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ABSTRACT
We study single-item single-unit Bayesian posted price auctions,

where buyers arrive sequentially and their valuations for the item

being sold depend on a random, unknown state of nature. The seller

has complete knowledge of the actual state and can send signals

to the buyers so as to disclose information about it. For instance,

the state of nature may reflect the condition and/or some particular

features of the item, which are known to the seller only. The prob-

lem faced by the seller is about how to partially disclose information

about the state so as to maximize revenue. Unlike classical signaling

problems, in this setting, the seller must also correlate the signals

being sent to the buyers with some price proposals for them. This

introduces additional challenges compared to standard settings. We

consider two cases: the one where the seller can only send signals

publicly visible to all buyers, and the case in which the seller can

privately send a different signal to each buyer. As a first step, we

prove that, in both settings, the problem of maximizing the seller’s

revenue does not admit an FPTAS unless P = NP, even for basic

instances with a single buyer. As a result, in the rest of the paper,

we focus on designing PTASs. In order to do so, we first introduce

a unifying framework encompassing both public and private sig-

naling, whose core result is a decomposition lemma that allows

focusing on a finite set of possible buyers’ posteriors. This forms

the basis on which our PTASs are developed. In particular, in the

public signaling setting, our PTAS employs some ad hoc techniques

based on linear programming, while our PTAS for the private set-

ting relies on the ellipsoid method to solve an exponentially-sized

LP in polynomial time. In the latter case, we need a custom ap-

proximate separation oracle, which we implement with a dynamic

programming approach.
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1 INTRODUCTION
In posted price auctions, the seller tries to sell an item by proposing

take-it-or-leave-it prices to buyers arriving sequentially. Each buyer

has to choose between declining the offer—without having the

possibility of coming back—or accepting it, thus ending the auction.

Appears at the 1st Workshop on Learning with Strategic Agents (LSA 2022). Held as

part of the Workshops at the 21st International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2022), N. Bishop, M. Han, L. Tran-Thanh, H. Xu, H. Zhang

(chairs), May 9–10, 2022, Online. 2022.

Nowadays, posted pricing is the most used selling format in e-

commerce [15], whose sales reach over $4 trillion in 2020 [16].

Posted price auctions are ubiquitous in settings such as, for example,

online travel agencies (e.g., Expedia), accommodation websites (e.g.,

Booking.com), and retail platforms (e.g., Amazon and eBay). As a

result, growing attention has been devoted to their analysis, both

in economics [22] and in computer science [1–3, 12, 14], within AI

and machine learning in particular [4, 8, 11, 20, 21, 23].

We study Bayesian posted price auctions, where the buyers’ val-

uations for the item depend on a random state of nature, which

is known to the seller only. By applying the Bayesian persuasion

framework [18], we consider the case in which the seller (sender)

can send signals to the buyers (receivers) so as to disclose informa-

tion about the state. Thus, in a Bayesian auction, the seller does not

only have to decide price proposals for the buyers, but also how

to partially disclose information about the state so as to maximize

revenue. Our model finds application in several real-world scenarios.

For instance, in an e-commerce platform, the state of nature may

reflect the condition (or quality) of the item being sold and/or some

of its features. These are known to the seller only since the buyers

cannot see the item given that the auction is carried out on the web.

Original Contributions. We study the problem of maximizing

seller’s revenue in single-item single-unit Bayesian posted price

auctions, focusing on two different settings: public signaling, where

the signals are publicly visible to all buyers, and private signaling, in

which the seller can send a different signal to each buyer through

private communication channels. As a first negative result, we

prove that, in both settings, the problem does not admit an FPTAS

unless P = NP, even for basic instances with a single buyer. Then,

we provide tight positive results by designing a PTAS for each

setting. In order to do so, we first introduce a unifying framework

encompassing both public and private signaling. Its core result is

a decomposition lemma that allows us to focus on a finite set of

buyers’ posterior beliefs over states of nature—called 𝑞-uniform

posteriors—, rather than reasoning about signaling schemes with

a (potentially) infinite number of signals. Compared to previous

works on signaling, our framework has to deal with some additional

challenges. The main one is that, in our model, the seller (sender)

is not only required to choose how to send signals, but they also

have to take some actions in the form of price proposals. This

requires significant extensions to standard approaches based on

decomposition lemmas [9, 13, 25]. The framework forms the basis

on which we design our PTASs. In the public setting, it establishes a



connection between signaling schemes and probability distributions

over 𝑞-uniform posteriors. This allows us to formulate the seller’s

revenue-maximizing problem as an LP of polynomial size, whose

objective coefficients are not readily available. However, they can

be approximately computed in polynomial time by an algorithm

for finding approximately-optimal prices in (non-Bayesian) posted

price auctions, which may also be of independent interest.
1
Solving

the LP with approximate coefficients then gives the desired PTAS.

