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ABSTRACT
Recently, game-playing agents based on AI techniques have demon-

strated super-human performance in several sequential games, such

as chess, Go, and poker. Surprisingly, the multi-agent learning tech-

niques that allowed to reach these achievements do not take into
account the actual behavior of the human player, potentially lead-

ing to an impressive gap in performances. In this paper, we address

the problem of designing artificial agents that learn how to effec-

tively exploit unknown human opponents while playing repeatedly

against them in an online fashion. We study the case in which the

agent’s strategy during each repetition of the game is subject to

constraints ensuring that the human’s expected utility is within

some lower and upper thresholds. Our framework encompasses sev-

eral real-world problems, such as human engagement in repeated

game playing and human education by means of serious games.
As a first result, we formalize a set of linear inequalities encod-

ing the conditions that the agent’s strategy must satisfy at each

iteration in order to not violate the given bounds for the human’s

expected utility. Then, we use such formulation in an upper confi-

dence bound algorithm, and we prove that the resulting procedure

suffers from sublinear regret and guarantees that the constraints

are satisfied with high probability at each iteration. Finally, we

empirically evaluate the convergence of our algorithm on standard

testbeds of sequential games
1
.

KEYWORDS
Algorithmic Game Theory; Multiagent Learning; Online Learning;

Sequential Decision Making

1 INTRODUCTION
Algorithmic game theory and machine learning have recently con-

tributed to groundbreaking achievements in artificial intelligence,

leading to the deployment of artificial agents that defeated top

human professionals in several recreational games. See, for exam-

ple, the well-known milestones achieved in chess [10], Go [28],

and poker [8, 9]. Surprisingly, multi-agent learning techniques that

have been recently employed in such settings learn how to defeat

1
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humans without taking into account their actual behavior. Indeed,

they learn strategies by simulating millions of plays in a self-play

approach, without including any human player in the learning

process. A direct effect of this methodology is that the resulting

artificial agents do not adapt to the actual capabilities of humans,

potentially leading to an impressive gap in performances compared

to the case in which the agent learns strategies while taking them

into account.

In this paper, we address the problem of designing artificial

agents that learn how to effectively exploit unknown human oppo-

nents while playing repeatedly against them in an online fashion.
In particular, we study the case in which the strategy that the agent

plays during each repetition of the game is subject to constraints

ensuring that the human’s expected utility is within some lower

and upper thresholds. Our framework models several real-world

human-agent interactions, and it begets additional technical chal-

lenges compared to simple pure-exploitation scenarios.

One prominent application of our framework is when the artifi-

cial agent’s goal is not only exploiting the human opponent, but

also ensuring that he/she remains engaged in the game. Guaran-

teeing humans’ engagement is crucial when designing artificial

agents that play repeatedly against humans. Indeed, when playing

against a super-human agent, most human players drop out from

game playing, since they realize they are losing too often against it.

As Egri-Nagy and Törmänen [14] sharply observe, it is “hopeless
and frustrating to play against an AI, since it is practically impossi-
ble to win”. Different forms of engagement can be imagined (see,

e.g., [1] for examples in computer games). In our framework, the

human’s engagement is modeled with the threshold constraints

over his/her expected utility, with the following rationale. If the

utility value falls under a given satisfaction threshold, then the hu-

man will get bored playing, as he/she loses too much and believes

he/she has no hope to win. On the other hand, if such value raises

above another given threshold, then the human will get bored since

he/she is winning too often.

Another application scenario for our framework is that of serious
games [13], whose purpose is to educate humans by asking them

to perform tasks engagingly. If some tasks are excessively hard for

the actual human’s capabilities, then the human will give up the

training of the entire set of tasks, since he/she is sure that he/she

will never be able to address them. On the other hand, if some

tasks are excessively easy, the human will give up the training since
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he/she is sure that he/she can solve all remaining tasks. Serious

games are used in many different fields, such as, e.g., military [11],

transportation [26], urban planning [25], and healthcare [30], and

can be modeled as general-sum games between a human learner

and a computer teacher [23].

Original contributions. We study two-player sequential (i.e., with
extensive form) games in which an artificial agent repeatedly plays

against an unknown human opponent. We assume that the human

has a fixed stochastic behavior and he/she does not learn over time.

We do not make any structural assumption on the human’s strategy,

which requires the agent learning a probability distribution for

each decision point of the human. While this is a crucial first step

towards a more complex setting in which the human learns over

time, the resulting model still presents several technical challenges

that are worth to be investigated. First, we show how to derive,

after each game repetition, a confidence region for the human’s

strategy such that his/her actual strategy stays within it with high

probability. We show that such region is characterized by a set of

linear constraints defined over the sequence-form strategy space.

Notice that, during each game repetition, the agent only observes

a partial sample of the human’s strategy, made by the human’s

actions on the path in the game tree followed during play. By

exploiting strong duality and the specific structure of the confidence

region, we show that the thresholds constraints on the human’s

expected utility can be formulated as a set of linear inequalities,

whose cardinality is linear in the size of the game tree. In particular,

these constraints describe a subspace of the agent’s sequence-form

strategy space such that, for every possible human’s strategy in

the confidence region, the human’s expected utility is within the

given thresholds. We also derive a linear program with a linear

number of constraints and variables to find the best agent’s strategy

satisfying the constraints. Then, we design an upper confidence

bound algorithm, called COX-UCB, and we prove that it suffers

from a sublinear regret and guarantees that the aforementioned

constraints are satisfied with high probability at every iteration.

Finally, we empirically evaluate the convergence of our algorithm

on standard testbeds and show that our bounds are asymptotically

tight.
2

Related works. Our work is mainly related to opponent model-

ing, whose primary goal is to build models describing the behavior

of one or multiple opponents from past interactions. Many meth-

ods are known in the literature. Specifically, Mealing and Shapiro

[24] and Foerster et al. [15] propose a method to infer the parame-

ters of the opponents’ policies from the data collected during past

interactions. Instead, several other works propose methods that

use beliefs over a fine set of opponents’ types distinguishing for

their behavior: Albrecht and Ramamoorthy [3] treat types as black-

box mappings, Albrecht and Stone [4] infer parameters for the

types, Barrett and Stone [6] use deep learning to explicitly learn

models, while He and Boyd-Graber [20] do the same implicitly.

These methods usually require huge amount of training data to

be precise and adaptable to new opponents. In a recent work, Wu

et al. [31] propose a learning-to-exploit deep framework for im-

plicit opponent modeling and an adversarial training procedure to

2
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automatically generate opponents so as to reduce the data needed

for training. An approach that has more common ground with

ours is the one adopted by Ganzfried and Sandholm [16], who

propose a game-theoretic approach to develop a deviation-based

best-response algorithm. In particular, the work builds an opponent

model based on the deviations between the opponent’s strategy

and a precomputed approximate equilibrium, and, then, computes

a best response in real-time. The only works providing theoretical

guarantees are [17, 18], which deal with safe opponent exploita-

tion, i.e., guaranteeing a certain agent’s payoff in expectation, given

any opponent’s strategy. Differently, in our setting, the goal is to

guarantee a certain human’s expected utility.

2 PRELIMINARIES
In this section, we review the basic concepts and definitions related

to sequential games that we need in the rest of this work (see the

book by Shoham and Leyton-Brown [27] for more details).

Extensive-form games. We focus on two-player extensive-form
games (EFGs) with imperfect information in which an artificial

agent faces a human opponent. We denote by 𝑖 the agent player,

while 𝑗 is the human. Then, the set of players is 𝑃 ∪ {𝑐}, where
we let 𝑃 B {𝑖, 𝑗} and 𝑐 denotes a chance player that selects actions
according to fixed known probabilities, representing exogenous

stochasticity. An EFG is usually defined by means of a game tree,
where 𝐻 is the set of nodes of the tree and 𝑍 ⊆ 𝐻 is the subset

of terminal nodes, which are the leaves of the game tree. A node

ℎ ∈ 𝐻 is identified by the ordered list of actions encountered on

the path from the root of the game tree to the node. Given a non-

terminal node ℎ ∈ 𝐻 \ 𝑍 , we let 𝑃 (ℎ) ∈ 𝑃 ∪ {𝑐} be the unique

player who acts at ℎ and 𝐴(ℎ) be the set of actions he/she has

available. We let 𝑢𝑖 , 𝑢 𝑗 : 𝑍 → R be the payoff functions of players

𝑖 and 𝑗 , respectively. Moreover, we denote by 𝑝𝑐 : 𝐻 → [0, 1] the
function assigning each node ℎ ∈ 𝐻 to the product of probabilities

of chance moves on the path from the root of the game tree to ℎ.

Imperfect information is encoded by using information sets (infosets
for short). A player 𝑖’s infoset 𝐼 groups nodes belonging to player 𝑖

that are indistinguishable for him/her, that is, 𝐼 ⊆ 𝐻 \𝑍 is such that

𝑃 (ℎ) = 𝑃 (𝑘) = 𝑖 and 𝐴(ℎ) = 𝐴(𝑘) for any pair of nodes ℎ, 𝑘 ∈ 𝐼 .
We let I be the set of player 𝑖’s infosets, which define a partition

of the set of player 𝑖’s non-terminal nodes {ℎ ∈ 𝐻 \ 𝑍 | 𝑃 (ℎ) = 𝑖}.
Moreover, with a slight abuse of notation, we let 𝐴(𝐼 ) be the set
of actions available at all the nodes in infoset 𝐼 ∈ I. Analogously,
we define J as the set of player 𝑗 ’s infosets, while, for any infoset

𝐽 ∈ J , we let 𝐴(𝐽 ) be the set of actions available at nodes in 𝐽 . We

focus on games with perfect recall in which infosets are such that

no player forgets information once acquired.

