of the opponents’ strategies over time. A plethora

of MARL algorithms are available in the literature. We mention

just a few of them: Cross Learning [7, 11], Q-learning [46] and

its variations Frequency-Adjusted Q-Learning [20, 21] and Lenient
Frequency-Adjusted Q-Learning [34], and Polynomial Weights [3, 24].
These algorithms provide theoretical guarantees only in restricted

settings, i.e., every agent is guaranteed to converge to the opti-

mal solution when facing non-learning opponents. Furthermore,

some MARL algorithms also present convergence guarantees in

self-play under very restrictive assumptions, e.g., Neural Fictitious
Self Play [15] and Deep-CFR [6].

One of the mainstream approaches to study the learning dynam-

ics of MARL algorithms is resorting to evolutionary game theory

tools [18, 28, 39, 41, 49]. Introduced by Börgers and Sarin [7], such

an approach models the continuous-time mean dynamics of an

algorithm by resorting to evolutionary models based on dynamical

systems. Thanks to that, these dynamical systems can be studied in

terms of properties—e.g., the set of stationary strategies, the set of

asymptotically stable strategies, and the convergence rate—in differ-

ent settings—e.g., best-response problem, single-population games,

and multi-population games. Interestingly, most MARL algorithms,

such as, e.g., Q-learning [20, 21, 34, 46], and a family of no-regret

algorithms [24] have mean dynamics that are slight variants of the

replicator dynamics and having the same properties of the original

dynamics.

One of the most interesting techniques developed in reinforce-

ment learning is policy gradient [35, 45]. It comes under vari-

ous flavours such as, e.g., SAC [13], DDPG [26], MADDPG [27],

A3C [33], REINFORCE [50]. Policy-gradient methods work on a



constrained space of policies, each of which is fully described by a

parameters vector. Such an approach plays a crucial role whenever

the space of an agent’s (unparameterized) strategies is huge so that

the learning of such strategies may result unaffordable in terms of

samples complexity. Indeed, policy-gradient methods allow us to

work on the policy parameters space that is generally smaller than

the strategy space, so as to model a wide space of strategies with

a compact number of parameters. Such an approach may result

crucial in, e.g., online settings where one cannot afford to simulate

millions of samples to find an optimal strategy. On the other hand,

this introduces an additional generalization error, instead, we fo-

cus on the unrestricted case, having a parameter per action, hence

bringing to zero the further generalization error. Our paper focuses

on the soft-max policy gradient algorithm, which is the most com-

monly adopted flavor of policy gradient. In the work by Hennes

et al. [16], the authors provide experimental evidence that in some

settings its performance may be more inefficient than other MARL

algorithms and suggest a modification of the update rule. Such a

modification leads to an algorithm named NeuRD, whose mean

dynamics are equivalent to the replicator dynamics. Conversely,

our work follows a different approach, maintaining the original

definition of the soft-max policy gradient algorithm and providing

its evolutionary game theory analysis. In doing that, we also find

a non-trivial connection between the replicator dynamics and the

soft-max policy gradient dynamics. This feature was overlooked in

the literature and both clarifies the underlying nature of the prob-

lem of the soft-max policy gradient algorithm and requires a new

set of techniques, as the main bulk of the literature on the replicator

is on games with linear payoffs. We first study the case in which

an agent needs to learn the best response to a given opponents’

joint strategy. As commonly happens when studying continuous-

time approximations, our analysis of the continuous-time dynamics

both provides cleaner derivations of previously know results and

a deeper theoretical understanding of the properties of the soft-

max policy gradient algorithm. Namely, (i) we discover that the

soft-max policy gradient algorithm corresponds to the replicator

dynamics on a game with non-linear payoffs, and (ii) we are able to
characterize exactly the set of points called in the literature as bad
initialization points, i.e., starting point for the dynamics s.t. the

evolution moves initially toward sub-optimal strategies. This exact

characterization is of paramount importance when shifting the

attention from having to learn the best response to considering

learning opponents. The conclusion of this analysis is that while

the softmax policy gradient has sound theoretical guarantees when

learning the best response, its properties make it less appealing in

the presence of adversarial opponents.

In the second part of the work, we study the case in which all

the agents simultaneously learn. To the best of our knowledge, this

is the first work to study theoretically the behaviour of the soft-

max policy gradient algorithm in multi-agent environments. This

case is customarily tackled in the evolutionary game theory litera-

ture by investigating both the corresponding single and multiple-

population games. In the former case, a single population of agents

is playing against themselves. This model is customarily adopted

as an abstraction of settings with many agents, e.g., Hu et al. [19]

propose the use of single-population games as a tool for studying

large populations of anonymous, independently learning agents

and for studying the frequencies of competing biological traits such

as genotypes. Furthermore, the study of single-population games is

a crucial preliminary step for the study of multi-population games.

This latter setting captures the case in which multiple agents learn

their best strategy, each using a learning algorithm independently

from the others. To analyze the multiple population case we resort

to the above-mentioned, non-trivial, correspondence between the

continuous-time dynamics of the soft-max policy gradient algo-

rithm and the replicator dynamics. We rely on results based on

the replicator dynamics on non-linear payoffs, while most of the

current literature analyzes the case of linear payoffs. Indeed, the

non-linearity of the payoffs of the dynamics makes the results cur-

rently available in the literature meaningless. Finally, we prove

that the soft-max policy gradient algorithm demonstrates volume

conservation when the game has an interior Nash equilibrium and,

hence, it is Poincaré recurrent. Our analysis paves the way to fur-

ther evolutionary game theory studies of policy-gradient-based

algorithms (including, e.g., NeuRD [16]) when the policy space is

restricted to assess the impact of special policy space structures on

the evolutionary dynamics.

Original Contributions. Differently from most MARL algorithms

which have mean dynamics that are slight variants of the Replicator

Dynamics (shortly RD from here on), the Soft-max Policy Gradient

Dynamics (shortly SPGD from here on) present a different structure

not corresponding to any known evolutionary dynamics (see the

work by Sandholm [41] for a detailed discussion of the main known

dynamics), and, thus, their study is an open problem. However,

SPGD preserves a close connection with RD, corresponding to RD

but applied to a non-linear, non-convex fitness function, in which

the correct action space is no longer the discrete action space, but

the entire Cartesian product of simplices. We separately analyze

the dynamics when learning the best response from the cases of

single and multi-population games. In particular, we show that

SPGD always converges to the best response, and provide an upper

bound to the convergence rate. Moreover, we show that, differently

from RD, SPGD suffers from a non-empty simplex subspace of bad

initializations with the property that, when starting from these

points, the dynamics are initially more attracted towards a sub-

optimal action rather than by the best response. Such an attraction

holds until the dynamics do not leave that subspace, and, after

that, the dynamics monotonically converge to the best response.

Such a non-monotonic behavior makes the convergence slow in

practice. Interestingly, we show that such a subspace is always non-

empty, we characterize it exactly, and we show that there are always

good initializations—e.g., the center of the simplex—from which the

dynamics monotonically converge to the best response. Moreover,

in the class of games in which there exists a fully mixed equilibrium,

we show that the opponent can always make the agent strategy

to converge slowly. We also analyze the case of multiple agents

employing the SPG dynamic, both in the case in which we have

single and multiple-populations. In this setting, we can prove that,

in terms of asymptotic convergence in the interior of the strategy

space, SPGD and RD present similar properties. In particular, in

single-population games, the spaces of asymptotically stable states

in the interior of the simplex of RD and SPGD coincide. Moreover,

we show that in multi-population games, the volume is conserved



in a reparametrized space, implying SPGD cannot converge to a

fully-mixed Nash equilibrium. Following this direction, we provide

experimental evaluation showing that the dynamics are chaotic.

More precisely, we show that the diameter of a small set of initial

points increases over time and that a small deviation from an initial

starting point results in a large deviation in the ending point.

2 PRELIMINARIES
Game Theory. A normal-form game is defined as a tuple:

(N , {A (𝑖) }𝑖∈N , {𝑟 (𝑖) }𝑖∈N),
where N is a set of 𝑛 agents, A (𝑖)

is the action set of agent 𝑖 ,

and 𝑟 (𝑖) : A (1) × . . . × A (𝑛) → [0, 1] is the utility function that

associates each agents’ joint action with the payoff of agent 𝑖 . From

now on, for the sake of simplicity, we assume that all the agents have

the same number of actions, or, formally, |A (𝑖) | =𝑚. The strategy
x(𝑖) ∈ Δ(A (𝑖) ) of an agent 𝑖 is defined as a probability distribution

over her actions A (𝑖)
, where Δ(A (𝑖) ) is the simplex over A (𝑖)

.

We denote the 𝑗-th component of x(𝑖) with 𝑥 (𝑖)
𝑗
, corresponding

to the probability of playing action 𝑎 𝑗 ∈ A (𝑖)
. Furthermore, a

strategy profile is defined as a tuple x = (x(1) , . . . , x(𝑛) ) specifying
a strategy for each agent. A solution to a normal-form game is a

strategy profile that is in equilibrium according to some equilibrium

concept. In this paper, we focus on the central concept of Nash

equilibrium, in which the strategy of every agent is a best response
to the opponents’ strategies. Formally in a NE x̄ it holds that, for

all 𝑖 x̄(𝑖) = arg maxx(𝑖 ) 𝑟
(𝑖) (x(𝑖) , x̄(−𝑖) ), where (−𝑖) denotes the set

of indices different from 𝑖 .

Evolutionary Game Theory and Replicator Dynamics. Evolution-
ary game theory captures the situation in which the agents are not

rational and adapt their strategies dynamically over time 𝑡 ∈ R+.
The central concept is that of population. A population 𝑖 ∈ N is

a potentially infinite collection of individuals with a common ac-

tion set of actions A (𝑖)
, where each individual plays a fix action

𝑎 𝑗 ∈ A (𝑖)
. The aggregate behavior of population 𝑖 is modeled

by the frequency whereby an individual playing action 𝑎 𝑗 is met

among all the possible individuals of that population. This leads

to a direct connection between populations and agents, where ev-

ery population 𝑖 corresponds to an agent 𝑖 and vice versa. Thus, at
every time 𝑡 , the state of the populations is described by a strat-

egy profile x(𝑡) := (x(1) (𝑡), . . . , x(𝑛) (𝑡)). The fitness of an individ-

ual of population 𝑖 playing action 𝑎 𝑗 is provided by the function

Π
(𝑖)
𝑗

(x(1) (𝑡), . . . , x(𝑛) (𝑡)) ∈ R, while Π (𝑖) (x(1) (𝑡), . . . , x(𝑛) (𝑡)) is
the fitness vector for all actions of population 𝑖 . Hence, the mean

fitness of population 𝑖 is x(𝑖) (𝑡)⊤Π (𝑖) (x(1) (𝑡), . . . , x(𝑛) (𝑡)), where
‘⊤’ denotes the transpose operator. Notice that the mean fitness

of population 𝑖 is the expected (over agents’ strategies) payoff 𝑟 (𝑖) .
The evolution of x(𝑡) over time is determined by a continuous-time

dynamical system. Replicator Dynamics are one of the most studied

dynamics and have the property that the time derivative of each

𝑗-th component ¤𝑥 (𝑖)
𝑗

(𝑡) is proportional to the difference between
the fitness associated with 𝑎 𝑗 and the average fitness of population 𝑖 .

Formally, we have:

¤𝑥 (𝑖)
𝑗

(𝑡) = 𝑥 (𝑖)
𝑗

(𝑡)
[
Π
(𝑖)
𝑗

(
x(1) (𝑡), . . . , x(𝑛) (𝑡)

)

− x(𝑖) (𝑡)⊤Π (𝑖)
(
x(1) (𝑡), . . . , x(𝑛) (𝑡)

) ]
. (1)

Note that, the asymptotically-stable states of the above evolutionary

model are a subset of the Nash equilibria (see for example [10, 18,

42]). In particular, when 𝑛 = 1, the model is called single population
or symmetric game, and the central concept is the one of Evolution-

ary Stable Strategies (ESS) to which the RD converge. Formally an

ESS is defined as follows [42]:

Definition 2.1. A strategy x ∈ Δ |A |
is an ESS of a single popu-

lation game defined by a fitness function Π(·) if there is a neigh-
borhood O of x such that (z − x)⊤Π(z) < 0 for all the strategies

z ∈ O \ {x}.2

Dynamical Systems. Given an autonomous dynamical system

¤x(𝑡) = 𝑓 (x(𝑡)) with x ∈ 𝐷 ⊆ R𝑑 where 𝐷 is an open domain and

𝑓 : R𝑑 → R𝑑 a continuously differentiable vector field, its set of

solutions is called flow, parametrized with the starting point of the

dynamics. Formally, the flow is defined as 𝜙 : R × 𝐷 → R𝑑 , where
𝑡 ↦→ 𝜙 (𝑡, 𝑥) is the solution to the system such that 𝜙 (0, 𝑥) = 𝑥 .