As for the private setting, our framework provides a connection

between marginal signaling schemes of each buyer and probability

distributions over 𝑞-uniform posteriors, which, to the best of our

knowledge, is the first of its kind, since previous works are limited

to public settings [6, 13].
2
Such connection allows us to formulate

an LP correlating marginal signaling schemes together and with

price proposals. Although the LP has an exponential number of

variables, we show that it can still be approximately solved in

polynomial time by means of the ellipsoid method. This requires

the implementation of a problem-specific approximate separation

oracle that can be implemented in polynomial time by means of a

dynamic programming algorithm.

Related Works. The works most related to ours are those address-

ing signaling in second-price auctions. Emek et al. [17] provide an

LP to compute an optimal public signaling scheme in the known-

valuation setting, and they show that the problem is NP-hard in

the Bayesian setting. Cheng et al. [13] provide a PTAS for this

latter case. Finally, Badanidiyuru et al. [5] focus on the design of

algorithms whose running time is independent from the number

of states of nature. They initiate the study of private signaling,

showing that, differently from our Bayesian posted price auctions,

in second-price auctions it may introduce non-trivial equilibrium

selection issues.

2 PRELIMINARIES
2.1 Bayesian Posted Price Auctions and

Signaling
In a posted price auction, the seller tries to sell an item to a finite set

N B {1, . . . , 𝑛} of buyers arriving sequentially according to a fixed
ordering. W.l.o.g., we let buyer 𝑖 ∈ N be the 𝑖-th buyer according

to such ordering. The seller chooses a price proposal 𝑝𝑖 ∈ [0, 1] for
each buyer 𝑖 ∈ N . Then, each buyer in turn has to decide whether

to buy the item for the proposed price or not. Buyer 𝑖 ∈ N buys

only if their item valuation is at least the proposed price 𝑝𝑖 .
3
In that

case, the auction ends and the seller gets revenue 𝑝𝑖 for selling the

item, otherwise the auction continues with the next buyer.

We study Bayesian posted price auctions, characterized by a

finite set of 𝑑 states of nature, namelyΘ B {𝜃1, . . . , 𝜃𝑑 }. Each buyer
𝑖 ∈ N has a valuation vector 𝑣𝑖 ∈ [0, 1]𝑑 , with 𝑣𝑖 (𝜃 ) representing
buyer 𝑖’s valuation when the state is 𝜃 ∈ Θ. Each valuation 𝑣𝑖 is

independently drawn from a probability distributionV𝑖 supported
1
Notice that the objective of the LP for the public setting is not readily available since,

as it is common in the literature, we assume that the distributions of buyers’ valuations

are only accessible through an oracle providing random samples drawn i.i.d. from

them.

2
A notable exception is [9], which studies a specific case in between private and public

signaling schemes.

3
As customary in the literature, we assume that buyers always buy when they are

offered a price that is equal to their valuation.

on [0, 1]𝑑 . For the ease of presentation, we let 𝑉 ∈ [0, 1]𝑛×𝑑 be

the matrix of buyers’ valuations, whose entries are 𝑉 (𝑖, 𝜃 ) B 𝑣𝑖 (𝜃 )
for all 𝑖 ∈ N and 𝜃 ∈ Θ.4 Moreover, by letting V B {V𝑖 }𝑖∈N be

the collection of all distributions of buyers’ valuations, we write

𝑉 ∼ V to denote that 𝑉 is built by drawing each 𝑣𝑖 independently

fromV𝑖 .
We model signaling with the Bayesian persuasion framework

by Kamenica and Gentzkow [18]. We consider the case in which the

seller—having knowledge of the state of nature—acts as a sender by

issuing signals to the buyers (the receivers), so as to partially disclose

information about the state and increase revenue. As customary in

the literature, we assume that the state is drawn from a common

prior distribution 𝜇 ∈ ΔΘ, explicitly known to both the seller and the

buyers.
5
We denote by 𝜇𝜃 the probability of state 𝜃 ∈ Θ. The seller

commits to a signaling scheme 𝜙 , which is a randomized mapping

from states of nature to signals for the receivers. Letting S𝑖 be the
set of signals for buyer 𝑖 ∈ N , a signaling scheme is a function

𝜙 : Θ → ΔS , where S B
>
𝑖∈N S𝑖 . An element 𝑠 ∈ S—called

signal profile—is a tuple specifying a signal for each buyer. We use

𝑠𝑖 to refer to the 𝑖-th component of any 𝑠 ∈ S (i.e., the signal for

buyer 𝑖), so that 𝑠 = (𝑠1, . . . , 𝑠𝑛). We let 𝜙𝜃 (𝑠) be the probability of

drawing signal profile 𝑠 ∈ S when the state is 𝜃 ∈ Θ. Furthermore,

we let 𝜙𝑖 : Θ → ΔS𝑖 be the marginal signaling scheme of buyer

𝑖 ∈ N , with 𝜙𝑖 (𝜃 ) being the marginalization of 𝜙 (𝜃 ) with respect

to buyer 𝑖’s signals. As for general signaling schemes, 𝜙𝑖,𝜃 (𝑠𝑖 ) B∑
𝑠′∈S:𝑠′

𝑖
=𝑠𝑖 𝜙𝜃 (𝑠

′) denotes the probability of drawing signal 𝑠𝑖 ∈ S𝑖
when the state is 𝜃 ∈ Θ.