The sequence form of EFGs. The sequence form is a compact way

of representing EFGs with perfect recall [21, 29], where the pure

strategies of a player—specifying an action at each infoset of that

player—are replaced by the concept of sequence. Any nodeℎ ∈ 𝐻 de-

fines a sequence 𝜎𝑖 (ℎ) of player 𝑖 , which is identified by the ordered

list of player 𝑖’s actions on the path from the root of the game tree to

ℎ. In perfect-recall EFGs, all the nodes belonging to an infoset 𝐼 ∈ I
of player 𝑖 define the same player 𝑖’s sequence, which, by overload-

ing notation, we denote by 𝜎𝑖 (𝐼 ). Sequence 𝜎𝑖 (𝐼 ) can be extended
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by appending any action 𝑎 ∈ 𝐴(𝐼 ) available at 𝐼 at its end, obtaining
another valid player 𝑖’s sequence that we denote as 𝜎𝑖 (𝐼 )𝑎. Then, the
set of player 𝑖’s sequences is Σ𝑖 B {𝜎𝑖 (𝐼 )𝑎 | 𝐼 ∈ I, 𝑎 ∈ 𝐴(𝐼 )}∪ {∅},
where ∅ is the empty sequence (defined by all the nodes such

that player 𝑖 never plays before them in the game tree). Analo-

gously, we define Σ 𝑗 B
{
𝜎 𝑗 (𝐽 )𝑎 | 𝐽 ∈ J , 𝑎 ∈ 𝐴(𝐽 )

}
∪ {∅} as the

set of all player 𝑗 ’s sequences. Mixed strategies in the sequence

form are specified by defining the realization probability of each se-

quence. A sequence-form strategy of player 𝑖 is denoted by a vector

𝒙 ∈ [0, 1] |Σ𝑖 | , with 𝒙 [𝜎𝑖 ] being the realization probability of se-

quence 𝜎𝑖 ∈ Σ𝑖 .3 To be well defined, a sequence-form strategy must

satisfy a set of linear constraints, ensuring that realization proba-

bilities of sequences encode a valid probability distribution over

actions at each infoset. Formally, any 𝒙 ∈ [0, 1] |Σ𝑖 | must satisfy:

𝒙 [∅] = 1, and 𝒙 [𝜎𝑖 (𝐼 )] =
∑︁

𝑎∈𝐴(𝐼 )
𝒙 [𝜎𝑖 (𝐼 )𝑎] ∀𝐼 ∈ I . (1)

Constraints (1) can be written as 𝑭 𝑖𝒙 = 𝒇 𝑖 , where 𝑭 𝑖 ∈ {−1, 0, 1}ℓ ,
where ℓ := ( |I| + 1) × |Σ𝑖 |, and 𝒇 𝑖 ∈ {0, 1} |I |+1 are a suitably-

defined matrix and vector, respectively (see [29] for their defini-

tions). Analogously, we denote sequence-form strategies of player 𝑗

as vectors 𝒚 ∈ [0, 1] |Σ 𝑗 |
that satisfy the condition 𝑭 𝑗𝒚 = 𝒇 𝑗 , which

is defined by linear constraints analogous to Constraints (1). For

the ease of presentation, we let X B
{
𝒙 ∈ [0, 1] |Σ𝑖 | | 𝑭 𝑖𝒙 = 𝒇 𝑖

}
and Y B

{
𝒚 ∈ [0, 1] |Σ 𝑗 | | 𝑭 𝑗𝒚 = 𝒇 𝑗

}
be the sets of all sequence-

form strategies of players 𝑖 and 𝑗 , respectively. Finally, given two

strategies 𝒙 ∈ X and 𝒚 ∈ Y, it is easy to check that player 𝑖’s

expected payoff can be written as the bilinear form 𝒙⊤𝑼 𝑖𝒚, where
𝑼 𝑖 ∈ R |Σ𝑖 |× |Σ 𝑗 |

is player 𝑖’s sequence-form utility matrix, defined
∀𝜎𝑖 ∈ Σ𝑖 , ∀𝜎 𝑗 ∈ Σ 𝑗 as:

𝑼 𝑖 [𝜎𝑖 , 𝜎 𝑗 ] B
∑︁

𝑧∈𝑍 :𝜎𝑖 (𝑧)=𝜎𝑖∧𝜎 𝑗 (𝑧)=𝜎 𝑗

𝑝𝑐 (𝑧)𝑢𝑖 (𝑧) .

Analogously, the sequence-form utility matrix of player 𝑗 is 𝑼 𝑗 ∈
R |Σ𝑖 |× |Σ 𝑗 |

, and, thus, 𝒙⊤𝑼 𝑗𝒚 is his/her expected payoff given two

sequence-form strategies 𝒙 ∈ X and 𝒚 ∈ Y.

Additional notation. Given two sequences 𝜎𝑖 , 𝜎
′
𝑖
∈ Σ𝑖 of player 𝑖 ,

we write 𝜎𝑖 ⊑ 𝜎 ′𝑖 to denote that 𝜎𝑖 is a sub-sequence of 𝜎 ′𝑖 ; formally,

this is the case whenever the ordered list of actions identified by

𝜎𝑖 is a prefix of that of 𝜎 ′
𝑖
. Similarly, we use notation 𝜎 𝑗 ⊑ 𝜎 ′𝑗 for

two sequences 𝜎 𝑗 , 𝜎
′
𝑗
∈ Σ 𝑗 of player 𝑗 . Moreover, given a player

𝑖’s sequence-form strategy 𝒙 ∈ X and a player 𝑗 ’s infoset 𝐽 ∈ J ,

we let 𝜌−𝑗 (𝐽 , 𝒙) be the probability of reaching 𝐽 given that player

𝑗 plays so as to reach it and player 𝑖 plays 𝒙 (also accounting for

chance probabilities); formally 𝜌−𝑗 (𝐽 , 𝒙) B
∑
ℎ∈𝐽 𝒙 [𝜎𝑖 (ℎ)]𝑝𝑐 (ℎ).

3 EXPLOITING OPPONENTS UNDER UTILITY
CONSTRAINTS

We study settings in which the agent player 𝑖 repeatedly faces the

human opponent 𝑗 in a two-player EFG. Our goal is the design

of agents that learn the strategy of the human so as to effectively

3
In this work, we denote vectors by bold symbols. Given a finite set 𝑆 of dimension

|𝑆 | = 𝑑 , we denote by 𝒗 ∈ R|𝑆 | a 𝑑-dimensional vector indexed over 𝑆 , with 𝒗 [𝑠 ]
being its component corresponding to 𝑠 ∈ 𝑆 .

exploit it, while at the same time guaranteeing that the human’s

expected utility remains under control during the entire repeated

interaction.
4
In the rest of this section, we formally introduce our

problem and provide a general overview of the approach we under-

take to tackle it.

We let 𝑇 be the number of times the EFG is played. Player 𝑗

plays according to the same sequence-form strategy 𝒚∗ ∈ Y at

each iteration 𝑡 ∈ [𝑇 ].5 This strategy is unknown to player 𝑖 . On

the other hand, at iteration 𝑡 , player 𝑖 selects and plays a strategy

𝒙𝑡 ∈ X. Then, at the end of the iteration, player 𝑖 receives as

feedback a sequence of player 𝑗 ’s actions 𝜎𝑡
𝑗
∈ Σ 𝑗 , which is defined

by the path in the game tree followed during game playing at that

iteration (notice that 𝜎𝑡
𝑗
is made of actions sampled according to

player 𝑗 ’s strategy 𝒚∗). In the following, for 𝑡 ∈ [𝑇 ], we let H𝑡

be the history of feedbacks received by the agent player 𝑖 up to

iteration 𝑡 (included), namelyH𝑡 B
(
𝜎1

𝑗
, 𝜎2

𝑗
, . . . 𝜎𝑡

𝑗

)
.

To ensure that player 𝑗 ’s utility is kept under control during

the repeated interaction, player 𝑖 must play strategies 𝒙𝑡 such that

the resulting player 𝑗 ’s expected utilities are within some given

thresholds. The lower limit of the range ensures that the agent does

not over-exploit the human. On the other hand, the upper limit of

the range guarantees that the expected payoff of the human is not
too high. Formally, we require 𝒙𝑡 ∈ X𝑡 , where the subset X𝑡 ⊆ X
is defined as follows:

Definition 3.1 (Utility-constrained Strategy Set). Let 𝑡 ∈ [𝑇 ] and
𝛿 ∈ (0, 1). Given a lower limit 𝛼 ∈ R and an upper limit 𝛽 ∈ R,
we define the utility-constrained strategy set X𝑡 ⊆ X at iteration 𝑡

as the set of player 𝑖’s sequence-form strategies 𝒙 ∈ X such that

P
(
𝛼 ≤ 𝒙⊤𝑼 𝑗𝒚∗ ≤ 𝛽

)
≥ 1 − 𝛿 , with respect to the randomness of

the historyH𝑡−1
of feedbacks observed by player 𝑖 up to iteration

𝑡 − 1 (included).
6

After 𝑇 game repetitions, given the strategies 𝒙𝑡 ∈ X𝑡 played
by the agent player 𝑖 during iterations 𝑡 ∈ [𝑇 ], we measure his/her

performance by means of the following notion of regret:

𝑅𝑇 B
𝑇∑︁
𝑡=1

[
max

𝒙∗∈X𝑡

(
𝒙∗

)⊤𝑼 𝑖𝒚
∗ −

(
𝒙𝑡

)⊤
𝑼 𝑖𝒚
∗
]
,

which represents how much player 𝑖 would have gained in ex-

pectation by playing a utility-maximizing strategy in the utility-

constrained strategy setX𝑡 rather than 𝒙𝑡 , at each iteration 𝑡 ∈ [𝑇 ].
The goal that we pursue in the rest of this work is to achieve sublin-

ear regret, that is 𝑅𝑇 = 𝑜 (𝑇 ), while at the same time guaranteeing

that the played strategies 𝒙𝑡 satisfy the constraints defined by the

sets X𝑡 .