Given a set 𝑆 ⊂ 𝐷 , we call 𝑆 (𝑡) = {𝜙 (𝑠, 𝑡) : 𝑠 ∈ 𝑆} the evolution of

𝑆 under the flow 𝜙 at time 𝑡 . Denoting with vol 𝑆 (𝑡) its volume, the

Liouville formula offers a alternative method to compute its time

derivative as:

𝑑

𝑑𝑡
vol 𝑆 (𝑡) =

∫
𝑆 (𝑡 )

div 𝑓 𝑑 x, (2)

where div(𝑓 ) = ∑𝑑
𝑖

𝜕𝑓𝑖
𝜕𝑥𝑖

is the divergence of 𝑓 i.e., the sum of the

diagonal elements of its Jacobian. The most immediate consequence

is that, if the divergence is null, the flow preserves the volume. In

this case, the flow 𝜙 (·) is said to be incompressible, i.e., the set 𝑆
is allowed to move or stretch under the flow of the dynamics, but

cannot compress or enlarge. This affects the shape of the trajecto-

ries, which are not allowed to convergence to a single point. This

property will be analysed for the trajectories of two-population

SPGD in Section 5.2.

MarkovDecision Processes and Policy Gradient Algorithm. AMarkov
decision process (MDP) is a tuple (S,A, 𝑃, 𝑟, 𝛾, 𝜇), where S and A
are the sets of states and actions, respectively, 𝑃 : S × A → Δ(S)
is the state-transition probability function returning the probabil-

ity to transition to state 𝑠 (𝑡 + 1) when performing action 𝑎(𝑡) in
state 𝑠 (𝑡), 𝑟 : S × A × S → R is the immediate reward function

returning the reward associated with a given transition, 𝛾 ∈ [0, 1]
is the discount factor, and 𝜇 is the probability distribution over the

initial states. The goal of an agent is to find a policy 𝜋 (𝑎 |𝑠), i.e., a
mapping from states to actions, to maximize the expected sum of

discounted future rewards define as:

E
𝑎 (𝑡 )∼𝜋 ( · |𝑠 (𝑡 ))

𝑠 (𝑡+1)∼𝑃 ( · |𝑠 (𝑡 ),𝑎 (𝑡 ))
𝑠 (0)∼𝜇

[∑
𝑡 ≥0

𝛾𝑡 𝑟

(
𝑠 (𝑡), 𝑎(𝑡), 𝑠 (𝑡 + 1)

)�����𝑠 (0)
]
.

Reinforcement Learning (RL) offers a set of algorithms and tech-

niques to perform sequential decision-making in MDPs whose pa-

rameters are unknown.We focus on a particular class of widely used

RL algorithms: the Policy Gradient (PG) ones. PG algorithms esti-

mate the optimal policy by directly searching over a parameterized

2
With Δ𝑚

we denote a generic𝑚-dimensional simplex.



policy space 𝜋 (·|𝑠, 𝜽 ), where 𝜽 is a real-valued vector of parame-

ters. Formally, the problem consists in finding the arg max𝜽 𝐽 (𝜽 ),
where 𝐽 (𝜽 ) is a performance surface (usually the expected reward)

achieved by 𝜋 (·|𝑠, 𝜽 ). The search is performed by a stochastic gradi-

ent ascent procedure on 𝐽 (𝜽 ), iteratively updating the parameters

as follows:

𝜽 (𝑡 + 1) = 𝜽 (𝑡) + 𝜂 ∇𝜽 𝐽 (𝜽 (𝑡)), (3)

where 𝜂 ∈ R+ is a learning rate. We focus on the Soft-Max param-

eterization (SPG algorithm), which is widely adopted in practice

with discrete action sets. In particular, the policy takes the form:

𝜋 (𝑎 |𝑠, 𝜽 ) = 𝑒𝜏 𝑓
𝑎 (𝑠,𝜽 )∑

𝑎′∈A
𝑒𝜏 𝑓

𝑎′ (𝑠,𝜽 )
,

where 𝜏 ∈ R+ is an inverse temperature parameter, and 𝑓 𝑎 (·, ·) are
function approximators, which are trained over parameters 𝜽 to

approximate the expected payoff of playing action 𝑎 in state 𝑠 .

3 SOFT-MAX POLICY GRADIENT MEAN
DYNAMICS

In what follows, we adopt a single-agent 𝑖 perspective, and derive

the continuous-time mean dynamics of strategy x(𝑖) (𝑡) evolving in
a normal-form game against a generic set of 𝑛 − 1 opponents with

joint strategy y(𝑡).3 This dynamics was already presented in [44],

but we report here the derivation for completeness. Normal-form

games can be modeled as a direct extension of MDPs, namely sto-
chastic games, in which the state-transitions and the rewards depend
on the joint strategy of all agents, and a single state is present (for

more details, we point the reader to the work by Shapley [43]).

Thus, we can safely drop the dependence of 𝜋 (·|·, ·) and 𝑓 𝑎 (·, ·)
from the state 𝑠 . In single-state environments, the SPG algorithm

needs to estimate one value for each action, which is equivalent

to 𝑓 𝑎 𝑗 (𝜽 ) = 𝜃 𝑗 . Thus, the policy 𝜋 (𝑎 |𝜽 ) is represented by a single

strategy x(𝜽 ) ∈ Δ𝑚 which, through 𝜽 = [𝜃1, . . . , 𝜃𝑚], defines a
probability distribution over actions 𝑎 𝑗 , for every 𝑗 ∈ {1, . . . ,𝑚}, as
follows:

𝑥 𝑗 (𝑡) = 𝑥 𝑗 (𝜽 (𝑡)) =
𝑒𝜏𝜃 𝑗 (𝑡 )

𝑚∑
𝑘=1

𝑒𝜏𝜃𝑘 (𝑡 )
. (4)

Following the procedure proposed by Tuyls et al. [46], the time

derivative of 𝑥 𝑗 (𝑡) can be formulated in terms of time derivative of

𝜽 (𝑡), as follows:

¤𝑥 𝑗 (𝑡) = 𝜏 𝑥 𝑗 (𝑡)
(
¤𝜃 𝑗 (𝑡) −

𝑚∑
𝑘=1

𝑥𝑘 (𝑡) ¤𝜃𝑘 (𝑡)
)
. (5)

Using the discrete-time variation of parameter vector 𝜽 (𝑡) provided
in Equation (3), we obtain the corresponding continuous-time mean

dynamics as follows:

¤𝜽 (𝑡) := lim

𝛿→0

𝜽 (𝑡 + 𝛿) − 𝜽 (𝑡)
𝛿

= 𝜂 ∇𝜽 𝐽 (𝜽 (𝑡)). (6)

We denote the payoff 𝑛-dimensional tensor of agent 𝑖 with 𝐴, and

we obtain:

𝐽 (𝜽 (𝑡)) = x⊤ (𝑡)𝐴 y(𝑡), (7)

3
For the sake of simplicity, from now on, we omit the superscript ‘(𝑖) ’ from x(𝑖 ) (𝑡 ) .

and, by applying the chain rule, we have:

∇𝜽 𝐽 (𝜽 ) =
𝜕𝐽

𝜕𝜽
=
𝜕𝐽

𝜕 x
𝜕 x
𝜕𝜽

= Ψ(x(𝜽 ))𝐴 y, (8)

where Ψ(x) is the Jacobian of the Soft-Max function, which is a

symmetric matrix defined as:

Ψ(x) =


𝑥1 (1 − 𝑥1) −𝑥1 𝑥2 · · · −𝑥1 𝑥𝑚
−𝑥1 𝑥2 −𝑥2 𝑥𝑚
.
.
.

. . .
.
.
.

−𝑥1 𝑥𝑚 −𝑥2 𝑥𝑚 · · · 𝑥𝑚 (1 − 𝑥𝑚)


.

Note that it can also be expressed as Ψ(x) = diag(x) (𝐼𝑚 − 𝑋 ),
where diag(x) is the matrix of order𝑚 with diagonal entries equal

to x, 𝐼𝑚 is the identity matrix of order𝑚, and 𝑋 is the matrix of

order𝑚 where every row is x. Finally, the mean dynamics of the

SPG algorithm, called SPGD, are as follows:

¤𝑥 𝑗 (𝑡) = 𝜏 𝑥 𝑗 (𝑡)
(
(𝜂 ∇𝜽 𝐽 (𝜽 (𝑡))) 𝑗 − x(𝑡)⊤ 𝜂 ∇𝜽 𝐽 (𝜽 (𝑡))

)
(9)

= 𝜂 𝜏 𝑥 𝑗 (𝑡)
(
(Ψ(x(𝑡))𝐴 y(𝑡)) 𝑗 − x(𝑡)⊤ Ψ(x(𝑡))𝐴 y(𝑡)

)
,

(10)

where Equation (9) is derived by substituting Equation (8) into

Equation (6), while Equation (10) follows from Equation (5). No-

tice that SPGD in Equation (10) resemble RD in Equation (1). In-

deed, in both dynamics, the time derivative of 𝑥 𝑗 (𝑡) is proportional
to the difference between the payoff provided by action 𝑎 𝑗 and

the average payoff provided by strategy x(𝑡). However, they dif-

fer as, in SPGD, the payoffs are weighted by the matrix Ψ(x). In
other words, SPGD and RD constitute the same set of differen-

tial equations except for an opportune, non-linear redefinition

of the fitness function: ΠRD (x(𝑡), y(𝑡)) = 𝐴 y(𝑡) in RD, while

ΠSPGD (x(𝑡), y(𝑡)) = Ψ(x(𝑡))𝐴 y(𝑡) in SPGD. Moreover, note that

the matrix Ψ(x) is singular (see Proposition 2 by Gao and Pavel

[12]), and, therefore, no transformation applied to the payoff ten-

sor 𝐴 can lead to a new payoff tensor �̃� such that ΠSPGD on �̃� is

equivalent to ΠRD on 𝐴, suggesting that the study of SPGD can-

not be easily reduced to the study of RD. Finally, observe that

ΠSPGD (x(𝑡), y(𝑡)) 𝑗 = [Ψ(x(𝑡))𝐴 y(𝑡)] 𝑗 = 𝑥 𝑗 (𝑡) (e𝑗 − x(𝑡))⊤𝐴 y(𝑡)
which is the 𝑗-th component of the vector field associated with the

RD.

4 BEST-RESPONSE PROBLEM ANALYSIS
The best-response problem is the central problem every agent 𝑖

needs to face when converging to a Nash equilibrium. This corre-

sponds to a setting in which an agent maximizes her utility, while

the opponents’ joint strategy y is fixed during time. The follow-

ing analysis focuses on non-degenerate cases in which the best-

response problem admits a unique optimal solution, i.e., there is
a single best response. The same analysis can be extended to the

degenerate case in which there are multiple optimal solutions, and

the convergence is required to a generic strategy of the (convex)

set of the best responses. Initially, we state the following lemma,

which is a variant of the Polyak-Łojasiewicz inequality [23] and is

instrumental to our analysis.



Lemma 4.1. Let ē𝑗 = arg max

𝑘

{
e⊤
𝑘
𝐴 y

}
e the single (pure) best

response, then it holds that:����∇𝜽 𝐽 (𝜽 )
����2

2
≥ 𝑥 𝑗 (𝜽 )2 (𝐽 ∗ − 𝐽 (𝜽 ))2, ∀𝜽 ∈ R𝑚, (11)

where 𝐽 ∗ = ē⊤
𝑗
𝐴 y and | | · | |𝑧 is the 𝑧-norm, and ē𝑗 ∈ Δ𝑚 is the pure

strategy in which action 𝑎 𝑗 is played with probability one.4

Relying on the result provided by Lemma 4.1, we state that

SPGD converge to the best response. Furthermore, we show that

the function 𝑉 (𝑡) = 𝐽 ∗ − 𝐽 (𝜽 (𝑡)) is a Lyapunov function of those

dynamics. Formally, we state:

Theorem 4.2. If y is fixed, x(0) ∈ int(Δ𝑚) ( i.e., it is fully mixed),
and there is a single best response ē𝑗 , the SPGD asymptotically con-
verge to the best response ē𝑗 .

Note that the Lyapunov function𝑉 (𝑡) is defined as the difference
between the optimal value 𝐽 ∗, corresponding to the value provided

by the best response, and the value of the current state 𝐽 (𝜽 (𝑡)).
Therefore, it directly follows that:

Corollary 4.3. If y is fixed, x(0) ∈ intΔ𝑚 , and there is a single
best response ē𝑗 , SPGD are such that 𝐽 (𝜽 (𝑡)) is strictly monotonically
increasing in 𝑡 .

Finally, we derive the convergence rate of SPGD by a non-trivial

adaptation of [30, Theorem 2].

Theorem 4.4. Given function 𝑉 (𝑡) := 𝐽 ∗ − 𝐽 (𝜽 (𝑡)), where 𝐽 ∗ is
the value of the best response and 𝐽 (𝜽 (𝑡)) = x(𝑡)⊤𝐴 y, then with
SPGD it holds (for a suitable constant 𝐶0 ∈ R+) that:

𝑉 (𝑡) ≤ 1

𝜂

(
𝑚−𝜉
𝑚+𝜉

)
2

𝑡 +𝐶0

, (12)

where 𝜉 is the optimality gap between the best response ē𝑗 and the

second best response, i.e., 𝜉 := ē⊤
𝑗
𝐴 y−max

𝑘≠𝑗

{
e⊤
𝑘
𝐴 y

}
.