Price proposals may depend on the signals being sent to the

buyers. Formally, the seller commits to a price function 𝑓 : S →
[0, 1]𝑛 , with 𝑓 (𝑠) ∈ [0, 1]𝑛 being the price vector when the signal

profile is 𝑠 ∈ S. We assume that prices proposed to buyer 𝑖 only

depend on the signals sent to them, and not on the signals sent to

other buyers. Thus, w.l.o.g., we can work with functions 𝑓𝑖 : S𝑖 →
[0, 1] defining prices for each buyer 𝑖 ∈ N independently, with

𝑓𝑖 (𝑠𝑖 ) denoting the 𝑖-th component of 𝑓 (𝑠) for all 𝑠 ∈ S and 𝑖 ∈ N .
6
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Buyer i⇒
(Receiver)
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(φ, f)
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θ ∼ µ
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if i buys
buyer’s utility:
vi(θ) − fi(si)

seller’s revenue: fi(si)

next buyer i+1 if i leaves

Figure 1: Interaction between the seller and the buyers.

The interaction involving the seller and the buyers goes on as

follows (Figure 1): (i) the seller commits to a signaling scheme

𝜙 : Θ→ ΔS and a price function 𝑓 : S → [0, 1]𝑛 , and the buyers

observe such commitments; (ii) the seller observes the state of

nature 𝜃 ∼ 𝜇; (iii) the seller draws a signal profile 𝑠 ∼ 𝜙 (𝜃 ); and (iv)

the buyers arrive sequentially, with each buyer 𝑖 ∈ N observing

4
Sometimes, we also write𝑉𝑖 B 𝑣⊤𝑖 to denote the 𝑖-th row of matrix𝑉 , which is the

valuation of buyer 𝑖 ∈ N.

5
In this work, given a finite set 𝑋 , we denote with Δ𝑋 the ( |𝑋 | − 1)-dimensional

simplex defined over the elements of 𝑋 .

6
Let us remark that our assumption on the seller’s price function ensures that a buyer

does not get additional information about the state of nature by observing the proposed

price, since the latter only depends on the signal which is revealed to them anyway.



their signal 𝑠𝑖 and being proposed price 𝑓𝑖 (𝑠𝑖 ). Then, each buyer

rationally updates their prior belief over states according to Bayes

rule, and buys the item only if their expected valuation for the

item is greater than or equal to the offered price. The interaction

terminates whenever a buyer decides to buy the item or there no

more buyers arriving. The following paragraph formally defines

the elements involved in step (iv).

Buyers’ Posteriors. In step (iv), a buyer 𝑖 ∈ N receiving a signal

𝑠𝑖 ∈ S𝑖 infers a posterior belief over states (also called posterior),

which we denote by 𝜉𝑖,𝑠𝑖 ∈ ΔΘ, with 𝜉𝑖,𝑠𝑖 (𝜃 ) being the posterior

probability of state 𝜃 ∈ Θ. Formally,

𝜉𝑖,𝑠𝑖 (𝜃 ) B
𝜇𝜃𝜙𝑖,𝜃 (𝑠𝑖 )∑

𝜃 ′∈Θ 𝜇𝜃 ′𝜙𝑖,𝜃 ′ (𝑠𝑖 )
. (1)

Thus, after receiving signal 𝑠𝑖 ∈ S𝑖 , buyer 𝑖’s expected valuation

for the item is

∑
𝜃 ∈Θ 𝑣𝑖 (𝜃 ) 𝜉𝑖,𝑠𝑖 (𝜃 ), and the buyer buys it only if

such value is at least as large as the price 𝑓𝑖 (𝑠𝑖 ). In the following,

given a signal profile 𝑠 ∈ S, we denote by 𝜉𝑠 a tuple defining all

buyers’ posteriors resulting from observing signals in 𝑠; formally,

𝜉𝑠 B (𝜉1,𝑠1
, . . . , 𝜉𝑛,𝑠𝑛 ).

Distributions on Posteriors. In single-receiver Bayesian persua-

sion models, it is oftentimes useful to represent signaling schemes

as convex combinations of the posteriors they can induce. In our

setting, a marginal signaling scheme 𝜙𝑖 : Θ→ ΔS𝑖 of buyer 𝑖 ∈ N
induces a probability distribution 𝛾𝑖 over posteriors in ΔΘ, with

𝛾𝑖 (𝜉𝑖 ) denoting the probability of posterior 𝜉𝑖 ∈ ΔΘ. Formally, it

holds that

𝛾𝑖 (𝜉𝑖 ) B
∑︁

𝑠𝑖 ∈S𝑖 :𝜉𝑖,𝑠𝑖 =𝜉𝑖

∑︁
𝜃 ∈Θ

𝜇𝜃𝜙𝑖,𝜃 (𝑠𝑖 ) .