Overview of our results. In what follows, we give a brief sketch

of the approach we adopt to tackle the problem. We propose a

learning algorithm for the agent player 𝑖 , which we call Constrained
Opponent eXploitation with Upper Confidence Bounds (COX-UCB).

4
The methodology that we propose in this paper can also be adapted to control the

agent’s expected utility, rather than the one of the human player.

5
In this work, given 𝑛 ∈ N+ we denote by [𝑛] the set {1, . . . , 𝑛} of the first 𝑛 natural

numbers.

6
In the rest of this work, we make implicit the dependency of X𝑡

from 𝛿 , 𝛼 , and 𝛽 , as

the values of these parameters will be clear from context.
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It builds on two core components. The first one deals with the con-

struction of the utility-constrained strategy set X𝑡 at each iteration

𝑡 ∈ [𝑇 ]. It works by building a confidence region Y𝑡−1 ⊆ Y for

player 𝑗 ’s strategy, using the historyH𝑡−1
of feedbacks observed

up the previous iteration 𝑡 − 1. This is such that the true (unknown)

strategy 𝒚∗ lies within Y𝑡−1
with probability at least 1 − 𝛿 , for

some fixed confidence level 𝛿 ∈ (0, 1). Then, the utility-constrained
strategy set X𝑡 can be characterized by a set of linear inequali-

ties that exploits the structure of the confidence region Y𝑡−1
. A

detailed formal treatment of this first component is provided in

Section 4. The second core component consists in a rule to select

the strategy 𝒙𝑡 ∈ X𝑡 to play at each iteration 𝑡 ∈ [𝑇 ]. We propose

an approach based on the optimism in face of uncertainty principle.

More details on this second component can be found in Section 5,

together with the regret bounds attained by the algorithm. We refer

the reader to Algorithm 1 for a general sketch of our COX-UCB

algorithm, where two alternative implementations of the procedure

SelectStrategy(X𝑡 ,Y𝑡−1) will be given in Algorithms 2 and 3 in

Section 5.

Algorithm 1 COX-UCB

1: 𝑡 ← 1

2: while 𝑡 ≤ 𝑇 do
3: Build confidence region Y𝑡−1

from history of past feedbacks H𝑡−1

4: Use Y𝑡−1
to build the utility-constrained strategy set X𝑡

5: 𝒙𝑡 ← SelectStrategy(X𝑡 ,Y𝑡−1)
6: Play the game according to strategy 𝒙𝑡

7: Observe player 𝑗 ’s sequence 𝜎𝑡
𝑗
, obtained from the path in the game

tree followed during play

8: H𝑡 ← H𝑡−1 ∪ {𝜎𝑡
𝑗
}

9: 𝑡 ← 𝑡 + 1

4 HOW TO CONTROL THE HUMAN’S
EXPECTED UTILITY

In this section, we provide the formal details on the construction

of the utility-constrained strategy set X𝑡 at each iteration 𝑡 ∈ [𝑇 ]
(Definition 3.1). We split the section into two main parts:

• Subsection 4.1 shows how to use the historyH𝑡
of feedbacks

observed by player 𝑖 up to iteration 𝑡 to derive a confidence

region Y𝑡 ⊆ Y for player 𝑗 ’s strategy 𝒚∗, such that 𝒚∗ lies
within Y𝑡

with probability at least 1 − 𝛿 for some fixed

confidence 𝛿 ∈ (0, 1);
• Subsection 4.2 describes how to exploit the confidence region

Y𝑡−1
built using feedbacks observed up to iteration 𝑡 − 1 to

construct a set of linear constraints that fully characterize

sequence-form strategies in the utility-constrained strategy

set X𝑡 at iteration 𝑡 .

4.1 Building a confidence region for the
human’s strategy

Let us recall that, at each iteration 𝑡 ∈ [𝑇 ], player 𝑖 observes a
player 𝑗 ’s sequence 𝜎𝑡

𝑗
determined by selecting actions to play dur-

ing the game according to the sequence-form strategy 𝒚∗. We build

the desired high-probability confidence region Y𝑡
by exploiting

information provided by observed sequences to derive, for each

player 𝑗 ’s infoset 𝐽 ∈ J , appropriate confidence intervals for the re-

alization probabilities 𝒚∗ [𝜎 𝑗 (𝐽 )𝑎] of sequences 𝜎 𝑗 (𝐽 )𝑎 terminating

with an action 𝑎 ∈ 𝐴(𝐽 ) at 𝐽 .7

The case of a single infoset. Before showing our general technique,
it is useful to present the easier setting in which player 𝑗 has a

unique infoset, and, thus, his/her strategy is defined as a probability

distribution 𝒑 ∈ Δ |𝐴 | , where, with an abuse of notation, 𝐴 denotes

the finite set of actions available at the infoset. In this case, player 𝑖

observes 𝑡 actions 𝑎1, . . . , 𝑎𝑡 ∈ 𝐴 sampled independently according

to 𝒑. Then, a natural estimator for 𝒑 is the empirical frequency of

actions 𝒑𝑡 ∈ Δ |𝐴 | , defined so that 𝒑𝑡 [𝑎] B 1

𝑡

∑𝑡
𝜏=1

1{𝑎𝜏 = 𝑎} for
every 𝑎 ∈ 𝐴. By noticing that 𝑡 𝒑𝑡 is a random variable following

a multinomial distribution with parameters 𝑡 and 𝒑, that is 𝑡 𝒑𝑡 ∼
M(𝑡 ;𝒑), the following lemma byDevroye [12] can be used to derive

the desired confidence intervals for the probabilities 𝒑 [𝑎].8

Lemma 4.1 (Lemma 3 by Devroye [12]). Let 𝒑 ∈ Δ |𝐴 | and
𝑎1, . . . , 𝑎𝑡 ∈ 𝐴 be 𝑡 actions sampled independently according to 𝒑.
Then, for any 0 < 𝛿 ≤ 3 exp (−4|𝐴|/5), it holds:

P

(∑︁
𝑎∈𝐴

���𝒑𝑡 [𝑎] − 𝒑 [𝑎]��� ≤ 5

√︂
ln (3/𝛿)

𝑡

)
≥ 1 − 𝛿.

By exploiting the fact that 𝒑 ∈ Δ |𝐴 | , we can refine the result in

Lemma 4.1 by giving bounds that hold for each component of 𝒑
separately (see Lemma 4.2 below). This additional step is crucial

when building confidence intervals for realization probabilities

𝒚∗ [𝜎 𝑗 (𝐽 )𝑎] at infoset 𝐽 in general.

Lemma 4.2. Let 𝒑 ∈ Δ |𝐴 | and 𝑎1, . . . , 𝑎𝑡 ∈ 𝐴 be 𝑡 actions sampled
independently according to 𝒑. Then, for any 0 < 𝛿 ≤ 3 exp (−4|𝐴|/5),
it holds:

P

(⋂
𝑎∈𝐴

{���𝒑𝑡 [𝑎] − 𝒑 [𝑎]��� ≤ 5

2

√︂
ln (3/𝛿)

𝑡

})
≥ 1 − 𝛿.

Next, we generalize the approach described above to the general

case of any infosets structure.

First, we introduce some useful random variables. For every it-

eration 𝑡 ∈ [𝑇 ], player 𝑗 ’s infoset 𝐽 ∈ J , and action 𝑎 ∈ 𝐴(𝐽 ),
we let 𝑂𝑡 (𝐽 , 𝑎) B I

{
𝜎 𝑗 (𝐽 )𝑎 ⊑ 𝜎𝑡𝑗

}
be a random variable that is

equal to 1 if and only if player 𝑗 played action 𝑎 at infoset 𝐽

during iteration 𝑡 , while it is equal to 0 otherwise. It is easy to

check that 𝑂𝑡 (𝐽 , 𝑎) follows a Bernoulli distribution with parameter

𝑝𝑡 (𝐽 , 𝑎) B 𝒚∗ [𝜎 𝑗 (𝐽 )𝑎] 𝜌𝑡−𝑗 (𝐽 ), where, for the ease of presentation,
we let 𝜌𝑡−𝑗 (𝐽 ) B 𝜌−𝑗 (𝐽 , 𝒙𝑡 ) be the contribution to the probability of

7
Let us remark that deriving Y𝑡

is made considerably challenging by the fact that, at

each 𝑡 ∈ [𝑇 ], only the sequence 𝜎𝑡
𝑗
of actions actually played by player 𝑗 is observed.

On the other hand, if player 𝑖 would be able to observe the actual pure strategy selected

by player 𝑗 at 𝑡 , the problem would admit a much easier solution consisting in building

a single confidence interval for player 𝑗 ’s average strategy.
8
In this work, we denote by Δ|𝑆 | the ( |𝑆 | − 1)-dimensional simplex indexed over the

finite set 𝑆 . Moreover, we denote by 1{·} the indicator function for the event enclosed

in curly braces, whileM(𝑛; 𝒗) denotes a multinomial probability distribution, where

𝑛 ∈ N+ is the number of trials and 𝒗 ∈ Δ|𝑆 | is a vector defining the probabilities of
observing each element in the finite set 𝑆 .
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reaching infoset 𝐽 due to player 𝑖’s strategy 𝒙𝑡 and chance probabil-
ities.

9
The random variables 𝑂𝑡 (𝐽 , 𝑎) are instrumental for defining

𝑁 𝑡 (𝐽 , 𝑎) B ∑𝑡
𝜏=1

𝑂𝜏 (𝐽 , 𝑎), which represents the number of times

𝑎 is played at 𝐽 up to iteration 𝑡 . Intuitively, variables 𝑁 𝑡 (𝐽 , 𝑎) of
infoset 𝐽 ∈ J play the same role as the random vector 𝑡 𝒑𝑡 in the

single-infoset case.