The idea behind the proof of Theorem 4.4 is to show that for a

Best-response Problem, there is a bad set, that the dynamics leaves

in finite time. Then, after the dynamics leaves the bad region, we

have an asymptotic analysis that that gives linear convergence rate.

Note that the results about the discrete version of the algorithm

provided by Mei et al. [30, Theorem 2] is less general than what has

been proposed here since it holds for stricter assumptions, i.e., only
for a learning rate 𝜂 = 2

5
, but has the same asymptotic convergence

rate of O(1/𝑡).

4.1 Comparing the Behaviors of SPGD and RD
in the Best-response Problem

As discussed in Section 3, the difference between RD and SPGD

discussed that follows from the non-linear redefinition of the fitness

function Π(·), results in dynamics that are dramatically different

even if they both converge to the best response. In this section, we

theoretically analyze this difference in the Best-Response problem.

We also provide experimental results that highlight its relevance in

the case of learning in games.

We start by recalling an interesting property of RD [39].

4
All the proofs of the paper are deferred to the Appendix for space reasons.

Let ē𝑗 be the unique pure best response, for every action 𝑎𝑘 ≠ 𝑎 𝑗 ,

it holds that:

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
=

¤𝑥𝑘 (𝑡) 𝑥 𝑗 (𝑡) − ¤𝑥 𝑗 (𝑡) 𝑥𝑘 (𝑡)
𝑥2

𝑗
(𝑡)

=
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

[
(𝐴 y)𝑘 − (𝐴 y) 𝑗

]
< 0,

where the inequality is strict as the best response is unique. There-

fore, in RD, 𝑥 𝑗 (𝑡) is strictly monotonically increasing in 𝑡 , while

the ratio 𝑥𝑘 (𝑡)/𝑥 𝑗 (𝑡) is strictly monotonically decreasing in 𝑡 for

every 𝑘 ≠ 𝑗 .5 We show that such a monotonicity property does not

generally hold in the case of SPGD, thus resulting in more ineffi-

cient dynamics than RD. In particular, we state the following exact

characterization of the set of bad initialization.

Theorem 4.5. Let ē𝑗 be the (unique) pure best response against
the fixed opponents’ joint strategy y. Then, in SPGD, there is at least a
𝑘 ≠ 𝑗 such that 𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
< 0. Moreover, if𝑚 > 2, there exists a non-

empty subspace E ⊂ Δ𝑚 such that if x(𝑡) ∈ E then 𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
> 0

for some 𝑘 ∈ {1, . . . ,𝑚}, and the uniform initialization 1
𝑚 is always

outside E. The set E is the set defined as:

E =
⋃
𝒃∈B

{
w ∈ Δ𝑚 |w = 𝛼 𝒃 + (1 − 𝛼) ē𝑗 , 1 > 𝛼 > 𝔅(𝒃)

}
,

where the set B ⊂ Δ𝑚 is the set of x such that 𝑥 𝑗 = 0, and 𝔅(𝒃) ∈
[0, 1] is a well defined quantity for each 𝒃 ∈ B.

Theorem 4.5 shows that, in SPGD, there is always at least one non-

optimal action 𝑘 whose ratio with 𝑥 𝑗 is decreasing over time, but

other actionsmight show an increasing rate. Trivially, it follows that

when𝑚 = 2, the monotonicity property satisfied by RD also holds

for SPGD. Furthermore, Theorem 4.5 states that the subspace E is an

exact characterization of the non-monotonic improvements, which in
the bandit setting the work byMei et al. [29] call as bad initialization.
In Figures 1 and 2, we provide an example of the bad initialization

problem suffered by SPGD in the classical Rock-Paper-Scissors

(RPS) game when the opponent’s strategy is y = (0.05, 0.90, 0.05)⊤.
In particular, Figure 1 shows that a good initialization in Δ3 \ E
leads to dynamics that approach the best response monotonically

(green line), a bad initialization in E leads to dynamics that initially

get far from the best response and subsequently approach the best

response (red line). As a result, a bad initialization leads to a much

slower convergence to the best response, as shown in Figure 2.

It is worth remarking that Theorem 4.5 guarantees that an agent

always can choose 1/𝑚 as a good initialisation. This result is in

line with the result stated by Mei et al. [30, Theorem 8] for the

bandit setting, in which the convergence to the optimal arm is

monotonic if the initial policy is 1/𝑚. Theorem 4.5 also shows that

the algorithm is particularly sensitive to slight variations to the

opponents’ joint strategy y, as a slight modification in y results in

moving the initialization of the algorithm from Δ𝑚 \ E to E, thus
leading to a dramatic stretching of the convergence time.

One key consequence of the continuous-time analysis of the

Best-response problem is the following theorem.

5
Note that this does not exclude that 𝑥𝑘 (𝑡 ) with 𝑘 ≠ 𝑗 is monotonically increasing in

𝑡 ∈ [0, 𝑡 ] for some 𝑡 > 0.
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Figure 1: SPGD (red and green) and
RD (in blue) trajectories inRPS game.
The subspace in orange contains the
bad initializations.
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Figure 2: Ratio 𝑥𝑃 (𝑡)/𝑥𝑆 (𝑡) over time 𝑡 ≥ 0.
At 𝑡 = 𝜏 the dynamics in red leave subspace
E.
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Figure 3: SPGD and RD trajectories
with the good RPS population game.

Theorem 4.6. Let 𝐴 be a non-degenerate zero sum game with
unique fully mixed equilibrium. Then for each x(𝑡) ∈ Δ𝑚 s.t. x(𝑡) ≠
1/𝑚 there exists a strategy y ∈ Δ𝑚 s.t. x(𝑡) ∈ E. Moreover, the
problem of finding such a y is a linear programming problem.

The theorem shows that in normal-form games with a fully

mixed equilibrium, every point x ∈ Δ𝑚 which is different from 1/𝑚,

can be made a bad initialization for a suitable choice of y. Moreover,

the problem of finding such y, is a linear program. This means that

an adversarial opponent can choose a fixed strategy y such that

for any initial point x(𝑡0) is in a bad initialization region, with the

already discussed consequences on the speed of convergence to the

Best-response.

5 MULTI-AGENT PROBLEM ANALYSIS
In this section, we focus on the properties of SPGD when multi-

ple agents learn simultaneously. At first, we focus on the single-

population setting, and, after that, we focus on themultiple-population

games, restricting to the case of two populations. As mentioned

in Section 1, the former case is instrumental for the subsequent

study of the latter case, and crucialto give a complete analysis from

an EGT perspective. In both cases, a central role is played by the

connection between SPGD and RD we discussed in Section 3.

5.1 Single-Population Games
With a single population, SPGD is equivalent to RD, once the fitness

function has been redefined as ΠSPGD (x) = Ψ(x)𝐴 x. Therefore,
SPGD satisfy the same properties (see, e.g., [39]) that RD would

present when applied to the game with fitness function ΠSPGD.

However, due to the non-linear correspondence between the two

games, only a subset of these properties is preserved when consid-

ering the original game. In particular, we focus on the properties of

the revision protocol of SPGD and on the asymptotic stability of

NEs.

Initially, we derive the revision protocol 𝜌 (𝐴) : R𝑚 → R𝑚×𝑚

of SPGD, which is crucial for the study of its properties. The re-

vision protocol represents the switch rate of an individual of the

population from strategy 𝑘 to strategy 𝑗 , formally for the SPGD we

have:

𝜌
(𝐴)
𝑘 𝑗

(x) = 𝑥 𝑗
[
ΠSPGD (x) 𝑗 − ΠSPGD (x)𝑘

]
+

= 𝑥 𝑗
[
𝑥 𝑗 (𝐴 x) 𝑗 − 𝑥𝑘 (𝐴 x)𝑘 + (𝑥𝑘 − 𝑥 𝑗 ) x⊤𝐴 x

]
+ . (13)

In the work by Sandholm [41], the author identifies four main

properties related to the revision protocol of evolutionary dynamics

in game theory: continuity (C), scarcity of data (SD), Nash station-
arity (NS), and positive correlation (PC). The revision protocol of

RD (or, more simply, RD) satisfies all these properties with the pe-

culiarity that NS is satisfied only when restricting to int(Δ𝑚). The
revision protocol of SPGD (or, more simply, SPGD) satisfy the same

properties of RD except for SD. More specifically, the SD property

requires that the switch rate prescribed by the revision protocol

from strategy𝑘 to strategy 𝑗 depends only on 𝑥 𝑗 , (𝐴 x)𝑘 , and (𝐴 x) 𝑗 .
This property is related to the demand in terms of amount of in-

formation required by the evolutionary dynamics. In SPGD, this

property does not hold as 𝜌
(𝐴)
𝑘 𝑗

(x) in Equation (13) also depends

on 𝑥𝑘 , and, therefore, SPGD is requiring stronger assumptions in

terms of information available to the agents than those required

by RD. The C property trivially holds in SPGD. The NS property

requires that NEs are stationary points of the dynamics, whereas

the PC property requires that in non-stationary points, strategies’

growth rates are positively correlated with their payoffs. We show

that these two properties hold in SPGD.

Lemma 5.1. SPGD satisfy properties NS, when restricting to int(Δ𝑚),
and PC.

Finally, we focus on the relationship between the asymptotically

stable states of SPGD and those of RD. It is well-known that RD

converge to special points of interest such as Evolutionary Stable

Strategies (ESS) when x(0) ∈ int(Δ𝑚), see, e.g., [9, 41]. We show

that SPGD converge to the same space of ESSs when restricting to

int(Δ𝑚), and therefore, in the interior of the simplex, the spaces of

asymptotically stable states of RD and SPGD coincide. To achieve

this result, we use the concept of Regular ESS (RESS) [40], defined

as follows:

Definition 5.2. Strategy x̄ ∈ is a RESS for a population game with

fitness function Π(·) if:



(i) Π𝑘 (x̄) = x̄⊤ Π(x̄) > Π 𝑗 (x̄), whenever 𝑥𝑘 > 0 and 𝑥 𝑗 = 0;

(ii) z⊤ DΠ(x̄) z < 0 for all z ≠ 0, z ∈ 𝔗;

where 𝔗 is the tangent space to the𝑚-simplex, andDΠ(x) denotes
the derivative of Π in x.

The following lemma shows that the RESSs of the symmetric

normal-form game defined by the payoff matrix 𝐴 are RESS of the

population game defined by the fitness ΠSPGD (x).

Lemma 5.3. If x̄ ∈ int(Δ𝑚) is a RESS for the symmetric normal-
form game 𝐴, then x̄ is a RESS for the population game defined with
fitness function ΠSPGD (x).

Interestingly, Lemma 5.3 shows that the asymptotically stable

states of SPGD and RD coincide whenever the space of RESS and the

space of ESS coincide. This happens when we consider games such

as the good RPS game [41]. Indeed, in Figure 3, we see, as prescribed

by Lemma 5.3, that the trajectories of RD and SPGD converge to

the center of the simplex, which in this case is a RESS. More in

general, ESSs and RESSs coincide in symmetric normal-form games

whenever they are fully mixed. By using this condition together

with Lemma 5.3 we show the following result.

Theorem 5.4. Let x̄ ∈ intΔ𝑚 be an ESS for the symmetric normal-
form game 𝐴. Then, it is asymptotically stable for SPGD.

It is well-known that a ESS is an asymptotically stable rest point

for the RD (for a proof we point at the book by Hofbauer and

Sigmund [18]). Theorem 5.4 shows that the same behavior of RD

also holds with SPGD, over the internal ESS.

5.2 Multiple-Population Games
We extend the results discussed above for the single-population case

to multiple populations, investigating the convergence of the SPGD.

We restrict to the case of two populations, each evolving according

to the SPGD. Let x(𝑡) ∈ Δ𝑚 , and y(𝑡) ∈ Δ𝑚 be the first and second

populations, respectively, while𝐴 ∈ R𝑚×𝑚
and 𝐵 ∈ R𝑚×𝑚

are their

payoff matrices, respectively. SPGD are described by the following

coupled sets of differential equations for each 𝑘 ∈ {1, . . . ,𝑚}:
¤𝑥𝑘 = 𝜂 𝜏 𝑥𝑘 (𝑡)

(
(Ψ(x(𝑡))𝐴 y(𝑡))𝑘 − x(𝑡)⊤ Ψ(x(𝑡))𝐴 y(𝑡)

)
¤𝑦𝑘 = 𝜂 𝜏 𝑦𝑘 (𝑡)

(
(Ψ(y(𝑡)) 𝐵 x(𝑡))𝑘 − y(𝑡)⊤ Ψ(y(𝑡)) 𝐵 x(𝑡)

) .