Intuitively, 𝛾𝑖 (𝜉𝑖 ) denotes the probability that buyer 𝑖 has pos-

terior 𝜉𝑖 . Indeed, it is possible to directly reason about distribu-

tions 𝛾𝑖 rather than marginal signaling schemes, provided that

such distributions are consistent with the prior. Formally, by letting

supp(𝛾𝑖 ) B {𝜉𝑖 ∈ ΔΘ | 𝛾𝑖 (𝜉𝑖 ) > 0} be the support of 𝛾𝑖 , it must be

required that ∑︁
𝜉𝑖 ∈supp(𝛾𝑖 )

𝛾𝑖 (𝜉𝑖 ) 𝜉𝑖 (𝜃 ) = 𝜇𝜃 ∀𝜃 ∈ Θ. (2)

2.2 Computational Problems
We focus on the problem of computing a signaling scheme 𝜙 : Θ→
ΔS and a price function 𝑓 : S → [0, 1]𝑛 that maximize the seller’s

expected revenue, considering both public and private signaling

settings.
7

We denote by Rev(V, 𝑝, 𝜉) the expected revenue of the seller

when the distributions of buyers’ valuations are given by V =

{V𝑖 }𝑖∈N , the proposed prices are defined by the vector 𝑝 ∈ [0, 1]𝑛 ,
and the buyers’ posteriors are those specified by the tuple 𝜉 =

7
Formally, a signaling scheme 𝜙 : Θ→ ΔS is public if: (i) S𝑖 = S𝑗 for all 𝑖, 𝑗 ∈ N;

and (ii) for every 𝜃 ∈ Θ,𝜙𝜃 (𝑠) > 0 only for signal profiles 𝑠 ∈ S such that 𝑠𝑖 = 𝑠 𝑗 for

𝑖, 𝑗 ∈ N. Since, given a signal profile 𝑠 ∈ S, under a public signaling scheme all the

buyers always share the same posterior (i.e., 𝜉𝑖,𝑠𝑖 = 𝜉 𝑗,𝑠 𝑗 for all 𝑖, 𝑗 ∈ N), we overload

notation and sometimes use 𝜉𝑠 ∈ ΔΘ to denote the unique posterior appearing in

𝜉𝑠 = (𝜉1,𝑠
1
,, . . . , 𝜉𝑛,𝑠𝑛 ) . Similarly, in the public setting, given a posterior 𝜉 ∈ ΔΘ we

sometimes write 𝜉 in place of a tuple of 𝑛 copies of 𝜉 .

(𝜉𝑖 , . . . , 𝜉𝑛) containing a posterior 𝜉𝑖 ∈ ΔΘ for each buyer 𝑖 ∈ N .

Then, the seller’s expected revenue is:∑︁
𝜃 ∈Θ

𝜇𝜃

∑︁
𝑠∈S

𝜙𝜃 (𝑠)Rev (V, 𝑓 (𝑠), 𝜉𝑠 ) .

In the following, we denote by𝑂𝑃𝑇 the value of the seller’s expected

revenue for a revenue-maximizing (𝜙, 𝑓 ) pair.
In this work, we assume that algorithms have access to a black-

box oracle to sample buyers’ valuations according to the probability

distributions specified by V (rather than actually knowing such

distributions). Thus, we look for algorithms that output pairs (𝜙, 𝑓 )
such that

E

[∑︁
𝜃 ∈Θ

𝜇𝜃

∑︁
𝑠∈S

𝜙𝜃 (𝑠)Rev(V, 𝑓 (𝑠), 𝜉𝑠 )
]
≥ 𝑂𝑃𝑇 − 𝜆,

where 𝜆 ≥ 0 is an additive error. Notice that the expectation above

is with respect to the randomness of the algorithm, which originates

from using the black-box sampling oracle.

3 HARDNESS OF SIGNALING WITH A SINGLE
BUYER

We start with a negative result: there is no FPTAS for the problem

of computing a revenue-maximizing (𝜙, 𝑓 ) pair unless P = NP, in
both public and private signaling settings. Our result holds even

in the basic case with only one buyer, where public and private

signaling are equivalent. Notice that, in the reduction that we use to

prove our result, we assume that the support of the distribution of

valuations of the (single) buyer is finite and that such distribution

is perfectly known to the seller. This represents an even simpler

setting than that in which the seller has only access to a black-box

oracle returning samples drawn from the buyer’s distribution of

valuations. The result formally reads as follows:
8

Theorem 1. There is no additive FPTAS for the problem of computing

a revenue-maximizing (𝜙, 𝑓 ) pair unless P = NP, even when there is

a single buyer.

4 UNIFYING PUBLIC AND PRIVATE
SIGNALING

In this section, we introduce a general mathematical framework

related to buyers’ posteriors and distributions over them, proving

some results that will be crucial in the rest of this work, both in

public and private signaling scenarios.

One of the main difficulties in computing sender-optimal signal-

ing schemes is that they might need a (potentially) infinite number

of signals, resulting in infinitely-many receiver’s posteriors. The

trick commonly used to circumvent this issue in settings with a

finite number of valuations is to use direct signals, which explicitly

specify action recommendations for each receiver’s valuation [7, 10].