We follow an approach analogous to that of the single-infoset

case at each player 𝑗 ’s infoset, and, then, put all the resulting con-

fidence intervals together to define Y𝑡
. To do so, we need to cir-

cumvent the following issue: at each infoset 𝐽 ∈ J , the random

variables 𝑁 𝑡 (𝐽 , 𝑎) for 𝑎 ∈ 𝐴(𝐽 ) are not jointly distributed as a multi-

nomial, preventing a direct application of Lemma 4.1. We deal with

this by adding a fictitious action at each infoset, so that random vari-

ables 𝑁 𝑡 (𝐽 , 𝑎) are multinomially distributed for each 𝐽 ∈ J . Then,

the fictitious action can be easily factored out by using Lemma 4.2.

Let𝐴⋄(𝐽 ) B 𝐴(𝐽 )∪{𝑎⋄} be the new action set at 𝐽 ∈ J , with 𝑎⋄
denoting the fictitious action. For 𝑡 ∈ [𝑇 ], we define 𝑂𝑡 (𝐽 , 𝑎⋄) B
1

{
𝜎 𝑗 (𝐽 )𝑎 @ 𝜎𝑡𝑗

}
as a random variable equal to 1 if and only if it

is not the case that 𝑎 is played at 𝐽 during iteration 𝑡 (this also

includes all the cases in which 𝐽 is not reached), and 0 otherwise.

Clearly, 𝑂𝑡 (𝐽 , 𝑎⋄) follows a Bernoulli distribution with parameter

𝑝𝑡 (𝐽 , 𝑎⋄) B 1 − ∑
𝑎∈𝐴( 𝐽 ) 𝑝

𝑡 (𝐽 , 𝑎). Moreover, we let 𝑁 𝑡 (𝐽 , 𝑎⋄) B∑𝑡
𝜏=1

𝑂𝜏 (𝐽 , 𝑎⋄). Then, for each player 𝑗 ’s infoset 𝐽 ∈ J , we define

𝒏𝑡
𝐽
∈ N |𝐴⋄ ( 𝐽 ) | as a random vector such that 𝒏𝑡

𝐽
[𝑎] B 𝑁 𝑡 (𝐽 , 𝑎) for

every 𝑎 ∈ 𝐴⋄(𝐽 ). By letting 𝜌𝑡−𝑗 (𝐽 ) B
1

𝑡

∑𝑡
𝜏=1

𝜌𝜏−𝑗 (𝐽 ), we have:

E
[
𝑁 𝑡 (𝐽 , 𝑎)

]
=

𝑡∑︁
𝜏=1

E
[
𝑂𝜏 (𝐽 , 𝑎)

]
= 𝒚∗ [𝜎 𝑗 (𝐽 )𝑎]

𝑡∑︁
𝜏=1

𝜌𝜏−𝑗 (𝐽 )

= 𝑡 𝜌𝑡−𝑗 (𝐽 )𝒚
∗ [𝜎 𝑗 (𝐽 )𝑎],

while it is easy to check that

E
[
𝑁 𝑡 (𝐽 , 𝑎⋄)

]
= 𝑡 − 𝑡 𝜌𝑡−𝑗 (𝐽 )

∑︁
𝑎∈𝐴( 𝐽 )

𝒚∗ [𝜎 𝑗 (𝐽 )𝑎] .

As a result, we conclude that 𝒏𝑡
𝐽
follows a multinomial distribution,

circumventing our initial issue. Formally:

𝒏𝑡𝐽 ∼ M (𝑡, 𝒗) , 𝒗 ∈ Δ
|𝐴⋄ ( 𝐽 ) |

s.t.

𝒗 [𝑎] =
{

𝜌𝑡−𝑗 (𝐽 )𝒚
∗ [𝜎 𝑗 (𝐽 )𝑎] if 𝑎 ∈ 𝐴(𝐽 )

1 − 𝜌𝑡−𝑗 (𝐽 )
∑
𝑎∈𝐴( 𝐽 ) 𝒚

∗ [𝜎 𝑗 (𝐽 )𝑎] if 𝑎 = 𝑎⋄
.

By exploiting this last observation and using Lemmas 4.1 and 4.2,

we provide confidence intervals defined locally at each infoset 𝐽 ∈
J for the realization probabilities 𝒚∗ [𝜎 𝑗 (𝐽 )𝑎] of sequences 𝜎 𝑗 (𝐽 )𝑎
terminating with an action 𝑎 ∈ 𝐴(𝐽 ) at 𝐽 . By letting 𝒚𝑡 ∈ R |Σ 𝑗 |

be

such that:

𝒚𝑡 [𝜎 𝑗 (𝐽 )𝑎] B
𝑁 𝑡 (𝐽 , 𝑎)
𝑡𝜌𝑡−𝑗 (𝐽 )

∀𝐽 ∈ J ,∀𝑎 ∈ 𝐴(𝐽 ), (2)

we have the following lemma:

9
In the rest of this work, we assume w.l.o.g. that 𝜌𝑡−𝑗 ( 𝐽 ) > 0 for any 𝑡 and 𝐽 . This is

possible thanks to the fact that strategies 𝒙𝑡
selected by the algorithm proposed in

Section 5 always ensure that such conditions hold.

Lemma 4.3. Let 𝐽 ∈ J be a player 𝑗 ’s infoset. Then, for any
0 < 𝛿 ≤ 3 exp(−4|𝐴(𝐽 ) |/5) it holds:

P

( ⋂
𝑎∈𝐴( 𝐽 )

{���𝒚𝑡 [𝜎 𝑗 (𝐽 )𝑎] −𝒚∗ [𝜎 𝑗 (𝐽 )𝑎]��� ≤
5

2𝜌𝑡−𝑗 (𝐽 )

√︂
ln (3/𝛿)

𝑡

})
≥ 1 − 𝛿.

Lemma 4.3 shows that one can use 𝒚𝑡 [𝜎 𝑗 (𝐽 )𝑎] to estimate the

realization probability 𝒚∗ [𝜎 𝑗 (𝐽 )𝑎] of some sequence 𝜎 𝑗 (𝐽 )𝑎, where
𝒚𝑡 [𝜎 𝑗 (𝐽 )𝑎] represents the observed frequency of action 𝑎 at infoset
𝐽 , adjusted by the average probability of reaching 𝐽 due to other

players, namely 𝜌𝑡 (𝐽 ). Thus,𝒚𝑡 generalizes the empirical frequency

𝒑𝑡 in the single-infoset case to the sequence-form setting. More-

over, Lemma 4.3 gives high-probability confidence intervals for

probabilities 𝒚∗ [𝜎 𝑗 (𝐽 )𝑎] at every infoset 𝐽 ∈ J , which is used in

the following theorem that gives us the desired high-probability

confidence region Y𝑡
.

Theorem 4.4. For every player 𝑗 ’s infoset 𝐽 ∈ J , let 𝛿 𝐽 ∈ (0, 1)
be such that the condition in Lemma 4.3 is satisfied and

∑
𝐽 ∈J 𝛿 𝐽 < 1.

Then, P
(
𝒚∗ ∈ Y𝑡

)
≥ 1 − 𝛿 , where 𝛿 :=

∑
𝐽 ∈J 𝛿 𝐽 and

Y𝑡 B

{
𝒚 ∈ Y :

���𝒚𝑡 [𝜎 𝑗 (𝐽 )𝑎] −𝒚∗ [𝜎 𝑗 (𝐽 )𝑎]��� ≤
5

2𝜌𝑡−𝑗 (𝐽 )

√︄
ln

(
3/𝛿 𝐽

)
𝑡

∀𝐽 ∈ J ,∀𝑎 ∈ 𝐴(𝐽 )
}
.

4.2 Constructing the utility-constrained
strategy set

We show how to construct the utility-constrained strategy set X𝑡—
for some 𝛿 ∈ (0, 1) and 𝛼, 𝛽 ∈ R—by exploiting the high-probability
confidence regionY𝑡−1

(see Theorem 4.4). Our approach is to force

the condition that each 𝒙 in the utility-constrained strategy set must

satisfy with high probability (see Definition 3.1 for such condition)

for every 𝒚 ∈ Y𝑡−1
; formally, we require 𝛼 ≤ 𝒙⊤𝑼 𝑗𝒚 ≤ 𝛽 for all

𝒚 ∈ Y𝑡
. By definition of Y𝑡−1

, this guarantees that such constraint

holds also for 𝒚∗ with probability at least 1− 𝛿 . Formally, we define

X𝑡B
{
𝒙 ∈ X : max

𝒚∈Y𝑡−1

𝒙⊤𝑼 𝑗𝒚 ≤ 𝛽 ∧ min

𝒚∈Y𝑡−1

𝒙⊤𝑼 𝑗𝒚 ≥ 𝛼
}
,

so that, for any 𝒙 ∈ X𝑡 , the upper limit 𝛽 and the lower limit 𝛼 are

satisfied for every 𝒚 ∈ Y𝑡−1
.

In what follows, we characterize the set X𝑡 by means of a set

of linear inequalities. We formulate the constrained maximization

problem, i.e., max𝒚∈Y𝑡−1 𝒙⊤𝑼 𝑗𝒚, using the following linear pro-

gram:

max

𝒚≥0
𝒙⊤𝑼 𝑗𝒚 s.t. (3a)

𝑭 𝑗𝒚 = 𝒇 𝑗 (3b)

𝒚 ≤ 𝒚𝑡−1 + 𝝐𝑡−1
(3c)

𝒚 ≥ 𝒚𝑡−1 − 𝝐𝑡−1, (3d)
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where we define 𝝐𝑡−1 [𝜎 𝑗 (𝐽 )𝑎] B 5

2𝜌𝑡−𝑗 ( 𝐽 )

√︃
ln(3/𝛿 𝐽 )

𝑡 for 𝐽 ∈ J
and 𝑎 ∈ 𝐴(𝐽 ), for some 𝛿 𝐽 ∈ (0, 1) that satisfy the condition in

Lemma 4.3 and

∑
𝐽 ∈J 𝛿 𝐽 ≤ 𝛿 . Notice that, by recalling the defi-

nition of 𝒚𝑡−1
in Equation (2) and that of Y𝑡−1

in Theorem 4.4,

Constraints (3b), (3c), and (3d) correctly encode the fact that𝒚 must

belong to the set Y𝑡−1
.