(14)

Let us defineΠ
(𝐴)
SPGD (x, y) = Ψ(x)𝐴 y, andΠ (𝐵)

SPGD (x, y) = Ψ(y) 𝐵 x.
To clarify further the relationship between SPGD and RD, we define

the two following normal form games:

G = ({1, 2}, {A1,A2}, {𝐴, 𝐵}),

P = ({1, 2}, {Δ𝑚,Δ𝑚}, {Π (𝐴)
SPGD,Π

(𝐵)
SPGD}),

where, with abuse of notation, we use the payoffs matrices to

identify the payoffs of G. Similarly, the payoffs to the players in

P are defined by 𝑟 (1) (x, y) = x⊤ Π
(𝐴)
SPGD (x, y), and 𝑟

(2) (x, y) =

y⊤ Π
(𝐵)
SPGD (x, y). Once again, we observe that SPGD on G is equiv-

alent to RD on the game P.

Properties of P. One of the main differences between the game

G and P is that one cannot define the game P by redefining the

payoff matrices 𝐴 and 𝐵. Indeed, it also requires to change the

correct action space in which to view the dynamics. Moreover, any

pure strategy in the game P gives a zero payoff (see Lemma C.1

below) and the mixed extension of the game does not correspond

to the expected value of pure strategies. Specifically, the game P is

a differentiable game (using the definition by Letcher et al. [25]),

with payoffs 𝑟 (1) and 𝑟 (2) . This shows that the study of SPGD is

equivalent to the study of the properties of RD on the differentiable

gameP instead of thewell studied normal form gameG. A complete

study of the RD in a general differentiable game is left as a future

work. Instead, we focus on the game theoretic properties that are

preserved between the game P and G, in particular concerning

equilibria.

Let NE(G) be the set of Nash equilibria of the normal-form

game G, and NE(P) the set of Nash equilibria of the game P. In the

following theorem, we show that only over interior points NE(G)
and NE(P) coincide:

Theorem 5.5. In every normal-form game, it holds that:

NE(G) ∩ {int(Δ𝑚) × int(Δ𝑚)} = NE(P) ∩ {int(Δ𝑚) × int(Δ𝑚)}.

The behavior on to the border of the simplex is much more com-

plex to study. Indeed, one can shows that the value of the payoffs at

each NE of the non-linear game P is 0, and it is straightforward to

observe that this value is attained for all couple of pure strategies

(see for instance Lemma C.1 in the Appendix). This suggests that

game P has more NEs on the border with respect to G, and some

local stability properties could lead to unexpected behaviors when

the dynamics are near pure strategies.

Volume and Convergence. Even if the equivalence explored

above points to which properties we can expect from SPGD, the non-

linearity of P makes it impossible to apply the known results of RD

to our case. In particular, two-population RD do not converge to inte-

rior points of Δ𝑚 ×Δ𝑚 [38, Proposition 6]. This classical result is es-

tablished by proving that RD in bimatrix games preserves a certain

volume form: in particular, the dynamics of a suitable reparametriza-

tion of RD preserves the volume in the reparametrized space. Many

recent papers (among others [4, 8, 32, 37]) exploit volume preserva-

tion properties of RD, to study the long-term behaviour of no-regret

learning dynamics. The incompressibility results in these works

are usually established for the RD in the cumulative payoff space

as first done in [17].In what follows, we use the same argument

as in the classical proof by Ritzberger and Weibull [38] to show

that SPGD preserves the volume in the interior of the product of

simplices, allowing us to prove negative convergence results for

each bimatrix game G. As we already mentioned above, even with

the equivalence that we have analyzed between RD and SPGD, we

cannot apply known results or RD, since the multi-linearity of the

payoffs is used as a key ingredient in the original proof. By the

Liouville formula (2) described in Section 2, it is sufficient to show

that the divergence of the reparametrized flow in the interior of the

simplices is null, to obtain the invariance in time of the associated

volume.

Lemma 5.6. The flow of SPGD preserves a volume form in int(Δ𝑚×
Δ𝑚).
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Figure 4: Evolution of the diameter 𝑑 (·) of the set 𝑆 (𝑡0) over
time.

Thanks to Lemma 5.6 it is possible to obtain the non-convergence

of the two-population SPGD in an interior point.

Theorem 5.7. No closed set in int(Δ𝑚 × Δ𝑚) is asymptotically
stable for the SPGD.

Since the volume considered blows up to infinity near the border

of the simplex, its invariance does not prevent a priori a dynamics

starting from the interior from converging asymptotically to the

border, which may happen with pure NE. On the other hand, the

theorem tells us that in games G like RPS, where the only NEs

are in the interior of the strategies space, the dynamics will never

converge to any NE. Theorem 5.7 also restricts the possible long-

term behaviors to, either converge to the border, or being recurrent

inside the interior of the action space.

5.3 Experimental Evaluation on Two
Population Games

In this section, we analyze the behaviour of SPGD in two-population

games. We analyse the same rock-paper-scissor game used in Sec-

tion 4, in which both players strategies evolves according to the

discrete SPG dynamics. We study the evolution of an initial set

𝑆 (𝑡0), and provide results on the evolution over time of its diameter

𝑑 (𝑆 (𝑡)), where the diameter 𝑑 (𝐴) of a set 𝐴 is formally defined as

𝑑 (𝐴) = sup

x1,x2∈𝐴
| | x1 − x2 | |2. We run 50 independent experiments

sampling uniformly (through rejection sampling) 10 points from

the region 𝑆 (𝑡0) on the simplex with center in (1/6, 1/3, 1/2)⊤, and
ℓ1 diameter of 1/8. We used 𝜂 = 0.1 as learning rate of the SPG,

time horizon 𝑇 = 10, 000, and y(𝑡0) has been initialized uniformly

at random for each seed. Figure 4 shows the average approximate

diameter 𝑑 (𝑆 (𝑡)), where the averaging is done over the 10 random

points in the initial region 𝑆 (𝑡0) and light blue areas represents the

standard deviation.

What emerges is that the diameter of an initial set 𝑆 (𝑡0) grows
over time and converges to

√
2, which is the maximum ℓ2 diameter

in simplices. Intuitively, this means that any two strategies that

are close at the beginning of the learning process, may end up in

far points at the end of the learning process. The experimental
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Figure 5: Trajectories of SPGD. The starting points x(𝑡0) ∈
𝑆 (𝑡0) of 10 trajectories are depicted in blue, while the end
points x(𝑇 ) ∈ 𝑆 (𝑇 ) are depicted in red.

evaluation points to the chaotic behaviour of the SPG algorithm,

that also occurs for Multiplicative Weight Update Arora et al. [1],

i.e., the discrete equivalent of RD in zero-sum games [8].

Figure 5 provides the dynamics of x(𝑡) for one of the seeds. The
starting strategies (depicted in blue) at 𝑡0 are close together in the

small region 𝑆 (𝑡0). Instead, at the end of the time horizon they are

scattered throughout the entire strategy space (depicted in red).

This suggest that there is indeed a chaotic behaviour, because small

deviations in the starting initialization leads to large deviations in

the final strategies.

6 CONCLUSIONS AND FUTUREWORKS
In this work, we derive and study the continuous-timemean dynam-

ics of soft-max policy gradient, namely SPGD, in different scenarios.

First, we focus on the scenario in which an agent learns the best

response in a normal-form game against a fixed-strategy opponent.

We show that SPGD converge to the best response strategy in non-

degenerate games and derive a convergence rate for the dynamics.

In the same setting, we show that SPGD are less efficient than RD

since the ratio between the probability of using a non-optimal ac-

tion and the one of using the best response is not always decreasing

over time. Moreover, we show that an opponent can always exploit

such features in RPS-like games that have a unique fully-mixed

equilibrium. In the self-play scenario, we discuss the classical EGT

properties for SPGD, and show that an internal ESS for the normal-

form game is asymptotically stable for SPGD. Finally, we study the

case of two populations jointly evolving according to SPGD. By

leveraging the connection with RD, we show that SPGD do not

converge to interior NEs.

A natural future direction is to analyze the dynamics of SPGD in

multi-agents games with multiple states, such as Extensive Form

Games. Another interesting direction is to analyze, under the EGT

lenses, other flavors of policy-gradients, such as Natural Policy



Gradient [22]. Finally, it is an interesting line of research the study

of the behaviour of RD on general non-convex payoff functions,

which may lead to even deeper insights on the behaviour of SPGD,

by exploiting the exact connection we drew between these two

dynamics.
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A APPENDIX: OMITTED PROOFS FROM SECTION 4
A.1 Proof of Theorem 4.2
In this section we provide the proof of Theorem 4.2, and we will also prove the required intermediate results.

Lemma 4.1. Let ē𝑗 = arg max

𝑘

{
e⊤
𝑘
𝐴 y

}
e the single (pure) best response, then it holds that:����∇𝜽 𝐽 (𝜽 )

����2
2
≥ 𝑥 𝑗 (𝜽 )2 (𝐽 ∗ − 𝐽 (𝜽 ))2, ∀𝜽 ∈ R𝑚, (11)

where 𝐽 ∗ = ē⊤
𝑗
𝐴 y and | | · | |𝑧 is the 𝑧-norm, and ē𝑗 ∈ Δ𝑚 is the pure strategy in which action 𝑎 𝑗 is played with probability one.6

Proof. It follows by the relation between 2-norm and∞-norm, and by definition of best response that:

| |∇𝜽 𝐽 (𝜽 ) | |22 ≥ ||∇𝜽 𝐽 (𝜽 ) | |2∞ (15)

= max

𝑘

(
𝑥 𝑗 (𝜽 ) (e𝑘 − x(𝜽 ))⊤𝐴 y

)
2

(16)

≥ 𝑥 𝑗
(
𝜽 )2 (𝐽 ∗ − 𝐽 (𝜽 )

)
2

. (17)

This concludes the proof. □

Theorem 4.2. If y is fixed, x(0) ∈ int(Δ𝑚) ( i.e., it is fully mixed), and there is a single best response ē𝑗 , the SPGD asymptotically converge to
the best response ē𝑗 .

Proof. Let us recall the definition of the function 𝑉 (𝑡):

𝑉 (𝑡) := 𝐽 ∗ − 𝐽 (𝜽 (𝑡)) = ē⊤𝑗 𝐴 y− x(𝜽 (𝑡))⊤𝐴 y . (18)

Since 𝐽 ∗ is the optimum of the function 𝐽 (𝑡), we have 𝑉 (𝑡) ≥ 0, and, in particular, 𝑉 (𝑡) > 0 if x(𝑡) ≠ ē𝑗 being ē𝑗 the single best response.
The time derivative of 𝑉 (𝑡) is:

¤𝑉 (𝑡) = − 𝜕𝐽 (𝜽 )
𝜕𝜽

𝜕𝜽

𝜕𝑡
= −∇𝜽 𝐽 (𝜽 (𝑡))⊤ ¤𝜽 (𝑡). (19)

Substituting the definition of
¤𝜽 (𝑡) provided in Equation (6), we have:

¤𝑉 (𝑡) = −𝜂 | |∇𝜽 𝐽 (𝜽 (𝑡)) | |22, (20)

and, using Lemma 4.1 and the positivity of 𝑉 (𝑟 ), we have:

¤𝑉 (𝑡) ≤ −𝜂 𝑥 𝑗 (𝜽 (𝑡))2𝑉 (𝑡)2 < 0, (21)

where the inequality is strict as, by the nature of Soft-Max, using an initial strategy s.t. 𝑥 𝑗 (0) > 0 implies that 𝑥 𝑗 (𝑡) > 0 for each 𝑡 > 0. As a

consequence, we have that the unique zero of the 𝑉 (𝑡) function is ē𝑗 , formally:

𝑉 (𝑡) = 0 ⇐⇒ x(𝑡) = ē𝑗 .

Hence, 𝑉 (𝑡) is a Lyapunov function for the system as the following conditions hold:

𝑉 (𝑡) > 0 ∀x(𝑡) ≠ ē𝑗 ,
𝑉 (𝑡) = 0 x(𝑡) = ē𝑗 ,
¤𝑉 (𝑡) < 0 ∀x(𝑡) ≠ ē𝑗 ,
¤𝑉 (𝑡) = 0 x(𝑡) = ē𝑗 .

Thus, SPGD satisfies the assumptions required by Lyapunov’s Lemma [14], and, consequently, they asymptotically converge to ē𝑗 . □

6
All the proofs of the paper are deferred to the Appendix for space reasons.



A.2 Proof of Theorem 4.4
In what follows we give the proof of Theorem 4.4. We will first introduce some definitions. Let us define two subspaces S1,S2 ∈ Δ𝑚 as

follows (subscript 𝑗 corresponds to action 𝑎 𝑗 played with probability one in the best response ē𝑗 ):

S1 =

{
x ∈ Δ𝑚 :

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
< 0, ∀𝑘 ≠ 𝑗

}
, (22)

S2 =

{
x ∈ Δ𝑚 : 𝑥 𝑗 ≥

𝑚 − 𝜉
𝑚 + 𝜉

}
, (23)

where 𝜉 is the optimality gap between the best response ē𝑗 and the second best response, i.e., 𝜉 := ē⊤
𝑗
𝐴 y−max

𝑘≠𝑗

{
e⊤
𝑘
𝐴 y

}
. Notice that the

definition of S1 does not depend on time. Indeed, the flow (see [31] for details) of SPGD does not depend explicitly on time, which means

that the derivative x̄(𝑡) depends only on the current state x(𝑡) in the simplex. Therefore, subspaces S1 and S2 are invariant in time. We

introduce the following three lemmas stating some interesting properties satisfied by S1, and S2, which are instrumental in deriving the

upper bound on the convergence rate for SPGD. The following lemma shows that, if SPGD enter the subspace S1 at a certain point in time,

then it will never leave this subspace.