However, in our auction setting, this solution is not viable, since a

direct signal for a buyer 𝑖 ∈ N should represent a recommendation

for every possible 𝑣𝑖 ∈ [0, 1]𝑑 , and these are infinitely many. An

alternative technique, which can be employed in our setting, is to

restrict the number of possible posteriors.

8
The proofs of all the results can be found in the Appendix.



Our core idea is to focus on a small set of posteriors, which are

those encoded as particular 𝑞-uniform probability distributions, as

formally stated in the following definition.
9

Definition 1 (𝑞-uniform posterior). A posterior 𝜉 ∈ ΔΘ is𝑞-uniform

if it can be obtained by averaging the elements of a multiset defined

by 𝑞 ∈ N>0 canonical basis vectors of R𝑑 .

We denote the set of all 𝑞-uniform posteriors as Ξ𝑞 ⊂ ΔΘ. Notice

that the set Ξ𝑞 has size |Ξ𝑞 | = 𝑂 (𝑑𝑞).
The existence of an approximately-optimal signaling scheme

that only uses 𝑞-uniform posteriors is usually proved by means of

so-called decomposition lemmas (see [9, 13, 25]). The goal of these

lemmas is to show that, given some signaling scheme encoded as a

distribution over posteriors, it is possible to obtain a new signaling

scheme whose corresponding distribution is supported only on 𝑞-

uniform posteriors, and such that the sender’s utility only decreases

by a small amount. At the same time, these lemmas must also

ensure that the distribution over posteriors corresponding to the

new signaling scheme is still consistent (according to Equation (2)).

The main result of our framework (Theorem 2) is a decomposi-

tion lemma that is suitable for our setting. Before stating the result,

we need to introduce some preliminary definitions.

Definition 2 ((𝛼, 𝜖)-decreasing distribution). Let 𝛼, 𝜖 > 0. A prob-

ability distribution 𝛾 over ΔΘ is (𝛼, 𝜖)-decreasing around a given

posterior 𝜉 ∈ ΔΘ if the following condition holds for every matrix

𝑉 ∈ [0, 1]𝑛×𝑑 of buyers’ valuations:

Pr
˜𝜉∼𝛾

{
𝑉𝑖 ˜𝜉 ≥ 𝑉𝑖𝜉 − 𝜖

}
≥ 1 − 𝛼 ∀𝑖 ∈ N .

Intuitively, a probability distribution 𝛾 as in Definition 2 can be

interpreted as a perturbation of the given posterior 𝜉 such that,

with high probability, buyers’ expected valuations in 𝛾 are at most

𝜖 less than those in posterior 𝜉 .10

The second definition we need is about functions mapping vec-

tors in [0, 1]𝑛—defining a valuation for each buyer—to seller’s rev-

enues. For instance, one such function could be the seller’s revenue

given price vector 𝑝 ∈ [0, 1]𝑛 . In particular, we define the stability

of a function 𝑔 compared to another function ℎ. Intuitively, 𝑔 is

stable compared to ℎ if the value of 𝑔, in expectation over buyers’

valuations and posteriors drawn from a probability distribution 𝛾

that is (𝛼, 𝜖)-decreasing around 𝜉 , is “close” to the the value of ℎ

given 𝜉 , in expectation over buyers’ valuations.
11

Formally:

Definition 3 ((𝛿, 𝛼, 𝜖)-stability). Let 𝛼, 𝜖, 𝛿 > 0. Given a posterior

𝜉 ∈ ΔΘ, some distributions V = {V𝑖 }𝑖∈N , and two functions 𝑔, ℎ :

[0, 1]𝑛 → [0, 1], 𝑔 is (𝛿, 𝛼, 𝜖)-stable compared to ℎ for (𝜉,V) if,
for every probability distribution 𝛾 over ΔΘ that is (𝛼, 𝜖)-decreasing

9
In all the definitions and results of this section (Section 4), we denote by 𝜉 ∈ ΔΘ a

generic posterior common to all the buyers and with 𝛾 a probability distribution over

ΔΘ (i.e, over posteriors).

10
Definition 2 is similar to analogous ones in the literature [9, 25], where the distance is

usually measured in both directions, as |𝑉𝑖 ˜𝜉 −𝑉𝑖𝜉 | ≤ 𝜖 . We look only at the direction

of decreasing values, since in a our setting, if a buyer’s valuation increases, then the

seller’s revenue also increases.

11
The notion of compared stability has been already used [9, 13]. However, previous

works consider the case in which 𝑔 is a relaxation of ℎ. Instead, our definition is

conceptually different, as 𝑔 and ℎ represent two different functions corresponding to

different price vectors of the seller.

around 𝜉 , it holds:

E
˜𝜉∼𝛾,𝑉∼V

[
𝑔(𝑉 ˜𝜉)

]
≥ (1 − 𝛼)E𝑉∼V

[
ℎ(𝑉𝜉)

]
− 𝛿𝜖.

Now, we are ready to state our main result. We show that, for

any buyer’s posterior 𝜉 ∈ ΔΘ, if a function 𝑔 is stable compare to ℎ,

then there exists a suitable probability distribution over 𝑞-uniform

posteriors such that the expected value of 𝑔 given such distribution

is “close” to that of ℎ given 𝜉 .