The dual of Problem (3) reads as: min𝒖≥0 𝒃⊤𝒖 s.t. 𝑨⊤𝒖 ≥ 𝑼⊤
𝑗
𝒙 ,

where 𝒖 ∈ R( |J |+1)×2 |Σ 𝑗 |
is a vector of dual variables, while 𝒃 and

𝑨 are suitably-defined vector and matrix, respectively. By strong

duality, the optimal dual objective equates the optimal primal ob-

jective, and, thus, given any player 𝑖’s strategy 𝒙 ∈ X, the condition
max𝒚∈Y𝑡−1 𝒙⊤𝑼 𝑗𝒚 ≤ 𝛽 holds if there exists a dual feasible solution

𝒖 that satisfies the additional constraint that 𝒃⊤𝒖 ≤ 𝛽 .
By following an analogous reasoning for min𝒚∈Y𝑡−1 𝒙⊤𝑼 𝑗𝒚, and

letting 𝝎 ∈ R( |J |+1)×2 |Σ 𝑗 |
be a vector of variables of the dual prob-

lem corresponding to its linear programming formulation (similar

to Problem (3)), we state the following main result:

Theorem 4.5. Let 𝑡 ∈ [𝑇 ] and 𝛿 ∈ (0, 1). Given 𝛼 ∈ R and 𝛽 ∈ R,
it holds:

X𝑡 = X ∩
{
(𝒙, 𝒖,𝝎) : 𝒖,𝝎 ≥ 0, 𝒃⊤𝒖 ≤ 𝛽, 𝑨⊤𝒖 ≥ 𝑼⊤𝑗 𝒙,

− 𝒃⊤𝝎 ≥ 𝛼, −𝑨⊤𝝎 ≤ 𝑼⊤𝑗 𝒙
}
.

From Theorem 4.5, it follows that X𝑡 can be characterized by

a polynomially-sized set of linear constraints, which achieves our

initial goal.

5 HOW TO SELECT THE STRATEGY TO PLAY
In this section, we provide the implementation of the procedure

SelectStrategy(X𝑡 ,Y𝑡−1) in Algorithm 1. To guarantee that COX-

UCB attains sub-linear regret after𝑇 iterations, i.e., 𝑅𝑇 = 𝑜 (𝑇 ) (with
high probability), we adopt an approach inspired from arm-selection

strategies used in linear multi-armed bandit problems [5]. In par-

ticular, we propose one that uses upper confidence bounds, which

is inspired by the LinUCB algorithm [2].

As a first step, we need to ensure that the algorithm performs

enough exploration during game playing. This is crucial to lower

bound the probabilities 𝜌𝑡−𝑗 (𝐽 ) that appear in the bounds defining

the set Y𝑡
(see Theorem 4.4), and, ultimately, to obtain sub-linear

regret. In particular, at each 𝑡 ∈ [𝑇 ], the COX-UCB algorithm selects

a strategy 𝒙𝑡 that belongs to the following subset of X𝑡 :
˜X𝑡 B

{
𝒙 ∈ X𝑡 : 𝒙 [𝜎𝑖 (𝑧)] ≥ 𝛼𝑡 ∀𝑧 ∈ 𝑍

}
,

where the 𝛼𝑡 s are suitably-defined parameters that decrease with

the iteration number 𝑡 .10

Algorithm 2 Strategy selection of COX-UCB

1: function SelStrat-UCB(X𝑡 ,Y𝑡−1
)

2: 𝒙𝑡 ← argmax

𝒙∈ ˜X𝑡
max

𝒚∈Y𝑡−1

𝒙⊤𝑼 𝑖𝒚

3: return 𝒙𝑡

10
Notice that a naïve way of adding exploration to the algorithm would be to use an

𝜖-greedy policy that plays the selected strategy 𝒙𝑡 ∈ X𝑡
with probability 1 − 𝜖 and a

random one with probability 𝜖 . However, this approach does not work in our setting,

as it would result in a violation of the constraints on the human’s expected utility. On

the other hand, picking 𝒙 ∈ ˜X𝑡
assures that such constraints are satisfied.

Algorithm 3 Strategy selection of𝜓 -COX-UCB

1: function SelStrat-𝜓 -UCB(X𝑡 ,Y𝑡−1
)

2: with probability 1 −𝜓 do:

3: 𝒙𝑡 ← argmax

𝒙∈ ˜X𝑡
max

𝒚∈Y𝑡−1

𝒙⊤𝑼 𝑖𝒚

4: with probability𝜓 do:

5: 𝒙𝑡 ← argmax

𝒙∈ ˜X𝑡
𝒙⊤𝑼 𝑖𝒚𝑡−1

6: return 𝒙𝑡

The strategy selection mechanism implemented by COX-UCB

is provided in Algorithm 2. It is based on the optimism in face of
uncertainty principle, and, thus, it selects a strategy 𝒙𝑡 ∈ ˜X𝑡 that
maximizes player 𝑖’s expected payoff 𝒙⊤𝑼 𝑖𝒚 under the assumption

that, for every 𝒙 ∈ ˜X𝑡 , strategy 𝒚 is an optimistic estimate of 𝒚∗

taken from the confidence regionY𝑡−1
, that is,𝒚 ∈ Y𝑡−1

maximizes

the same player 𝑖’s expected payoff 𝒙⊤𝑼 𝑖𝒚. The following theorem

provides a high-probability sub-linear regret guarantee for COX-

UCB.

Theorem 5.1. Let 𝛼𝑡 B 𝜂 2 ln
2 𝑡+ln 𝑡+1√

ln 𝑡 (ln 𝑡+1)2
for every 𝑡 ∈ [𝑇 ], where

𝜂 ∈ (0, 1), and let 𝛿 ∈ (0, 1). The COX-UCB algorithm attains the
following regret bound with probability at least 1 − 𝛿 :

𝑅𝑇 ≤ 5

2𝜂
𝐾𝑼 𝑖

𝐶

(
1 + 2

√
𝑇 ln𝑇

)
,

where 𝐾𝑼 𝑖
B | |𝑼 𝑖 | |∞ and 𝐶 is a suitably-defined constant.

Let us remark that to obtain sub-linear regret only the term

1/
√︁

log 𝑡 is required in the definition of 𝛼𝑡 ; the other terms are

added so as to obtain an analytical formula for the regret. More-

over, notice that COX-UCB needs to solve a linearly-constrained

bilinear optimization problem at each iteration, which can be done

efficiently by cutting-hedge solvers (see Section 6).

6 EXPERIMENTAL EVALUATION
We empirically evaluate the convergence of our COX-UCB algo-

rithm on a standard testbed of Kuhn poker [22]. We report here the

evaluation rank 7 Kuhn poker (kuhn_2).

6.1 Approximated version of the COX-UCB
algorithm

The COX-UCB algorithm presented in Section 5 (Algorithm 2)

solves a bilinear optimization problem at every iteration, with the

optimization done over the whole utility-constrained strategy set.

Furthermore, let us recall that such set is directly built from the

high-confidence region for the human’s strategy, which is specified

at time 𝑡 by an estimate 𝒚𝑡 and bounds 𝝐𝑡 . Empirical evidence from

early experiments showed that, despite having the same worst-case

convergence rate, in practice the estimate𝒚𝑡 converges much faster

to 𝒚∗ than the bound 𝝐𝑡 does to 0. We propose a simple modifica-

tion of COX-UCB, called𝜓 -approximated COX-UCB (𝜓 -COX-UCB),

exploiting the faster convergence of the strategy estimation. The

only difference between COX-UCB and𝜓 -COX-UCB is in the strat-

egy selection procedure, as specified in Algorithm 3. This simple

variation has a twofold effect on the overall algorithm: (i) in some

iterations it avoids solving the bilinear program, by solving a much

simpler linear program instead, and (ii) it leverages the fast empiric
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Figure 1: Performances of COX-UCB in Kuhn poker with
7 ranks: player 𝑗 ’s utility (top left), cumulative regret (top
right), and cumulative regret divided by

√
𝑡 ln 𝑡 (bottom).

convergence of 𝒚𝑡 to converge faster. In the remaining part of this

section, we empirically evaluate COX-UCB and 𝜓 -COX-UCB for

different values of the parameter𝜓 .

6.2 Experimental results
Experimental setting. In order to compare the performances of

COX-UCBwith those of its approximated version, we consider three

versions of 𝜓 -COX-UCB, respectively with 𝜓 = 0.5, 𝜓 = 0.7 and

𝜓 = 0.9. We evaluate the performances of the algorithms against

10 different randomly generated strategies for each game instance

considered. For each strategy, we execute 5 different algorithm runs.

The values (𝛼, 𝛽) needed for the utility constraints are set to 𝛼 =

−0.3 and 𝛽 = 0.3 in all the experiments. We use Gurobi for solving

bilinear optimization problems [19]. As a baseline for comparisons,

we use a random algorithm that, at each iteration 𝑡 ∈ [𝑇 ], returns a
strategy randomly picked from the utility-constrained strategy set

X𝑡 .