Lemma A.1. If it exists a time 𝑡0 > 0 such that x(𝑡0) ∈ int(Δ𝑚) ∩ S1, then SPGD is such that x(𝑡) ∈ S1 for every 𝑡 > 𝑡0.

Proof. Let us remark that subscript 𝑗 is associated with the best response action 𝑎 𝑗 and that x(𝑡) ∈ S1. Since x(𝑡) ∈ S1 if and only if

𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
< 0 for each 𝑘 ≠ 𝑗 , in what follows, we show that this inequality is satisfied by each component separately for every 𝑡 ≥ 𝑡0.

Initially, we rewrite the above derivative as:

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
=

¤𝑥𝑘 (𝑡) 𝑥 𝑗 (𝑡) − ¤𝑥 𝑗 (𝑡) 𝑥𝑘
𝑥 𝑗 (𝑡)2

= 𝜂 𝜏
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

[
𝑥𝑘 (𝑡)

(
(𝐴 y)𝑘 − x(𝑡)⊤𝐴 y

)
− 𝑥 𝑗 (𝑡)

(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

) ]
= 𝜂 𝜏

𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

[
𝑥 𝑗 (𝑡) (𝐴 y)𝑘 − 𝑥 𝑗 (𝑡) (𝐴 y) 𝑗 + (𝑥 𝑗 (𝑡) − 𝑥𝑘 (𝑡)) x⊤ (𝑡)𝐴 y

]
= 𝜂 𝜏

𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

[
𝑥𝑘 (𝑡)

(
(𝐴 y)𝑘 − (𝐴 y) 𝑗

)
+ (𝑥 𝑗 (𝑡) − 𝑥𝑘 (𝑡))

(
x⊤ (𝑡)𝐴 y−(𝐴 y) 𝑗

) ]
. (24)

Notice that, being 𝑗 the index associated to the best response, 𝑥𝑘 (𝑡)
(
(𝐴 y)𝑘 − (𝐴 y) 𝑗

)
< 0 and

(
x⊤ (𝑡)𝐴 y−(𝐴 y) 𝑗

)
< 0. Let us study

separately two cases, according to the sign of the term 𝑥 𝑗 (𝑡0) − 𝑥𝑘 (𝑡0).

Case 1: 𝑥 𝑗 (𝑡0) ≥ 𝑥𝑘 (𝑡0). From Equation (24) we have that
𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡0)
𝑥 𝑗 (𝑡0)

)
< 0, since the summands in the square brackets are both

negative. Therefore, it suffices to show that for each 𝛿 > 0 holds that 𝑥 𝑗 (𝑡0 + 𝛿) ≥ 𝑥𝑘 (𝑡0 + 𝛿). Assume, by contradiction, that exists

𝛿 := inf

𝛿>0

{𝑥 𝑗 (𝑡0 + 𝛿) − 𝑥𝑘 (𝑡0 + 𝛿)} ≤ 0. By continuity, we have that 𝑥 𝑗 (𝑡0 + 𝛿) = 𝑥𝑘 (𝑡0 + 𝛿). Using the fact that for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝛿) it

holds that 𝑥 𝑗 (𝑡) − 𝑥𝑘 (𝑡) > 0, we have that
𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
< 0 for every 𝑡 ∈ [𝑡0, 𝑡0 + 𝛿). The fact that the derivative is negative implies that

𝑥𝑘 (𝑡0+𝛿)
𝑥 𝑗 (𝑡0+𝛿) <

𝑥𝑘 (𝑡0)
𝑥 𝑗 (𝑡0) . Summarizing, we have the following implications:

1 =
𝑥𝑘 (𝑡0 + 𝛿)
𝑥 𝑗 (𝑡0 + 𝛿)

<
𝑥𝑘 (𝑡0)
𝑥 𝑗 (𝑡0)

< 1,

where the last inequality holds by hypothesis of Case 1, which is a contradiction. This implies that in Case 1 for each 𝑡 > 𝑡0 we have

𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
< 0.

Case 2: 𝑥 𝑗 (𝑡0) < 𝑥𝑘 (𝑡0). Let us define:

𝐾𝑘 (𝑡) :=
1

𝜂 𝜏

1

𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)
𝑥𝑘 (𝑡)

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
. (25)

Since 𝜂 𝜏 𝑥2

𝑘
(𝑡)/𝑥 𝑗 (𝑡) > 0, Equation (24) implies that:

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
< 0 ⇔ 𝐾𝑘 (𝑡) < 0.



Since (𝐴 y) 𝑗 =
𝑚∑
ℎ=1

𝑥ℎ (𝑡) (𝐴 y) 𝑗 as
𝑚∑
ℎ=1

𝑥ℎ (𝑡) = 1, we can write:

x(𝑡)⊤𝐴 y−(𝐴 y) 𝑗 = −
𝑚∑
ℎ=1

𝑥ℎ (𝑡)
[
(𝐴 y) 𝑗 − (𝐴 y)ℎ)

]
= −

𝑚∑
ℎ=1

𝑥ℎ (𝑡) 𝑑ℎ, (26)

where 𝑑ℎ := (𝐴 y) 𝑗 − (𝐴 y)ℎ . Writing 𝐾𝑘 (𝑡) in terms of 𝑑ℎ , we have:

𝐾𝑘 (𝑡) =
(
1 −

𝑥 𝑗 (𝑡)
𝑥𝑘 (𝑡)

) 𝑚∑
ℎ=1

𝑥ℎ (𝑡) 𝑑ℎ − 𝑑𝑘 . (27)

where we used the definition of 𝑑ℎ and Equation (26) in Equation (24).

The time derivative of 𝐾𝑘 (𝑡) is:

¤𝐾𝑘 (𝑡) = − 𝑑
𝑑𝑡

(
𝑥 𝑗 (𝑡)
𝑥𝑘 (𝑡)

) 𝑚∑
ℎ=1

𝑥ℎ (𝑡) 𝑑ℎ +
(
1 −

𝑥 𝑗 (𝑡)
𝑥𝑘 (𝑡)

) 𝑚∑
ℎ=1

¤𝑥ℎ (𝑡) 𝑑ℎ . (28)

In the following, we show that ¤𝐾𝑘 (𝑡)
��
𝑡=𝑡0

= 0. Indeed, we have:

• 𝑑
𝑑𝑡

(
𝑥 𝑗 (𝑡 )
𝑥𝑘 (𝑡 )

) ���
𝑡=𝑡0

> 0 by hypothesis as x(𝑡0) ∈ S1;

•
𝑚∑
ℎ=1

𝑥ℎ (𝑡) 𝑑ℎ > 0 as, by definition of 𝑑ℎ , every 𝑑ℎ > 0 for every ℎ ≠ 𝑗, 𝑡 ≥ 0;

•
(
1 − 𝑥 𝑗 (𝑡 )

𝑥𝑘 (𝑡 )

) ���
𝑡=𝑡0

> 0 as we are in Case 2.

Since

𝑚∑
ℎ=1

¤𝑥ℎ (𝑡) = 0 as

𝑚∑
ℎ=1

𝑥ℎ (𝑡) = 1 for every 𝑡 , we have that:

𝑚∑
ℎ=1

¤𝑥ℎ (𝑡) 𝑑ℎ =
∑
ℎ

¤𝑥ℎ (𝑡) (𝐴 y) 𝑗 −
𝑚∑
ℎ=1

¤𝑥ℎ (𝑡) (𝐴 y)ℎ

= −
𝑚∑
ℎ=1

¤𝑥ℎ (𝑡) (𝐴 y)ℎ

= −¤x(𝑡)⊤𝐴 y

= − ¤𝐽 (𝜽 (𝑡)),

where we used the definitions of 𝑑ℎ and ¤𝐽 (·). A consequence of Theorem 4.2 is that ¤𝐽 (𝜽 (𝑡)) ≥ 0, which implies that

𝑚∑
ℎ=1

¤𝑥ℎ (𝑡) 𝑑ℎ ≤ 0. Hence,

Equation (28) consists in the the sum of two negative summands, and, thus, ¤𝐾𝑘 (𝑡) < 0 in 𝑡 = 𝑡0. Most importantly, the same holds for every

𝑡 is such that x(𝑡) ∈ S1 and 𝑥𝑘 (𝑡) satisfies the assumption of Case 2. Assume by contradiction that there is 𝛿 > 0 such that at 𝑡 = 𝑡0 + 𝛿
the trajectory of the dynamics leaves S1, i.e., 𝛿 = inf

𝛿>0

{𝐾𝑘 (𝑡0 + 𝛿) ≥ 0}. By continuity, we have that 𝐾𝑘 (𝑡0 + 𝛿) = 0. Moreover, it holds that

¤𝐾𝑘 (𝑡) < 0 for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝛿) which means that 𝐾𝑘 (𝑡0 + 𝛿) < 𝐾𝑘 (𝑡0) < 0, thus contradicting the above assumption. Overall, we have that

in Case 2 we have that for each 𝑡 > 𝑡0 we have
𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
< 0.

The theorem statement follows from the fact that for each 𝑡 > 𝑡0 we have
𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
< 0 and the definition of S1.

□

The following lemma, instead, shows the inclusion relationship between S2 and S1.

Lemma A.2. It holds S2 ⊂ S1.

Proof. Let us assume w.l.o.g. that the payoffs are in [0, 1]. This can be always achieved by an opportune affine transformation of the

original game. Recall that 𝑗 is the index corresponding to the coordinate associated with the best response 𝑎 𝑗 . Let now x(𝑡) ∈ S2. We divide

again the study into two cases, based on whether 𝑥𝑘 (𝑡) ≤ 𝑥 𝑗 (𝑡) for all 𝑘 , or 𝑥𝑘 (𝑡) > 𝑥 𝑗 (𝑡) for least one 𝑘 .

Case 1: 𝑥𝑘 (𝑡) ≤ 𝑥 𝑗 (𝑡) for all 𝑘 . As showed in the proof of Lemma A.1[Case 1], if x(𝑡) is such that 𝑥𝑘 (𝑡) ≤ 𝑥 𝑗 (𝑡), it holds 𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
< 0.

As a consequence, if x(𝑡) is such that 𝑥𝑘 (𝑡) ≤ 𝑥 𝑗 (𝑡) for every 𝑘 ≠ 𝑗 , then x(𝑡) ∈ S1.



Case 2: 𝑥𝑘 (𝑡) > 𝑥 𝑗 (𝑡) for at least one index 𝑘 . From the proof of Lemma A.1 we have that:

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
= 𝜂 𝜏

𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

𝑥𝑘 (𝑡)
(
(𝐴 y)𝑘 − x(𝑡)⊤𝐴 y

)
− 𝑥 𝑗 (𝑡)

(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

)︸                                                                       ︷︷                                                                       ︸
=:𝑃

 .
The sign of

𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
has the same sign of 𝑃 , since the factor multiplying the square brackets is positive. In what follows, we show that

x ∈ S2 implies that −𝑃 ≥ 0, for all 𝑘 ≠ 𝑗 . We have:

− 𝑃 = 𝑥 𝑗 (𝑡)
(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

)
− 𝑥𝑘 (𝑡)

(
(𝐴 y)𝑘 − x(𝑡)⊤𝐴 y

)
(29)

= 𝑥 𝑗 (𝑡)
(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

)
− 𝑥𝑘 (𝑡)

(
(𝐴 y)𝑘 − x(𝑡)⊤𝐴 y

)
+

𝑚∑
ℎ=1

𝑥ℎ (𝑡)
(
(𝐴 y)ℎ − x(𝑡)⊤𝐴 y

)
(30)

= 2𝑥 𝑗 (𝑡)
(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

)
+

𝑚∑
ℎ=1,ℎ≠𝑘,𝑗

𝑥ℎ
(
(𝐴 y)ℎ − x(𝑡)⊤𝐴 y

)
(31)

= 2𝑥 𝑗 (𝑡)
(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

)
+

𝑚∑
ℎ=1,ℎ≠𝑘,𝑗

𝑥ℎ
(
(𝐴 y)ℎ − x(𝑡)⊤𝐴 y+(𝐴 y) 𝑗 − (𝐴 y) 𝑗

)
(32)

= 2𝑥 𝑗 (𝑡)
(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

)
−

𝑚∑
ℎ=1,ℎ≠𝑘,𝑗

𝑥ℎ (𝑡) 𝑑ℎ +
𝑚∑

ℎ=1,ℎ≠𝑘,𝑗

𝑥ℎ (𝑡)
(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

)
(33)

=
(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

) ©«2𝑥 𝑗 (𝑡) +
𝑚∑

ℎ=1,ℎ≠𝑖, 𝑗

𝑥ℎ (𝑡)
ª®¬ −

𝑚∑
ℎ=1,ℎ≠𝑘,𝑗

𝑥ℎ (𝑡) 𝑑ℎ (34)

≥
(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

) ©«2𝑥 𝑗 (𝑡) +
𝑚∑

ℎ=1,ℎ≠𝑘,𝑗

𝑥ℎ (𝑡)
ª®¬ −

𝑚∑
ℎ=1,ℎ≠𝑘,𝑗

𝑥ℎ (𝑡), (35)

where the inequality in Equation (35) holds because we have assumed positive and normalized payoffs.