Theorem 2. Let 𝛼, 𝜖, 𝛿 > 0, and set 𝑞 B 32

𝜖2
log

4

𝛼 . Given a pos-

terior 𝜉 ∈ ΔΘ, some distributions V = {V𝑖 }𝑖∈N , and two func-

tions 𝑔, ℎ : [0, 1]𝑛 → [0, 1], if 𝑔 is (𝛿, 𝛼, 𝜖)-stable compared to ℎ

for (𝜉,V), then there exists 𝛾 ∈ ΔΞ𝑞 such that, for every 𝜃 ∈ Θ,∑
˜𝜉 ∈supp(𝛾 ) 𝛾 ( ˜𝜉) ˜𝜉 (𝜃 ) = 𝜉 (𝜃 ) and

E
˜𝜉∼𝛾
𝑉∼V

[
˜𝜉 (𝜃 )𝑔(𝑉 ˜𝜉)

]
≥𝜉 (𝜃 )

[
(1−𝛼)E𝑉∼V

[
ℎ(𝑉𝜉)

]
−𝛿𝜖

]
. (3)

The crucial feature of Theorem 2 is that Equation (3) holds for

every state. This is fundamental for proving our results in the

private signaling scenario. On the other hand, with public signaling,

we will make use of the following (weaker) corollary, obtained by

summing Equation (3) over all 𝜃 ∈ Θ.

Corollary 1. Let 𝛼, 𝜖, 𝛿 > 0, and set 𝑞 B 32

𝜖2
log

4

𝛼 . Given a pos-

terior 𝜉 ∈ ΔΘ, some distributions V = {V𝑖 }𝑖∈N , and two func-

tions 𝑔, ℎ : [0, 1]𝑛 → [0, 1], if 𝑔 is (𝛿, 𝛼, 𝜖)-stable compared to ℎ

for (𝜉,V), then there exists 𝛾 ∈ ΔΞ𝑞 such that, for every 𝜃 ∈ Θ,∑
˜𝜉 ∈supp(𝛾 ) 𝛾 ( ˜𝜉) ˜𝜉 (𝜃 ) = 𝜉 (𝜃 ) and

E
˜𝜉∼𝛾,𝑉∼V

[
𝑔(𝑉 ˜𝜉)

]
≥ (1 − 𝛼)E𝑉∼V

[
ℎ(𝑉𝜉)

]
− 𝛿𝜖. (4)

5 WARMING UP: NON-BAYESIAN AUCTIONS
In this section, we focus on non-Bayesian posted price auctions,

proving some results that will be useful in the rest of the paper.
12

In

particular, we study what happens to the seller’s expected revenue

when buyers’ valuations are “slightly decreased”, proving that the

revenue also decreases, but only by a small amount. This result will

be crucial when dealing with public signaling, and it also allows

to design a poly-time algorithm for finding approximately-optimal

price vectors in non-Bayesian auctions, as we show at the end of

this section.

In the following, we extensively use distributions of buyers’

valuations as specified in the definition below.

Definition 4. Given 𝜖 > 0, we denote byV = {V𝑖 }𝑖∈N andV𝜖 =

{V𝜖
𝑖
}𝑖∈N two collections of distributions of buyers’ valuations such

that, for every price vector 𝑝 ∈ [0, 1]𝑛 ,

Pr𝑣𝑖∼V𝜖𝑖 {𝑣𝑖 ≥ 𝑝𝑖 − 𝜖} ≥ Pr𝑣𝑖∼V𝑖 {𝑣𝑖 ≥ 𝑝𝑖 } ∀𝑖 ∈ N .
12
When we study non-Bayesian posted price auctions, we stick to our notation, with

the following differences: valuations are scalars rather than vectors, namely 𝑣𝑖 ∈ [0, 1];
distributions V𝑖 are supported on [0, 1] rather than [0, 1]𝑑 ; the matrix𝑉 is indeed

a column vector whose components are buyers’ valuations; and the price function

𝑓 is replaced by a single price vector 𝑝 ∈ [0, 1]𝑛 , with its 𝑖-th component 𝑝𝑖 being

the price for buyer 𝑖 ∈ N. Moreover, we continue to use the notation Rev to denote

seller’s revenues, dropping the dependence on the tuple of posteriors. Thus, in a non-

Bayesian auction in which the distributions of buyers’ valuations are V = {V𝑖 }𝑖∈N ,
the notation Rev(V, 𝑝) simply denotes the seller’s expected revenue by selecting a

price vector 𝑝 ∈ [0, 1]𝑛 .