Convergence results. Figure 1 shows the results of the experi-

ments on kuhn_7. We observe that the performances of COX-UCB

and those of its approximated versions are comparable, thus show-

ing that the rate of convergence of the opponent’s strategy estima-

tion plays a negligible role in this instance. Furthermore, Figure 1a

shows how the algorithm manages to maintain the expected utility

of the opponent in the utility range [−0.3, 0.3]. On the other hand,

we can see how the random algorithm, which plays a random strat-

egy at each iteration, does indeed maintain the utility constraints

satisfied (as they are below the threshold of 𝛽 = 0.3), but it does not
result in sublinear regret 𝑅𝑇 , as one can observe from Figure 1b.

Interestingly, in Figure 1c the ratio between the regret and

√
𝑡 ln 𝑡 ,

representing its asymptotic dependence on 𝑡 , converges to a con-

stant as 𝑡 increases, thus showing that our upper bound on the

regret is tight.

7 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we studied, for the first time, the problem of design-

ing artificial agents that learn how to exploit an unknown human

opponent in an online fashion while, at the same time, guaran-

teeing that the human’s expected utility remains bounded within

some upper and lower thresholds. This framework finds application

in several real-world human-agent interactions, such as repeated

human-agent game playing in which the agent’s goal is also to keep

the human engaged in the repeated interaction, and human teaching

by means of serious games. Our results hold up under the assump-

tion that the human player adopts a fixed (unknown) stochastic

strategy. This is a first crucial step towards more complex models of

the human behavior. Nevertheless, even this basic case begets con-

siderable technical challenges, which make the theoretical study of

the problem interesting in its own, while also constituting a starting

point for the analysis of more complex scenarios.

An interesting direction for future research is assuming a more

complex human behavior, such as the case in which the human is

learning over time. Another line of research is the enhancement

of the scalability of the COX-UCB algorithm, so as to enable its

application in real-world sequential games. Finally, it could be of

general interest framing our algorithm in serious games scenarios,

which have been largely ignored by the research community in

artificial intelligence so far.
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APPENDIX OF THE PAPER “EXPLOITING OPPONENTS UNDER UTILITY CONSTRAINTS IN
SEQUENTIAL GAMES”
The appendix is structured as follows:

• Appendix A provides the proofs omitted from Section 4.1, describing the method adopted for the construction of the confidence

region Y𝑡−1
for the human strategy 𝒚∗.

• Appendix B provides the proofs omitted from Section 4.2, describing the method adopted for the construction of the utility-constrained

strategy set X𝑡 starting from Y𝑡−1
.

• Appendix C gives the proof omitted from Section 5 for the regret bound of COX-UCB.

• Appendix D provides some additional experimental results.

A PROOFS OMITTED FROM SECTION 4.1
Lemma 4.2. Let 𝒑 ∈ Δ |𝐴 | and 𝑎1, . . . , 𝑎𝑡 ∈ 𝐴 be 𝑡 actions sampled independently according to 𝒑. Then, for any 0 < 𝛿 ≤ 3 exp (−4|𝐴|/5), it

holds:

P

(⋂
𝑎∈𝐴

{���𝒑𝑡 [𝑎] − 𝒑 [𝑎]��� ≤ 5

2

√︂
ln (3/𝛿)

𝑡

})
≥ 1 − 𝛿.

Proof. Notice that, given the result in Lemma 4.1, it is sufficient to show that, for every 𝜖 > 0, it holds∑︁
𝑎∈𝐴

���𝒑𝑡 [𝑎] − 𝒑 [𝑎]��� ≤ 𝜖 =⇒
⋂
𝑎∈𝐴

{���𝒑𝑡 [𝑎] − 𝒑 [𝑎]��� ≤ 𝜖
2

}
.

In the following, we prove by contradiction that, if

���𝒑𝑡 [𝑎] − 𝒑 [𝑎]��� > 𝜖
2
for some 𝑎 ∈ 𝐴, then ∑

𝑎∈𝐴
���𝒑𝑡 [𝑎] − 𝒑 [𝑎]��� > 𝜖 . Let 𝑎 ∈ 𝐴 be such that

𝜖𝑎 := 𝒑𝑡 [𝑎] − 𝒑 [𝑎] > 𝜖

2

. (4)

Then, we have that ∑︁
𝑎∈𝐴:𝑎≠𝑎

𝒑𝑡 [𝑎] − 𝒑 [𝑎] =
∑︁

𝑎∈𝐴:𝑎≠𝑎

𝒑𝑡 [𝑎] −
∑︁

𝑎∈𝐴:𝑎≠𝑎

𝒑 [𝑎] = 1 − 𝒑𝑡 [𝑎] − 1 + 𝒑 [𝑎] = −𝜖𝑎,

which, in turn, implies that

��∑
𝑎∈𝐴:𝑎≠𝑎 𝒑

𝑡 [𝑎] − 𝒑 [𝑎]
�� = 𝜖𝑎 >

��𝜖
2

��
. Moreover, by the triangular inequality, we have:∑︁

𝑎∈𝐴:𝑎≠𝑎

���𝒑𝑡 [𝑎] − 𝒑 [𝑎]��� ≥ ����� ∑︁
𝑎∈𝐴:𝑎≠𝑎

𝒑𝑡 [𝑎] − 𝒑 [𝑎]
����� > 𝜖/2. (5)

By summing Equation (4) and Equation (5), we obtain

∑
𝑎∈𝐴

���𝒑𝑡 [𝑎] −𝒑 [𝑎]��� > 𝜖 , which is the desired contradiction that proves the result. □

Lemma 4.3. Let 𝐽 ∈ J be a player 𝑗 ’s infoset. Then, for any 0 < 𝛿 ≤ 3 exp(−4|𝐴(𝐽 ) |/5) it holds:

P

( ⋂
𝑎∈𝐴( 𝐽 )

{���𝒚𝑡 [𝜎 𝑗 (𝐽 )𝑎] −𝒚∗ [𝜎 𝑗 (𝐽 )𝑎]��� ≤
5

2𝜌𝑡−𝑗 (𝐽 )

√︂
ln (3/𝛿)

𝑡

})
≥ 1 − 𝛿.

Proof. Since 𝒏𝑡
𝐽
follows a multinomial distribution, using Lemma 4.1 provides us with an high-probability confidence region for the

components of 𝒚∗ corresponding to the sequences terminating with an action at infoset 𝐽 . Formally, since 𝒑𝑡 in Lemma 4.1 plays the same

role as
1

𝑡 𝒏
𝑡
𝐽
, we get:

P
©­«

∑︁
𝑎∈𝐴( 𝐽 )

���𝑁 𝑡 (𝐽 , 𝑎) − E[𝑁 𝑡 (𝐽 , 𝑎)]
��� ≤ 5 𝑡

√︂
ln(3/𝛿)

𝑡

ª®¬ ≥ 1 − 𝛿.

Let us recall that E[𝑁 𝑡 (𝐽 , 𝑎)] = 𝑡 𝜌𝑡−𝑗 (𝐽 )𝒚
∗ [𝜎 𝑗 (𝐽 )𝑎]. Thus, dividing by 𝑡 𝜌𝑡−𝑗 (𝐽 ) the argument of the probability in the left hand side of the

above equation, we get:

P
©­«

∑︁
𝑎∈𝐴( 𝐽 )

���𝑁 𝑡 (𝐽 , 𝑎)
𝑡 𝜌𝑡−𝑗 (𝐽 )

−𝒚∗ [𝜎 𝑗 (𝐽 )𝑎]
��� ≤ 5

𝜌𝑡−𝑗 (𝐽 )

√︂
ln(3/𝛿)

𝑡

ª®¬ ≥ 1 − 𝛿. (6)
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Following the same line of reasoning of the proof of Lemma 4.2, we conclude that:

P
©­«

⋂
𝑎∈𝐴( 𝐽 )

{�����𝑁 𝑡 (𝐽 , 𝑎)
𝑡𝜌𝑡−𝑗 (𝐽 )

−𝒚∗ [𝜎 𝑗 (𝐽 )𝑎]
����� ≤ 5

2𝜌𝑡−𝑗 (𝐽 )

√︂
ln (3/𝛿)

𝑡

}
∩ 𝐸⋄

ª®¬ ≥ 1 − 𝛿, (7)

where we define the event 𝐸⋄ B
{���𝑁 𝑡 (𝐽 , 𝑎⋄) − E

[
𝑁 𝑡 (𝐽 , 𝑎⋄)

] ��� ≤ 5𝑡
2

√︃
ln(3/𝛿)

𝑡

}
. The statement follows from the fact that, for two generic

events 𝐸 and 𝐸 ′, it holds P(𝐸 ∩ 𝐸 ′) ≤ P(𝐸). □

Theorem 4.4. For every player 𝑗 ’s infoset 𝐽 ∈ J , let 𝛿 𝐽 ∈ (0, 1) be such that the condition in Lemma 4.3 is satisfied and
∑

𝐽 ∈J 𝛿 𝐽 < 1. Then,
P

(
𝒚∗ ∈ Y𝑡

)
≥ 1 − 𝛿 , where 𝛿 :=

∑
𝐽 ∈J 𝛿 𝐽 and

Y𝑡 B

{
𝒚 ∈ Y :

���𝒚𝑡 [𝜎 𝑗 (𝐽 )𝑎] −𝒚∗ [𝜎 𝑗 (𝐽 )𝑎]��� ≤
5

2𝜌𝑡−𝑗 (𝐽 )

√︄
ln

(
3/𝛿 𝐽

)
𝑡

∀𝐽 ∈ J ,∀𝑎 ∈ 𝐴(𝐽 )
}
.