Let us focus on the first multiplicative factor of Equation (35), we have:(
(𝐴 y) 𝑗 − x⊤ (𝑡)𝐴 y

)
=

𝑚∑
ℎ=1,ℎ≠𝑗

𝑥ℎ (𝑡) 𝑑ℎ

≥ 𝜉

𝑚∑
ℎ=1,ℎ≠𝑗

𝑥ℎ (𝑡)

≥ 𝜉 max

ℎ∈{1,...,𝑚},ℎ≠𝑗
{𝑥ℎ (𝑡)}

= 𝜉 max

ℎ
{𝑥ℎ (𝑡)} (since 𝑥𝑘 > 𝑥 𝑗 , ∀𝑘 ≠ 𝑗)

≥
(
𝜉

𝑚

)
(max

ℎ
{𝑥ℎ (𝑡)} ≥ 1/𝑚 ∀x ∈ Δ𝑚)

Substituting in Equation (35), we have:

−𝑃 ≥ 𝜉

𝑚

©«2𝑥 𝑗 (𝑡) +
𝑚∑

ℎ=1,ℎ≠𝑘,𝑗

𝑥ℎ (𝑡)
ª®¬ −

𝑚∑
ℎ=1,≠𝑘,𝑗

𝑥ℎ (𝑡).

Using the fact that

𝑚∑
ℎ=1,ℎ≠𝑘,𝑗

𝑥ℎ (𝑡) = 1 − 𝑥𝑘 (𝑡) − 𝑥 𝑗 (𝑡) in the above equation, we obtain:

−𝑃 ≥ 𝑥 𝑗 (𝑡)
(
1 + 𝜉

𝑚

)
−

(
1 − 𝜉

𝑚

)
+ 𝑥𝑘 (𝑡)

(
1 − 𝜉

𝑚

)
(36)

≥ 𝑥𝑘 (𝑡)
(
1 − 𝜉

𝑚

)
≥ 0, (37)

where the inequality in Equation (37) uses the definition of S2. Summarizing, we showed that the sign of −𝑃 is positive, which implies that

the sign of
𝑑
𝑑𝑡

(
𝑥𝑘
𝑥 𝑗

)
is negative, which concludes the proof. □



Finally, we show that the strategies in S1 share the desirable property that the component corresponding to the best response always has

positive time-derivative i.e., is monotonically increasing in time.

Lemma A.3. It holds that ¤𝑥 𝑗 > 0 for all x ∈ S1.

Proof. Since 𝑥 𝑗 (𝑡) = 1 − ∑
𝑘≠𝑗 𝑥𝑘 (𝑡) = 1 − 𝑥 𝑗 (𝑡)

∑
𝑘≠𝑗

𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 ) , we can write ¤𝑥 𝑗 (𝑡) as follows:

¤𝑥 𝑗 (𝑡) =
𝑑

𝑑𝑡

1 − 𝑥 𝑗 (𝑡)
∑
𝑘≠𝑗

𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)


= − ¤𝑥 𝑗 (𝑡)

∑
𝑘≠𝑗

𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

− 𝑥 𝑗 (𝑡)
∑
𝑘≠𝑗

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
,

Solving for ¤𝑥 𝑗 (𝑡) gives:

¤𝑥 𝑗 (𝑡) = −
𝑥 𝑗 (𝑡)

∑
𝑘≠𝑗

𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
1 + ∑

𝑘≠𝑗
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

From the fact that the numerator of the r.h.s. of the above equation is always negative in S1 and the denominator is positive, we get the

theorem statement. □

Lemmas A.1, A.2, and A.3 allow us to prove Theorem 4.4 which states that the convergence rate of SPGD to the unique best response ē𝑗 is
linear. We briefly sketch the proof of the theorem. We already know that SPGD converge to the best response by Theorem 4.2. Convergence

implies that the dynamics eventually enter subspace S2 as e𝑗 ∈ S2. (In particular, S2 includes the portion of the simplex such that 𝑥 𝑗 ≥ 1/2

as𝑚 ≥ and 0 ≤ 𝜉 ≤ 1.) By Lemma A.2, we know that S2 is contained by S1. Lemma A.3 leads to a direct extension of Lemma A.1 to S2: if

the dynamics enter S2, they do not leave this subspace. The inequality in the definition of S2 coupled with calculations borrowed from the

proof of Theorem 4.2 lead to the result.

Theorem 4.4. Given function 𝑉 (𝑡) := 𝐽 ∗ − 𝐽 (𝜽 (𝑡)), where 𝐽 ∗ is the value of the best response and 𝐽 (𝜽 (𝑡)) = x(𝑡)⊤𝐴 y, then with SPGD it
holds (for a suitable constant 𝐶0 ∈ R+) that:

𝑉 (𝑡) ≤ 1

𝜂

(
𝑚−𝜉
𝑚+𝜉

)
2

𝑡 +𝐶0

, (12)

where 𝜉 is the optimality gap between the best response ē𝑗 and the second best response, i.e., 𝜉 := ē⊤
𝑗
𝐴 y−max

𝑘≠𝑗

{
e⊤
𝑘
𝐴 y

}
.

Proof. From Theorem 4.2 and the continuity of the dynamics, we have that 𝑡0 := inf

𝑡 ≥0

{x(𝑡) ∈ S2}, exists and is finite. We want to show

that for all 𝑡 ≥ 𝑡0 it holds x(𝑡) ∈ S2, and, therefore, that 𝑥 𝑗 (𝑡) >
(
𝑚−𝜉
𝑚+𝜉

)
for all 𝑡 ≥ 𝑡0.

Using Lemma A.2, we have that x(𝑡0) ∈ S1 and by Lemma A.1 that for all 𝑡 ≥ 𝑡0 x(𝑡) ∈ S1. Finally, by Lemma A.3, we have that 𝑥 𝑗 (𝑡) is
increasing over 𝑡 , and, consequently, 𝑥 𝑗 (𝑡) ≥ 𝑚−𝜉

𝑚+𝜉 for all 𝑡 ≥ 𝑡0. From the proof of Theorem 4.2 (Equation (21)), we have that:

¤𝑉 (𝑡) ≤ −𝜂 𝑥 𝑗 (𝑡)2𝑉 (𝑡)2
(38)

¤𝑉 (𝑡) ≤ −𝜂
(
𝑚 − 𝜉
𝑚 + 𝜉

)
2

𝑉 (𝑡)2, (39)

where we used that 𝑥 𝑗 (𝑡) ≥ 𝑚−𝜉
𝑚+𝜉 for all𝑡 ≥ 𝑡0. By Petrovitsch Theorem [36], we know that 𝑉 (𝑡) ≤ 𝐹 (𝑡), where 𝐹 (𝑡) is the solution of the

following differential equation:

¤𝐹 (𝑡) = −𝜂
(
𝑚 − 𝜉
𝑚 + 𝜉

)
2

𝐹 (𝑡)2 . (40)

Integrating Equation (40) from 𝑡0 to 𝑡 , we obtain that:

𝑉 (𝑡) ≤ 1

𝜂

(
𝑚−𝜉
𝑚+𝜉

)
2

𝑡 +𝐶0

(41)

where 𝐶0 = 1

𝑉 (𝑡0) − 𝜂
(
𝑚−𝜉
𝑚+𝜉

)
2

𝑡0. This concludes the proof. □



Theorem 4.5. Let ē𝑗 be the (unique) pure best response against the fixed opponents’ joint strategy y. Then, in SPGD, there is at least a 𝑘 ≠ 𝑗

such that 𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
< 0. Moreover, if𝑚 > 2, there exists a non-empty subspace E ⊂ Δ𝑚 such that if x(𝑡) ∈ E then 𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
> 0 for some

𝑘 ∈ {1, . . . ,𝑚}, and the uniform initialization 1
𝑚 is always outside E. The set E is the set defined as:

E =
⋃
𝒃∈B

{
w ∈ Δ𝑚 |w = 𝛼 𝒃 + (1 − 𝛼) ē𝑗 , 1 > 𝛼 > 𝔅(𝒃)

}
,

where the set B ⊂ Δ𝑚 is the set of x such that 𝑥 𝑗 = 0, and 𝔅(𝒃) ∈ [0, 1] is a well defined quantity for each 𝒃 ∈ B.

Proof. Let us focus on the first statement of the theorem. From Equation (24), it follows that, if 𝑥 𝑗 (𝑡) ≥ 𝑥𝑘 (𝑡), then 𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
< 0 as

(𝐴 y)𝑘 < (𝐴 y) 𝑗 and x(𝑡)⊤𝐴 y < (𝐴 y) 𝑗 . However, such a conclusion cannot be drawn when 𝑥 𝑗 (𝑡) < 𝑥𝑘 (𝑡). We recall that, by defining

𝑑𝑘 := (𝐴 y) 𝑗 − (𝐴 y)𝑘 , and 𝐷 :=
∑𝑚
ℎ=1

𝑥ℎ (𝑡) 𝑑ℎ , Equation (24) can be rewritten as:

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
=
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

[
(𝑥𝑘 (𝑡) − 𝑥 𝑗 (𝑡)) 𝐷 − 𝑥𝑘 (𝑡) 𝑑𝑘

]
. (42)

Assume, by contradiction, that (𝑥𝑘 (𝑡) − 𝑥 𝑗 (𝑡)) 𝐷 − 𝑥𝑘 (𝑡) 𝑑𝑘 > 0,∀𝑘 ≠ 𝑗 . By summing up all the inequalities for every 𝑘 , we have:

0 <

𝑚∑
𝑘=1

(𝑥𝑘 (𝑡) − 𝑥 𝑗 (𝑡)) 𝐷 −
𝑚∑
𝑘=1

𝑥𝑘 (𝑡) 𝑑𝑘 = −𝑥 𝑗 (𝑡)𝑚𝐷 < 0, (43)

which contradicts our above assumption. This concludes the proof of the first statement of the theorem.

Let us focus on the second statement of the theorem and discuss separately the cases𝑚 > 2 and𝑚 = 2.

Case 1𝑚 > 2: Consider the simplex subspace:

B :=
{
x ∈ Δ𝑚 |𝑥 𝑗 = 0, 𝑥𝑘 > 0, ∀𝑘 ≠ 𝑗

}
.

We define w ∈ Δ𝑚 as a convex combination with parameter 𝛼 ∈ (0, 1) between 𝒃 ∈ B and ē𝑗 , formally, w(𝛼) = 𝛼 𝒃 + (1 − 𝛼) ē𝑗 . We claim

that for every 𝒃 ∈ B there is a scalar 𝔅(𝒃) ∈ (0, 1) such that, for every 𝛼 > 𝔅(𝒃), it holds w(𝛼) ∈ E and therefore, when x(𝑡) = w(𝛼), it
holds

𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
> 0 for some 𝑘 ∈ {1, . . . ,𝑚}. We observe that:

𝑤𝑘 (𝛼) =
{
𝛼 𝑏𝑘 𝑖 𝑓 𝑘 ≠ 𝑗

(1 − 𝛼) 𝑖 𝑓 𝑘 = 𝑗
. (44)

where𝑤𝑘 and 𝑏𝑘 are the 𝑘-th components of w and 𝒃 , respectively. By using Equation (44) in Equation (42) with x(𝑡) = w(𝛼), we obtain
∀𝑘 ≠ 𝑗 :

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
> 0 ⇐⇒ 𝛼 𝑏𝑘

(1 − 𝛼)

[
𝛼 (𝛼 𝑏𝑘 − (1 − 𝛼))

𝑚∑
ℎ=1

𝑏ℎ 𝑑ℎ − 𝛼 𝑏𝑘 𝑑𝑘

]
> 0. (45)

We can thus solve this inequality for 𝛼 for each 𝑘 ≠ 𝑗 and find that
𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
> 0 holds if and only if 𝛼 > 𝐵𝑘 (𝒃), where:

𝐵𝑘 (𝒃) :=

©«
𝑏𝑘 𝑑𝑘

𝑚∑
ℎ=1

𝑏ℎ 𝑑ℎ

+ 1

ª®®®¬
1

𝑏𝑘 + 1

. (46)

To conclude, we can define 𝔅(𝒃) as:

𝔅(𝒃) := min

𝑘≠𝑗

{
𝐵𝑘 (𝒃)