Intuitively, valuations drawn fromV𝜖 are “slightly decreased”

with respect to those drawn from V , since the probability with

which any buyer 𝑖 ∈ N buys the item at the (reduced) price [𝑝𝑖−𝜖]+
when their valuation is drawn fromV𝜖

𝑖
is at least as large as the

probability of buying at price 𝑝𝑖 when their valuation is drawn

fromV𝑖 .13
Our main contribution in this section (Lemma 2) is to show that

max𝑝∈[0,1]𝑛 Rev(V𝜖 , 𝑝) ≥ max𝑝∈[0,1]𝑛 Rev(V, 𝑝) − 𝜖 . By letting

𝑝∗ ∈ arg max𝑝∈[0,1]𝑛 Rev(V, 𝑝) be any revenue-maximizing price

vector under distributions V , one may naïvely think that, since

under distributionsV𝜖 and price vector [𝑝∗−𝜖]+ each buyer would
buy the item at least with the same probability as with distributions

V and price vector 𝑝∗, while paying a price that is only 𝜖 less, then
Rev(V𝜖 , [𝑝∗−𝜖]+) ≥ Rev(V, 𝑝∗) −𝜖 , proving the result. However,
this line of reasoning does not work, as shown by Example 1 in

Appendix A. The crucial feature of Example 1 is that there exists

a 𝑝∗ in which one buyer is offered a price that is too low, and,

thus, the seller prefers not to sell the item to them, but rather to

a following buyer. This prevents a direct application of the line

of reasoning outlined above, as it shows that incrementing the

probability with which a buyer buys is not always beneficial. One

could circumvent this issue by considering a 𝑝∗ such that the seller

is never upset if some buyer buys. In other words, it must be such

that each buyer is proposed a price that is at least as large as the

seller’s expected revenue in the posted price auction restricted to

the following buyers. Next, we show that there always exists a 𝑝∗

with such desirable property.

Letting Rev>𝑖 (V, 𝑝) be the seller’s revenue for price vector 𝑝 ∈
[0, 1]𝑛 and distributionsV = {V𝑖 }𝑖∈N in the auction restricted to

buyers 𝑗 ∈ N : 𝑗 > 𝑖 , we prove the following:

Lemma1. For anyV = {V𝑖 }𝑖∈N , there exists a revenue-maximizing

price vector 𝑝∗ ∈ arg max𝑝∈[0,1]𝑛 Rev(V, 𝑝) such that 𝑝∗𝑖 ≥ Rev>𝑖 (V, 𝑝∗)
for every buyer 𝑖 ∈ N .

The proof of Lemma 2 builds upon the existence of a revenue-

maximizing price vector 𝑝∗ ∈ [0, 1]𝑛 as in Lemma 1 and the fact

that, under distributionsV𝜖 , the probability with which each buyer
buys the item given price vector [𝑝∗ − 𝜖]+ is greater than that with

which they would buy given 𝑝∗. Since the seller’s expected revenue
is larger when a buyer buys compared to when they do not buy (as

𝑝∗
𝑖
≥ Rev>𝑖 (V, 𝑝∗)), the seller’s expected revenue decreases by at

most 𝜖 .

Lemma 2. Given 𝜖 > 0, letV = {V𝑖 }𝑖∈N andV𝜖 = {V𝜖
𝑖
}𝑖∈N sat-

isfying the conditions of Definition 4. Then,max𝑝∈[0,1]𝑛 Rev(V𝜖 , 𝑝) ≥
max𝑝∈[0,1]𝑛 Rev(V, 𝑝) − 𝜖 .

Lemma 2 will be useful to prove Lemma 3 and to show the

compared stability of a suitably-defined function that is used to

design a PTAS in the public signaling scenario.

Finding Approximately-Optimal Prices. Algorithm 1 computes

(in polynomial time) an approximately-optimal price vector for any

non-Bayesian posted price auction. It samples 𝐾 ∈ N>0 matrices of

buyers’ valuations, each one drawn according to the distributions

V . Then, it finds an optimal price vector 𝑝 in the discretized set

13
In this work, given 𝑥 ∈ R, we let [𝑥 ]+ B max{𝑥, 0}. We extend the [ ·]+ operator

to vectors by applying it component-wise.

Algorithm 1 Find-APX-Prices

Inputs: # of samples 𝐾 ∈ N>0; # of discretization steps 𝑏 ∈ N>0

1: for 𝑖 ∈ N do
2: for 𝑘 = 1, . . . , 𝐾 do
3: 𝑣𝑘

𝑖
← Sample buyer 𝑖’s valuation using oracle for V𝑖

4: V𝐾
𝑖
← Empirical distribution of the 𝐾 i.i.d. samples 𝑣𝐾

𝑖

5: V𝐾 ← {V𝐾
𝑖
}𝑖∈N ; 𝑝 ← 0𝑛 ; 𝑟 ← 0

6: for 𝑖 = 𝑛, . . . , 1 (in reversed order) do
7: 𝑝𝑖←arg max

𝑝′
𝑖
∈𝑃𝑏

Pr
𝑣𝑖∼V𝐾𝑖

{
𝑣𝑖 ≥ 𝑝′𝑖

}
+
(
1−Pr

𝑣𝑖∼V𝐾𝑖

{
𝑣𝑖 ≥ 𝑝′𝑖

})
𝑟

8: 𝑟 ← 𝑝𝑖Pr𝑣𝑖∼V𝐾𝑖
{𝑣𝑖 ≥ 𝑝𝑖 } +

(
1 − Pr

𝑣𝑖∼V𝐾𝑖
{𝑣𝑖 ≥ 𝑝𝑖 }

)
𝑟

9: return (𝑝, 𝑟 )