Proof. For each infoset 𝐽 ∈ J , let us apply Lemma 4.3 with 𝛿 = 𝛿 𝐽 ≤ 3 exp(−4|𝐴(𝐽 ) |/5). The lemma states that for each 𝐽 ∈ J , the event

𝐸 𝐽 B
⋂

𝑎∈𝐴( 𝐽 )


���𝒚𝑡 [𝜎 𝑗 (𝐽 )𝑎] −𝒚∗ [𝜎 𝑗 (𝐽 )𝑎]��� ≤ 5

2𝜌𝑡−𝑗 (𝐽 )

√︄
ln

(
3/𝛿 𝐽

)
𝑡

 (8)

holds with probability at least 1 − 𝛿 𝐽 . By applying a union bound, we have that:

P
©­«
⋂
𝐽 ∈J

𝐸 𝐽
ª®¬ = 1 − P ©­«

⋃
𝐽 ∈J
¬𝐸 𝐽

ª®¬
≥ 1 −

∑︁
𝐽 ∈J

1 − P
(
𝐸 𝐽

)
≥ 1 −

∑︁
𝐽 ∈J

𝛿 𝐽

= 1 − 𝛿.
Finally, choosing the errors 𝛿 𝐽 such that

∑
𝐽 ∈J 𝛿 𝐽 < 1 proves the result. □

B PROOFS OMITTED FROM SECTION 4.2
Theorem 4.5. Let 𝑡 ∈ [𝑇 ] and 𝛿 ∈ (0, 1). Given 𝛼 ∈ R and 𝛽 ∈ R, it holds:

X𝑡 = X ∩
{
(𝒙, 𝒖,𝝎) : 𝒖,𝝎 ≥ 0, 𝒃⊤𝒖 ≤ 𝛽, 𝑨⊤𝒖 ≥ 𝑼⊤𝑗 𝒙,

− 𝒃⊤𝝎 ≥ 𝛼, −𝑨⊤𝝎 ≤ 𝑼⊤𝑗 𝒙
}
.

Proof. The proof follows the reasoning outlined in Section 4.2. First, we notice that 𝒙 ∈ X belongs to the utility-constrained strategy set

X𝑡 at iteration 𝑡 ∈ [𝑇 ] if and only if

max

𝒚∈Y𝑡−1

𝒙⊤𝑼 𝑗𝒚 ≤ 𝛽 ∧ min

𝒚∈Y𝑡−1

𝒙⊤𝑼 𝑗𝒚 ≥ 𝛼.

By first considering the max problem, we can write it as the linear program in Problem (3) in the main paper. Then, its dual problem reads as

follows:

min

𝒖≥0
𝒃⊤𝒖 s.t. (9a)

𝑨⊤𝒖 ≥ 𝑼⊤𝑗 𝒙, (9b)

where 𝒖 ∈ R( |J |+1)×2 |Σ 𝑗 |
is a vector of dual variables, while:

𝑨 B


𝑰 |Σ 𝑗 |
−𝑰 |Σ 𝑗 |

𝑭 𝑗

−𝑭 𝑗

 and 𝒃 B


𝒚𝑡−1 + 𝝐𝑡−1

−𝒚𝑡−1 + 𝝐𝑡−1

𝒇 𝑗

−𝒇 𝑗

 ,
with 𝑰𝑛 being the 𝑛 × 𝑛 identity matrix. By strong duality, the optimal dual objective equates the optimal primal objective, and, thus, given

any player 𝑖’s strategy 𝒙 ∈ X, the condition max𝒚∈Y𝑡−1 𝒙⊤𝑼 𝑗𝒚 ≤ 𝛽 holds if there exists a dual feasible solution 𝒖 that satisfies the additional
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constraint that 𝒃⊤𝒖 ≤ 𝛽 . Following an analogous reasoning for min𝒚∈Y𝑡−1 𝒙⊤𝑼 𝑗𝒚, and letting 𝝎 ∈ R( |J |+1)×2 |Σ 𝑗 |
be a vector of variables of

the dual problem corresponding to its linear programming formulation (similar to Problem (3)), the result follows. □

Discussion on the emptiness of X𝑡 in Theorem 4.5. In some cases, the set X𝑡 defined in Theorem 4.5 could be empty. This happens when

the components of the vector 𝝐𝑡 are large, as it is usually the case after the first game repetitions. However, since by assumption the problem

is feasible for the true sequence-form strategy 𝒚∗, then the set X𝑡 will be non-empty after a finite number of iterations. Hence, as customary

in safe exploration problems, we can assume that we have at our disposal an initial number of plays that allow to have an estimate of

𝒚∗ that is good enough (i.e., with a small norm of 𝝐𝑡 ) so that X𝑡 is non-empty. In practice, one does not need to wait that X𝑡 is always
non-empty, and can mix the initial pure-exploration phase with the selection strategy implemented by the algorithm. For instance, this can

be achieved by playing a random strategy when X𝑡 is empty, while following the algorithm recommendation when X𝑡 is non-empty. In

the experimental evaluation, which is discussed in details in Appendix D, we use the variable N_BLANK_GAMES to tune this aspect of the

algorithm implementation.

C PROOFS OMITTED FROM SECTION 5
Before proving Theorem 5.1, we need to show the following technical lemma.

Lemma C.1. Let 𝑓 (𝜏) := 2 ln
2 𝜏+ln𝜏+1√

ln𝜏 (ln𝜏+1)2
. Then, it holds that:

𝑡∑︁
𝜏=1

𝑓 (𝜏) ≥ 2𝑡
√

ln 𝑡

ln 𝑡 + 1

. (10)

Proof. By noticing that 𝑓 (𝜏) is decreasing in 𝜏 , we can use the following integral inequality:

𝑡∑︁
𝜏=1

𝑓 (𝜏) ≥
𝑡∑︁

𝜏=1

∫ 𝜏+1

𝜏

𝑓 (𝑥)𝑑𝑥 =

∫ 𝑡+1

1

𝑓 (𝑥)𝑑𝑥 ≥
∫ 𝑡

1

𝑓 (𝑥)𝑑𝑥 =
2𝑡
√

ln 𝑡

ln 𝑡 + 1

,

which shows the result. □

Theorem 5.1. Let 𝛼𝑡 B 𝜂 2 ln
2 𝑡+ln 𝑡+1√

ln 𝑡 (ln 𝑡+1)2
for every 𝑡 ∈ [𝑇 ], where 𝜂 ∈ (0, 1), and let 𝛿 ∈ (0, 1). The COX-UCB algorithm attains the following

regret bound with probability at least 1 − 𝛿 :
𝑅𝑇 ≤ 5

2𝜂
𝐾𝑼 𝑖

𝐶

(
1 + 2

√
𝑇 ln𝑇

)
,

where 𝐾𝑼 𝑖
B | |𝑼 𝑖 | |∞ and 𝐶 is a suitably-defined constant.

Proof. First, let us recall that the confidence regions Y𝑡−1
used by the COX-UCB algorithm are built by applying Theorem 4.4 with error

tolerances 𝛿 𝐽 ∈ (0, 1), for 𝐽 ∈ J , such that the conditions in Theorem 4.4 are satisfied and 𝛿 =
∑

𝐽 ∈J 𝛿 𝐽 . In the following, we prove the

desired regret bound by bounding the regret that player 𝑖 suffers ar each iteration 𝑡 .

For every 𝑡 ∈ [𝑇 ], we let 𝒙𝑡,∗ ∈ argmax𝒙∗∈X𝑡 (𝒙∗)⊤𝑼 𝑖𝒚∗. Then, at each iteration 𝑡 , player 𝑖 incurs in an instantaneous regret 𝑟𝑡 , which is

formally defined as follows:

𝑟𝑡 B (𝒙𝑡,∗)⊤𝑼 𝑖𝒚
∗ − (𝒙𝑡 )⊤𝑼 𝑖𝒚

∗ .

Since the COX-UCB algorithm selects strategies 𝒙𝑡 so that 𝒙𝑡 ∈ argmax𝒙∈ ˜X𝑡 max𝒚∈Y𝑡−1 𝒙⊤𝑼 𝑖𝒚 (see Algorithm 2), we have that, with

probability at least 1 − 𝛿 , it holds
𝑟𝑡 ≤ (𝒙𝑡 )⊤𝑼 𝑖𝒚̃

𝑡 − (𝒙𝑡 )⊤𝑼 𝑖𝒚
∗, (11)

where we let 𝒚̃𝑡 ∈ argmax𝒚∈Y𝑡−1 (𝒙𝑡 )⊤𝑼 𝑖𝒚. By using the definition of the sequence-form utility matrix 𝑼 𝑖 , we can re-write Equation (11) as

follows:

𝑟𝑡 ≤ (𝒙𝑡 )⊤𝑼 𝑖

(
𝒚̃𝑡 −𝒚∗

)
=

∑︁
𝑧∈𝑍

𝒙𝑡 [𝜎𝑖 (𝑧)] 𝑼 𝑖 [𝜎𝑖 (𝑧), 𝜎 𝑗 (𝑧)]
(
𝒚̃𝑡 [𝜎 𝑗 (𝑧)] −𝒚∗ [𝜎 𝑗 (𝑧)]

)
.

For every terminal node 𝑧 ∈ 𝑍 , by letting 𝐽 (𝑧) ∈ J be the (unique w.l.o.g.) infoset such that the last action of the sequence 𝜎 𝑗 (𝑧) is
played at 𝐽 (𝑧), we can invoke Theorem 4.4 together with the Cauchy-Swartz inequality to obtain that, with probability at least 1 − 𝛿 𝐽 (𝑧) , the
following holds

𝒚̃𝑡 [𝜎 𝑗 (𝑧)] −𝒚∗ [𝜎 𝑗 (𝑧)] ≤
5

𝜌𝑡−𝑗 (𝐽 (𝑧))

√︄
ln(3/𝛿 𝐽 (𝑧) )

𝑡
. (12)

Moreover, since by definition of
˜X𝑡 , we have that 𝒙𝑡 [𝜎𝑖 ] ≥ 𝛼𝑡 for all 𝜎𝑖 ∈ Σ𝑖 . This gives us the following lower bound on the probability

𝜌𝑡−𝑗 (𝐽 (𝑧)):

𝜌𝑡−𝑗 (𝐽 (𝑧)) =
∑︁

ℎ∈𝐽 (𝑧)
𝒙𝑡 [𝜎𝑖 (ℎ)]𝑝𝑐 (ℎ) ≥ 𝛼𝑡

∑︁
ℎ∈𝐽 (𝑧)

𝑝𝑐 (ℎ) = 𝑝𝑐 (𝐽 (𝑧))𝛼𝑡 , (13)
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where we let 𝑝𝑐 (𝐽 (𝑧)) B
∑
ℎ∈𝐽 (𝑧) 𝑝𝑐 (ℎ).