}
, (47)

since we need that
𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
> 0 for at least one 𝑘 . Finally, to prove that E is non-empty for𝑚 > 2, we show that 𝔅(𝒃) < 1. To prove that,

we assume by contradiction that 𝔅(𝒃) ≥ 1, this is equivalent to 𝐵𝑘 (𝒃) ≥ 1, ∀𝑘 ≠ 𝑗 , which can also be written as:

𝑏𝑘 𝑑𝑘
𝑚∑
ℎ=1

𝑏ℎ 𝑑ℎ

≥ 𝑏𝑘 , ∀𝑘 ≠ 𝑗 . (48)

Since by definition 1 ≥ 𝑏𝑘 ≥ 0, ∀𝑘 ≠ 𝑗 , we have that:

𝑑𝑘 ≥
𝑚∑
ℎ=1

𝑏ℎ 𝑑ℎ >

𝑚∑
ℎ=1

𝑑ℎ > 𝑑𝑘 , ∀𝑘 ≠ 𝑗, (49)



which is a contradiction and, therefore, 𝐵𝑘 (𝒃) < 1. Hence, E is non-empty and is defined as:

E =
⋃
𝒃∈B

{
w ∈ Δ𝑚 |w = 𝛼 𝒃 + (1 − 𝛼) ē𝑗 , 1 > 𝛼 > 𝔅(𝒃)

}
. (50)

Case 2𝑚 = 2: We have that 𝔅(𝒃) > 2

1+𝑏𝑘 > 1 for 𝑘 ≠ 𝑗 and, therefore, E = ∅.
To show that the uniform initialization x(𝑡) = 1/𝑚 ∉ E, we plug 𝑥𝑘 (𝑡) = 1/𝑚 ∀𝑘 in Equation (42), which provides:

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
= −𝑥𝑘 (𝑡)𝑑𝑘 ,

which is negative for all 𝑘 , as 𝑥𝑘 (𝑡) > 0, and 𝑑𝑘 > 0. □

B PROOF OF THEOREM 4.6
Theorem 4.6. Let 𝐴 be a non-degenerate zero sum game with unique fully mixed equilibrium. Then for each x(𝑡) ∈ Δ𝑚 s.t. x(𝑡) ≠ 1/𝑚 there

exists a strategy y ∈ Δ𝑚 s.t. x(𝑡) ∈ E. Moreover, the problem of finding such a y is a linear programming problem.

Proof. Form the proof of Lemma A.2 we know that:

𝑑

𝑑𝑡

(
𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

)
= 𝜂 𝜏

𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

[
𝑥𝑘 (𝑡)

(
(𝐴 y)𝑘 − x(𝑡)⊤𝐴 y

)
− 𝑥 𝑗 (𝑡)

(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

) ]
, (51)

and we want to find y so that
𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
> 0 for some 𝑘 . If x(𝑡) ≠ 1

𝑚 then there is one index in which x(𝑡) attains lowest value and an

index in which x(𝑡) attains highest value. Formally, define 𝑗 = arg inf

𝑖
𝑥𝑖 (𝑡) and 𝑘 any index different from 𝑗 , so that 𝑥 𝑗 (𝑡) < 𝑥𝑘 (𝑡). Clearly,

𝑑
𝑑𝑡

(𝑥𝑘 (𝑡)/𝑥 𝑗 (𝑡)) > 0 if and only if:

𝑥𝑘 (𝑡)
(
(𝐴 y)𝑘 − x(𝑡)⊤𝐴 y

)
> 𝑥 𝑗 (𝑡)

(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

)
. (52)

Suppose that one can find y such that Ω := (𝐴 y) 𝑗 − (𝐴 y)𝑘 > 0 and (𝐴 y) 𝑗 > (𝐴 y)𝑖 ∀𝑖 ≠ 𝑗 (this assumption will be justified later in the

proof). Define 𝑓 :=
∑

𝑖≠𝑗,𝑘

𝑥𝑖 (𝑡) (𝐴 y)𝑖 , then the condition of Equation (52) can be rewritten as:

𝑥𝑘 (𝑡)
(
(𝐴 y)𝑘 − 𝑥𝑘 (𝑡) (𝐴 y)𝑘 − 𝑥 𝑗 (𝑡) ((𝐴 y)𝑘 + Ω) − 𝑓

)
> (53)

𝑥 𝑗 (𝑡)
(
(𝐴 y)𝑘 + Ω − 𝑥𝑘 (𝑡) (𝐴 y)𝑘 − 𝑥 𝑗 (𝑡) ((𝐴 y)𝑘 + Ω) − 𝑓

)
, (54)

which, by algebraic manipulations, is in turn equivalent to:

Ω𝑥𝑘 (𝑡) (𝑥𝑘 (𝑡) − 𝑥 𝑗 (𝑡) − 1) > (55)

(𝑥𝑘 (𝑡) − 𝑥 𝑗 (𝑡))
[
(𝐴 y) 𝑗 (𝑥𝑘 (𝑡) + 𝑥 𝑗 (𝑡) − 1) + 𝑓

]
. (56)

which is verified for any Ω such that:

Ω <
𝑥𝑘 (𝑡) − 𝑥 𝑗 (𝑡)

𝑥𝑘 (𝑡) (𝑥𝑘 (𝑡) − 𝑥 𝑗 (𝑡) − 1)
[
(𝐴 y) 𝑗 (𝑥𝑘 (𝑡) + 𝑥 𝑗 (𝑡) − 1) + 𝑓

]
.

Note that the denominator and the term in squared brackets are negative. The denominator is negative simply because 𝑥𝑘 (𝑡), 𝑥 𝑗 (𝑡) are two
component of a probability vector and hence their sum is less than one. On the other hand, the term in squared brackets can be rewritten as

follows:

(𝐴 y) 𝑗 (𝑥𝑘 (𝑡) + 𝑥 𝑗 (𝑡) − 1) + 𝑓 = (𝐴 y) 𝑗
©«−

∑
𝑖≠𝑗,𝑘

𝑥𝑖 (𝑡)
ª®¬ +

∑
𝑖≠𝑗,𝑘

𝑥𝑖 (𝑡) (𝐴 y)𝑖 (57)

=
∑
𝑖≠𝑗,𝑘

𝑥𝑖 (𝑡)
(
(𝐴 y)𝑖 − (𝐴 y) 𝑗

)
, (58)

which is negative as by assumption (𝐴 y)𝑖 < (𝐴 y) 𝑗 for all 𝑖 ≠ 𝑗 . To conclude we have that if (𝐴 y)𝑖 < (𝐴 y) 𝑗 for all 𝑖 ≠ 𝑗 then for all Ω

positive and small enough one has that
𝑑
𝑑𝑡

(
𝑥𝑘 (𝑡 )
𝑥 𝑗 (𝑡 )

)
> 0. The assumption of being able to find a strategy y ∈ Δ𝑚 such that (𝐴 y)𝑖 < (𝐴 y) 𝑗 for

all 𝑖 ≠ 𝑗 (i.e., 𝒆 𝑗 is the best response) is guaranteed by the fact that there is a unique fully mixed equilibrium, by arguments based on linear

complementarity and the Lemke–Howson algorithm [48].

The problem of finding a y that induces the strategy x(𝑡) to be a bad initialization is a linear problem. Indeed one could find such a y by

solving the following problem for all 𝑘 :



max

y

𝑥𝑘 (𝑡)
𝑥 𝑗 (𝑡)

[
𝑥𝑘 (𝑡)

(
(𝐴 y)𝑘 − x(𝑡)⊤𝐴 y

)
− 𝑥 𝑗 (𝑡)

(
(𝐴 y) 𝑗 − x(𝑡)⊤𝐴 y

) ]
s.t.

𝑚∑
𝑖=1

𝑦𝑖 = 1

𝑦𝑖 ≥ 0

(𝐴 y) 𝑗 > (𝐴 y)𝑖 ∀ 𝑖 ≠ 𝑗,

which is a linear problem in y and always feasible for the assumption of fully mixed equilibrium.

□

C OMITTED PROOFS FROM SECTION 5
In this section we provide all the results regarding the behaviour of SPGD in multi-agent environments.

C.1 Omitted Proofs from Section 5.1
In this section we will provide all the proofs for the behaviour of SPGD in the case of a single population.

Lemma 5.1. SPGD satisfy properties NS, when restricting to int(Δ𝑚), and PC.

Proof. Let us focus on the NS property. Initially, we show that a stationary strategy for SPGD is a Nash equilibrium of the population

game. Let x̄ ∈ int(Δ𝑚) be a stationary strategy of SPGD. For every 𝑘 , we have ΠSPGD (x̄)𝑘 = x̄⊤ ΠSPGD (x̄). Notice that, for every x ∈ Δ𝑚 ,

SPGD satisfy the following property: ∑
𝑘

ΠSPGD (x)𝑘 =
∑
𝑘

(Ψ(x)𝐴 x)𝑘 =
∑
𝑘

𝑥𝑘 ((𝐴 x)𝑘 − x⊤𝐴 x)

=
∑
𝑘

𝑥𝑘 (𝐴 x)𝑘 − x⊤𝐴 x
∑
𝑘

𝑥𝑘 = 0,

for every x ∈ Δ𝑚 . Therefore, it holds that:

𝑚 x̄⊤ ΠSPGD (x̄) =
∑
𝑘

x̄⊤ ΠSPGD (x̄) =
∑
𝑘

ΠSPGD (x̄)𝑘 = 0,

and, thus, x̄⊤ Π(x̄) = 0. Recalling that x̄ is stationary for SPGD, we obtain ΠSPGD (x̄)𝑘 = x̄⊤ ΠSPGD (x̄) = 0 for every 𝑘 . Using the definition

of ΠSPGD we have:

ΠSPGD (x)𝑘 = 𝑥𝑘 ((𝐴 x)𝑘 − x⊤ 𝐴 x) = 0,

for every 𝑘 ∈ {1, . . . ,𝑚}. Therefore, (𝐴 x̄)𝑘 − x̄⊤𝐴 x̄ = 0 as x̄ ∈ int(Δ𝑚), and, thus, x̄ is a Nash equilibrium.

Now, we show that a Nash equilibrium of the population game is stationary for SPGD. We recall that a NE x̄ ∈ int(Δ𝑚) is such that

(𝐴x̄)𝑘 = x̄⊤𝐴x̄ for every 𝑘 ∈ {1, . . . ,𝑚}. By definition of ΠSPGD, we have:

ΠSPGD (x̄)𝑘 = 𝑥𝑘 ((𝐴 x̄)𝑘 − x̄⊤𝐴 x̄)︸                ︷︷                ︸
=0

= 0,

for every 𝑘 ∈ {1, . . . ,𝑚}. Therefore, ΠSPGD (x̄)𝑘 = 0 and thus x̄ is also a stationary strategy of SPGD.

Let us focus on the PC property. We need to show that ¤x⊤𝐴 x > 0 for all strategies x that are not stationary. In particular, we have:

¤x⊤𝐴 x = 𝜂𝜏
∑
𝑖

𝑥𝑖
(
ΠSPGD (x)𝑖 − x⊤ ΠSPGD (x)

)
(𝐴 x)𝑖 (59)

= 𝜂𝜏
∑
𝑖

𝑥𝑖ΠSPGD (x)𝑖 (𝐴 x)𝑖 − x⊤ ΠSPGD (x)
∑
𝑖

𝑥𝑖 (𝐴 x)𝑖 (60)

= 𝜂𝜏
∑
𝑖

ΠSPGD (x)𝑥𝑖 ((𝐴 x)𝑖 − x⊤𝐴 x) (61)

= 𝜂𝜏 | |ΠSPGD (x) | |22 > 0, (62)

where the strict inequality in Equation (62) holds since we are in a non-stationary point x. □

Lemma 5.3. If x̄ ∈ int(Δ𝑚) is a RESS for the symmetric normal-form game 𝐴, then x̄ is a RESS for the population game defined with fitness
function ΠSPGD (x).



Proof. Since x̄ ∈ int(Δ𝑚), Condition (i) of Definition 5.2 is trivially satisfied. Thus, it is sufficient to check Condition (ii). By the definition
of derivative, we have:

𝜕ΠSPGD (x)𝑘
𝜕𝑥 𝑗

= 𝛿𝑘,𝑗 (e𝑘 − x)⊤𝐴 x+𝑥𝑘
(
𝐴𝑘,𝑗 − e⊤𝑗

(
𝐴 +𝐴⊤)

x
)
.

Since x̄ is a RESS, it is also a NE, and, therefore, it holds e𝑖 𝐴 x = x⊤ 𝐴 x. Thus, we have the following:

𝜕ΠSPGD (x)𝑘
𝜕𝑥 𝑗

�����
x=x̄

= 𝑥𝑘

(
𝐴𝑘,𝑗 − e⊤𝑗

(
𝐴 +𝐴⊤)

x̄
)
= 𝑋 ⊙ 𝑃,

where ⊙ is the element-wise (Hadamard) product, 𝑋 ∈ R𝑚×𝑚
is a matrix whose rows are all equal to x̄ (i.e. 𝑋 = 1 x̄⊤) and 𝑃 ∈ R𝑚×𝑚

is a

matrix whose elements are defined by [𝑃]𝑘,𝑗 := (𝐴𝑘,𝑗 − e⊤
𝑗
(𝐴 +𝐴⊤)x̄). We observe that matrix 𝑃 is negative definite on 𝔗 as the following

holds: ∑
𝑘,𝑗

𝑧𝑘 𝑧 𝑗 𝑃𝑘,𝑗 =
∑
𝑘,𝑗

[
𝑧𝑘 𝑧 𝑗 𝐴𝑘,𝑗 − e⊤𝑗 (𝐴 +𝐴⊤) x

]
(63)

< −
∑
𝑘,𝑗

𝑧𝑘 𝑧 𝑗 e
⊤
𝑗 (𝐴 +𝐴⊤) x (64)

= −
∑
𝑘

𝑧𝑘

∑
𝑗

e⊤𝑗 (𝐴 +𝐴⊤) x = 0. (65)

By resorting to the proof of the Schur Product Theorem, we can also prove that 𝑋 ⊙ 𝑃 is negative definite. Let us define 𝐵 = −𝑃 which is

positive definite. In particular also 𝐵⊤ is positive definite and thus admits a square root

√
𝐵⊤. Notice that 𝑋 2 = 1 x̄⊤ 1 x̄⊤ = 1 x̄⊤ = 𝑋 , since

x̄⊤1 = 1, and hence we can write

√
𝑋 = 𝑋 , and, hence,

√
𝑋 is well defined. Therefore, the matrix 𝑋 ⊙ 𝐵 is definite positive since:

z⊤ (𝑋 ⊙ 𝐵) z = 𝑡𝑟 (𝐵⊤ diag(z)𝑋 diag(z)) (66)

= 𝑡𝑟

©«
√
𝐵⊤ diag(z)

√
𝑋︸               ︷︷               ︸

𝐶⊤

√
𝑋 diag(z)

√
𝐵⊤︸               ︷︷               ︸

𝐶

ª®®®¬ (67)

= 𝑡𝑟 (𝐶⊤𝐶) > 0. (68)

This proves Condition (ii) and therefore it concludes the proof. □

Theorem 5.4. Let x̄ ∈ intΔ𝑚 be an ESS for the symmetric normal-form game 𝐴. Then, it is asymptotically stable for SPGD.

Proof. Let x̄ ∈ intΔ𝑚 be a fully mixed ESS for a symmetric normal-form game. By [39, Section VII.4], we know that for a symmetric

normal-form game an internal ESS if and only if z⊤𝐴z < 0, ∀z ∈ 𝔗. This condition is equivalent to condition (𝑖𝑖) of the Definition 5.2 of

RESSs. Hence, every fully mixed ESS is also a RESS in symmetric normal form games. To conclude, we use Lemma 5.3 which states that

every RESS of the symmetric normal-form game with matrix 𝐴 is a RESS of the population game defined by fitness function ΠSPGD (x).
Hence, they are asymptotically stable for the SPGD. □

C.2 Proofs Omitted from Section 5.2
In this section we will provide all the proofs for the behaviour of SPGD in the case of two agents co-learning using the SPGD dynamics.

Lemma C.1. Let (x̄, ȳ) be a NE for P. Then Π
(𝐴)
SPGD (x̄, ȳ)𝑘 = 0 for all actions 𝑎𝑘 in the support of x̄ and Π𝐵

SPGD (x̄, ȳ) 𝑗 = 0 for all action 𝑎 𝑗 in
the support of ȳ.

Proof. Let us start by considering Π
(𝐴)
SPGD (x̄, ȳ)𝑘 , for an action 𝑎𝑘 in the support of x̄. Since (x̄, ȳ) is a NE, Π (𝐴)

SPGD (x̄, ȳ)𝑘 = x̄⊤Π (𝐴)
SPGD (x̄, ȳ).

Summing over actions 𝑎𝑘 in the support of x, we get:∑
𝑘 :𝑥𝑘>0

[
x̄⊤Π (𝐴)

SPGD (x̄, ȳ)
]
=

∑
𝑘 :𝑥𝑘>0

Π
(𝐴)
SPGD (x̄, ȳ)𝑘 = 0,

which means that x⊤ Π
(𝐴)
SPGD (x̄, ȳ) = 0, and, therefore, we have that Π

(𝐴)
SPGD (x̄, ȳ)𝑘 = 0 for very 𝑎𝑘 in the support. The same arguments can

be used to prove the statement of the lemma concerning Π𝐵
SPGD. □

Theorem 5.5. In every normal-form game, it holds that:

NE(G) ∩ {int(Δ𝑚) × int(Δ𝑚)} = NE(P) ∩ {int(Δ𝑚) × int(Δ𝑚)}.



Proof. Let (x̄, ȳ) ∈ NE(G) ∩ {int(Δ𝑚) × int(Δ𝑚)}. We prove the first inclusion by showing that Π𝐴
SPGD (x, ȳ) = 0𝑚 for all x ∈ Δ𝑚 and

Π𝐵
SPGD (x̄, y) = 0𝑚 for all y ∈ Δ𝑚 . Observe that, by Lemma C.1, these two conditions together are equivalent to satisfying the NE conditions

for (x̄, ȳ) in P. Indeed, since (x̄, ȳ) is fully mixed, it holds that (𝐴 ȳ) = 𝑐 1 for some constant 𝑐 . Plugging this into the definition of Π𝐴
SPGD, we

get that:

Π𝐴
SPGD (x, ȳ)𝑘 = 𝑥𝑘 ((𝐴 ȳ)𝑘 − x⊤𝐴 ȳ) = 𝑥𝑘 (𝑐 − 𝑐 x⊤ 1) = 0, (69)

for all 𝑘 and x ∈ Δ𝑚 . The same reasoning can be used to show that Π𝐵
SPGD (x̄, y) = 0𝑚 for all y ∈ Δ𝑚 , thus showing the inclusion.

Let now (x̄, ȳ) ∈ NE(P) ∩ {int(Δ𝑚) × int(Δ𝑚)}. By Lemma C.1, since x̄ and ȳ are interior points, it holds that Π
(𝐴)
SPGD (x̄, ȳ)𝑘 = 0 for all

0 ≤ 𝑘 ≤ 𝑚 and Π𝐵
SPGD (x̄, ȳ) 𝑗 = 0 for all for all 0 ≤ 𝑗 ≤ 𝑚. Thus the only way in which this necessary condition can be satisfied is that

(𝐴 y)𝑘 − x⊤𝐴 y = 0 and (𝐵 x) 𝑗 − y⊤ 𝐵 x = 0 for all 0 ≤ 𝑘 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑚. This in turns shows that (x̄, ȳ) is a NE for G, which concludes

the proof. □

Lemma 5.6. The flow of SPGD preserves a volume form in int(Δ𝑚 × Δ𝑚).

Proof. As in the proof for RD made in [38, Proposition 6] we will show that a reparametrization of the RD w.r.t. time is divergence free

in intΔ𝑚 × intΔ𝑚 . In particular the reparametrization used in [38] is defined on intΔ𝑚 × intΔ𝑚 as follows:

𝜁 1 (x, y) = 1

𝑃 (x, y) ¤x

𝜁 2 (x, y) = 1

𝑃 (x, y) ¤y

where 𝑃 (x, y) = ∏𝑚
𝑖=1

𝑥𝑖 ·
∏𝑚

𝑗=1
𝑦 𝑗 . Observe that the reparametrization is well-defined, since we are in intΔ𝑚 × intΔ𝑚 . The divergence is

computed on the simplex, i.e. substituting the usual 𝑖 -th partial derivative, with the directional derivatives in the directions x−ē𝑖 or y−ē𝑖 . In
particular, if we call the directional derivative ’𝜕𝑖 ’ we have that, for each real function 𝑔(z):

𝜕𝑖𝑔 =
𝜕𝑔

𝜕𝑧𝑖
− z · ∇(𝑔(z)) . (70)

From now on, we will do all the calculations for 𝜁 1
. We omit the ones for 𝜁 2

, since they are exactly the same. In particular, the 𝑖-th directional

derivative of 𝜁 1

𝑖
is the following:

𝜕𝑖𝜁 1

𝑖 (x, y) =
1

𝑃 (x, y)

[
𝜕𝑖 ¤𝑥𝑖 −

¤𝑥𝑖
𝑃 (x, y) 𝜕

𝑖𝑃 (x, y)
]

=
1

𝑃 (x, y)

[
𝜕𝑖 ¤𝑥𝑖 − 𝜂𝜏 (1 −𝑚𝑥𝑖 )

(
Π
(𝐴)
SPGD (x, y)𝑖 − x⊤ Π

(𝐴)
SPGD (x, y)

)]
.

In the following, we will compute 𝜕𝑖 ¤𝑥𝑖 . In particular:

𝜕𝑖 ¤𝑥𝑖
𝜂𝜏

= Π
(𝐴)
SPGD (x, y)𝑖 − x⊤ Π

(𝐴)
SPGD (x, y) + 𝑥𝑖

©«
𝜕Π

(𝐴)
SPGD (x, y)𝑖
𝜕𝑥𝑖

−
𝜕 x⊤ Π

(𝐴)
SPGD (x, y)
𝜕𝑥𝑖

ª®¬
− 𝑥𝑖

∑
𝑘

𝑥𝑘
©«
𝜕Π

(𝐴)
SPGD (x, y)𝑖
𝜕𝑥𝑘

−
𝜕 x⊤ Π

(𝐴)
SPGD (x, y)
𝜕𝑥𝑘

ª®¬ − 𝑥𝑖
(
Π
(𝐴)
SPGD (x, y)𝑖 − x⊤ Π

(𝐴)
SPGD (x, y)

)
.

Observe that the following equalities hold (by direct calculation):

𝜕Π
(𝐴)
SPGD (x, y)𝑖
𝜕𝑥𝑖

=
(
(𝐴 y)𝑖 − x⊤𝐴 y

)
− 𝑥𝑖 (𝐴 y)𝑖

𝜕Π
(𝐴)
SPGD (x, y)𝑖
𝜕𝑥𝑘

= −𝑥𝑖 (𝐴 y)𝑘

𝜕 x⊤ Π
(𝐴)
SPGD (x, y)
𝜕𝑥𝑘

= 2Π
(𝐴)
SPGD (x, y)𝑘 − (𝐴 y)𝑘

∑
𝑗

𝑥2

𝑗 .

Thus we can rewrite 𝜕𝑖 ¤𝑥𝑖/𝜂𝜏 as:

𝜕𝑖 ¤𝑥𝑖
𝜂𝜏

= (1 − 𝑥𝑖 )
(
Π
(𝐴)
SPGD (x, y)𝑖 − x⊤ Π

(𝐴)
SPGD (x, y)

)
+ (1 − 2𝑥𝑖 )Π (𝐴)

SPGD (x, y)𝑖 + 𝑥𝑖 (𝐴 y)𝑖
©«
∑
𝑗

𝑥2

𝑗 − 𝑥𝑖
ª®¬



− 𝑥𝑖
∑
𝑘

𝑥𝑘

(𝐴 y)𝑘
©«
∑
𝑗

𝑥2

𝑗 − 𝑥𝑖
ª®¬ − 2Π

(𝐴)
SPGD (x, y)𝑘

 .
By summing up on all indexes 𝑖 we obtain:

𝑃 (x, y)
𝜂𝜏

∑
𝑖

𝜁 1

𝑖 (x, y) =
∑
𝑖

[𝜕 ¤𝑥𝑖−( Π (𝐴)
SPGD (x, y)𝑖 − x⊤ Π

(𝐴)
SPGD (x, y) ) (1 −𝑚𝑥𝑖 )]

= (𝑚 − 1)
∑
𝑖

¤𝑥𝑖 +
∑
𝑖

(1 − 2𝑥𝑖 )Π (𝐴)
SPGD (x, y)𝑖 + 2

∑
𝑖

𝑥𝑖 x⊤ Π
(𝐴)
SPGD (x, y)+

+
∑
𝑖

𝑥𝑖 (𝐴 y)𝑖
©«
∑
𝑗

𝑥2

𝑗 − 𝑥𝑖
ª®¬ −

∑
𝑖

𝑥𝑖

∑
𝑘

𝑥𝑘 (𝐴 y)𝑘
©«
∑
𝑗

𝑥2

𝑗 − 𝑥𝑖
ª®¬ = 0.

where we have used the fact that: ∑
𝑖

Π
(𝐴)
𝑖

(x, y) =
∑
𝑖

¤𝑥𝑖 = 0.

The calculation for 𝜁 2
are exactly the same and thus we obtain that the vector field has null divergence. □

Theorem 5.7. No closed set in int(Δ𝑚 × Δ𝑚) is asymptotically stable for the SPGD.

Proof. This theorem has been proved for the RD (and for more general kinds of dynamics) in [38, Proposition 6]. The key passage of

their proof is exactly the equivalent of Lemma 5.6, and it is also the only passage in the proof in which the multi-linearity of the payoffs has

been used. Thus the rest of the proof holds exactly the same, given Lemma 5.6. We point to [38] for the rest of the proof. □
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