Then, the term
1

𝜌𝑡−𝑗 ( 𝐽𝑧 )
√
𝑡
in Equation (12) can be bounded as follows.

1

𝜌𝑡−𝑗 (𝐽 (𝑧))
√
𝑡
=

√
𝑡

𝑡∑
𝜏=1

𝜌𝑡−𝑗 (𝐽 (𝑧))
≤

√
𝑡

𝑝𝑐 (𝐽 (𝑧))
𝑡∑

𝜏=1

𝛼𝜏

≤ 1

2𝜂𝑝𝑐 (𝐽 (𝑧))
ln 𝑡 + 1

√
𝑡 ln 𝑡

, (14)

where the first inequality follows from Equation (13) and the second one comes from Lemma C.1.

Therefore, by combining Equation 12 and Equation (14), we obtain:

𝒚̃𝑡 [𝜎 𝑗 (𝑧)] −𝒚∗ [𝜎 𝑗 (𝑧)] ≤
5

√︃
ln(3/𝛿 𝐽 (𝑧) )

2𝜂𝑝𝑐 (𝐽 (𝑧))
ln 𝑡 + 1

√
𝑡 ln 𝑡

, (15)

which holds with probability at least 1 − 𝛿 𝐽 (𝑧) .
Using Equation (15) and observing that 𝒙𝑡 [𝜎𝑖 (𝑧)] ≤ 1 for all 𝑧 ∈ 𝑍 , we can conclude that, with probability at least 1 − 𝛿 , it holds:

𝑅𝑇 B
𝑇∑︁
𝑡=1

𝑟𝑡 ≤
𝑇∑︁
𝑡=1

(𝒙𝑡 )⊤𝑼 𝑖 (𝒚̃𝑡 −𝒚∗) (16)

≤ 𝐾𝑼 𝑖

𝑇∑︁
𝑡=1

∑︁
𝑧∈𝑍

5

√︃
ln(3/𝛿 𝐽 (𝑧) )

2𝜂𝑝𝑐 (𝐽 (𝑧))
ln 𝑡 + 1

√
𝑡 ln 𝑡

(17)

= 𝐾𝑼 𝑖

5

2𝜂

©­­«
∑︁
𝑧∈𝑍

√︃
ln(3/𝛿 𝐽 (𝑧) )

𝑝𝑐 (𝐽 (𝑧))
ª®®¬

𝑇∑︁
𝑡=1

ln 𝑡 + 1

√
𝑡 ln 𝑡

(18)

≤ 𝐾𝑼 𝑖

5

2𝜂

©­­«
∑︁
𝑧∈𝑍

√︃
ln(3/𝛿 𝐽 (𝑧) )

𝑝𝑐 (𝐽 (𝑧))
ª®®¬
(
1 +

𝑇−1∑︁
𝑡=1

∫ 𝑡+1

𝜏=𝑡

ln𝜏 + 1

√
𝜏 ln𝜏

𝑑𝜏

)
(19)

= 𝐾𝑼 𝑖

5

2𝜂

©­­«
∑︁
𝑧∈𝑍

√︃
ln(3/𝛿 𝐽 (𝑧) )

𝑝𝑐 (𝐽 (𝑧))
ª®®¬
(
1 +

∫ 𝑇

2

ln𝜏 + 1

√
𝜏 ln𝜏

𝑑𝜏

)
(20)

≤ 𝐾𝑼 𝑖

5

2𝜂

©­­«
∑︁
𝑧∈𝑍

√︃
ln(3/𝛿 𝐽 (𝑧) )

𝑝𝑐 (𝐽 (𝑧))
ª®®¬
(
1 + 2

√
𝑇 ln𝑇

)
, (21)

where we let 𝐾𝑼 𝑖
B | |𝑼 𝑖 | |∞ and 𝐶 B

∑
𝑧∈𝑍

√
ln(3/𝛿 𝐽 (𝑧) )
𝑝𝑐 ( 𝐽 (𝑧)) . This concludes the proof. □

Theorem 5.1 gives a sublinear upper bound on the regret of the COX-UCB algorithm. Notice that the order of the regret is

√
𝑇 ln𝑇 and

that the constant 𝐶 is linear in the number of terminal nodes 𝑍 .

D ADDITIONAL DETAILS ON THE EXPERIMENTAL EVALUATION
In this section, we provide additional details and results on the experimental evaluation of our COX-UCB and𝜓 -COX-UCB algorithms. We

test the two algorithms in three different instances of Kuhn poker with ranks 3, 5 and 7 (denoted respectively as kuhn_3, kuhn_5 and kuhn_7 )
and in one instance of Leduc poker with ranks 2 (denoted as leduc_2).

D.1 Experimental setting and hyperparameters
In order to guarantee that the utility-constrained strategy set X𝑡 is non-empty at the beginning of the repeated interaction, we assume to

have access to some prior information on the strategy employed by the human player, so as to reduce the initial uncertainty encoded by the

confidence region Y𝑡−1
. This is reasonable in practice, since a new player can always be profiled according to a number of user classes. In

particular, we encode this information as observations collected during a number N_BLANK_GAMES of games played by the players at the

beginning of the repeated interaction, in which the agent player adopts a purely-explorative strategy.

Furthermore, since the estimation and bounds do not change significantly after a single game, we compute the solution to the optimization

problem required by COX-UCB every UPDATE_EVERY iterations. Moreover, we set a time limit (TIME_LIMIT) to the Gurobi solver to solve the
bilinear program. This allows us to reduce significantly the time spent to solve bilinear optimization problems.

In all our experiments, the values of the hyperparameters are set to:
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• 𝛿 = 0.05 and 𝛿 𝐽 = 𝛿/|J | for all 𝐽 ∈ J ;

• N_BLANK_GAMES = 1000;

• UPDATE_EVERY = 20;

• TIME_LIMIT = 1𝑠;

• 𝜂 = 0.05/|Σ𝑖 |;
• utility constraints lower bound 𝛼 = −0.3;

• utility constraints upper bound 𝛽 = 0.3.

We fix the number of iterations after which we stop the execution of our algorithms to 2𝑒5, 4𝑒5, 8𝑒5 and 2𝑒6 for kuhn_3, kuhn_5, kuhn_7
and leduc_2, respectively.

Finally, the infrastructure used to run the experiments is a 32-core UNIX system with 128 GB RAM.

D.2 Detailed experimental results
Figure 2 shows the performances of COX-UCB and 𝜓 -COX-UCB. The values tested for the hyperparameter 𝜓 are 𝜓 = 0.5, 𝜓 = 0.7 and

𝜓 = 0.9. As a baseline we use a random policy that consists in randomly selecting a sequence-form strategy from the set X𝑡 at every time

step 𝑡 . The first column of Figure 2 shows the expected utility of the opponent over the iterations of the algorithm. As we can observe,

empirically, the random policy satisfies the utility constraints. This is reasonable, since the strategies are selected from the interior of the

utility-constrained strategy set X𝑡 . However, in all the game instances considered, only COX-UCB and𝜓 -COX-UCB approach the optimal

utility values, which are shown in Table 1. Looking at the plots of the cumulative regret (second column of Figure 2), we can observe that

COX-UCB and𝜓 -COX-UCB achieve a significantly lower regret than the baseline. The experiments on leduc_2 remark the relevance of the

convergence rate of the confidence bound on the opponent’s strategy. In particular, when the strategy space is larger—as it is the case of

leduc_2—, the fact that the confidence bound reduces slowly causes a decrease in the performances, slowing down the convergence to an

optimal strategy. In this scenario, the approximation yielded by𝜓 -COX-UCB allows the algorithm to exploit the faster empirical convergence

rate of the average strategy, thus resulting in a lower cumulative regret. Finally, the plots on the third column of Figure 2 allow us to evaluate

the upper bound derived for the cumulative regret. In particular, we point out that the ratio between the cumulative regret and

√︁
𝑡 ln(𝑡)

converges to an horizontal line, meaning that the bounds that we derived are tight.

Table 1: Optimal expected utility for the opponent in kuhn_3, kuhn_5, kuhn_7, and leduc_2.

- −max𝒙∈X★ 𝒙⊤𝑼 𝑖𝒚★

kuhn_3 −0.28

kuhn_5 −0.3

kuhn_7 −0.29

leduc_2 −0.3

Table 2: Average time per iteration for the algorithms COX-UCB, 0.5-COX-UCB, 0.7-COX-UCB and 0.9-COX-UCB in kuhn_3,
kuhn_5, kuhn_7, and leduc_2.

- COX-UCB 0.5-COX-UCB 0.7-COX-UCB 0.9-COX-UCB

kuhn_3 0.011𝑠 0.006𝑠 0.004𝑠 0.003𝑠

kuhn_5 0.011𝑠 0.006𝑠 0.004𝑠 0.004𝑠

kuhn_7 0.012𝑠 0.007𝑠 0.005𝑠 0.005𝑠

leduc_2 0.016𝑠 0.009𝑠 0.007𝑠 0.006𝑠
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Figure 2: Performances of COX-UCB in Kuhn poker with 3 (top row), 5 (second row) and 7 (third row) ranks and in Leduc poker
with 2 ranks (bottom row). From left to right: player 𝑗 ’s utility, cumulative regret, and cumulative regret divided by

√
𝑡 ln 𝑡 .
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