P𝑏 , assuming that buyers’ valuations are drawn according to the

empirical distribution resulting from the sampled matrices.
14

This

last step can be done by backward induction, as it is well known in

the literature (see, e.g., [24]). The following Lemma 3 establishes the

correctness of Algorithm 1, also providing a bound on its running

time. The key ideas of its proof are: (i) the sampling procedure

constructs a good estimation of the actual distributions of buyers’

valuations; and (ii) even if the algorithm only considers discretized

prices, the components of the computed price vector are at most 1/𝑏
less than those of an optimal (unconstrained) price vector. As shown

in the proof, this is strictly related to reducing buyer’s valuations by

1

𝑏
. Thus, it follows by Lemma 2 that the seller’s expected revenue

is at most 1/𝑏 less than the optimal one.

Lemma 3. For any V = {V𝑖 }𝑖∈N and 𝜖, 𝜏 > 0, there exist 𝐾 ∈
poly

(
𝑛, 1

𝜖 , log
1

𝜏

)
and 𝑏 ∈ poly

(
1

𝜖

)
such that, with probability at

least 1−𝜏 , Algorithm 1 returns (𝑝, 𝑟 ) satisfying Rev(V, 𝑝) ≥ max𝑝′∈[0,1]𝑛 Rev(V, 𝑝 ′)−
𝜖 and 𝑟 ∈ [Rev(V, 𝑝) − 𝜖, Rev(V, 𝑝) + 𝜖] in time poly

(
𝑛, 1

𝜖 , log
1

𝜏

)
.

6 PUBLIC SIGNALING
In the following, we design a PTAS for computing a revenue-

maximizing (𝜙, 𝑓 ) pair in the public signaling setting. Notice that

this positive result is tight by Theorem 1.

As a first intermediate result, we prove the compared stability

of suitably-defined functions, which are intimately related to the

seller’s revenue. In particular, for every price vector 𝑝 ∈ [0, 1]𝑛 ,
we conveniently let 𝑔𝑝 : [0, 1]𝑛 → [0, 1] be a function that takes

a vector of buyers’ valuations and outputs the seller’s expected

revenue achieved by selecting 𝑝 when the buyers’ valuations are

those specified as input. The following Lemma 4 shows that, given

some distributions of buyers’ valuationsV and a posterior 𝜉 ∈ ΔΘ,

there always exists a price vector 𝑝 ∈ [0, 1]𝑛 such that 𝑔𝑝 is stable

compared with 𝑔𝑝′ for every other 𝑝
′ ∈ [0, 1]𝑛 . This result crucially

allows us to decompose any posterior 𝜉 ∈ ΔΘ by means of the

decomposition lemma in Corollary 1, while guaranteeing a small

loss in terms of seller’s expected revenue.

Lemma 4. Given 𝛼, 𝜖 > 0, a posterior 𝜉 ∈ ΔΘ, and some distributions

of buyers’ valuations V = {V𝑖 }𝑖∈N , there exists 𝑝 ∈ [0, 1]𝑛 such

14
In this work, for a discretization step 𝑏 ∈ N>0 , we let 𝑃

𝑏 ⊂ [0, 1] be the set of
prices multiples of 1/𝑏, while P𝑏 B>

𝑖∈N 𝑃
𝑏
.



that, for every other 𝑝 ′ ∈ [0, 1]𝑛 , the function 𝑔𝑝 is (1, 𝛼, 𝜖)-stable
compared with 𝑔𝑝′ for (𝜉,V).

Our PTAS leverages the fact that public signaling schemes can

be represented as probability distributions over buyers’ posteriors

(recall that, in the public signaling setting, all the buyers share the

same posterior, as they all observe the same signal). In particular,

the algorithm returns a pair (𝛾, 𝑓 ◦), where 𝛾 is a probability distri-

bution over ΔΘ satisfying consistency constraints (see Equation (2)),

while 𝑓 ◦ : ΔΘ → [0, 1]𝑛 is a function mapping each posterior to

a price vector. In single-receiver settings, it is well known (see

Subsection 2.1) that using distributions over posteriors rather than

signaling schemes 𝜙 is without loss of generality. The following

lemma shows that the same holds in our case, i.e., given a pair

(𝛾, 𝑓 ◦), it is always possible to obtain a pair (𝜙, 𝑓 ) providing the

seller with the same expected revenue.

Lemma 5. Given a pair (𝛾, 𝑓 ◦), where 𝛾 is a probability distribution

over ΔΘ with

∑
𝜉 ∈supp(𝛾 ) 𝛾 (𝜉)𝜉 (𝜃 ) = 𝜇𝜃 for all 𝜃 ∈ Θ and 𝑓 ◦ : ΔΘ →

[0, 1]𝑛 , there is a pair (𝜙, 𝑓 ) s.t.∑︁
𝜃 ∈Θ

𝜇𝜃

∑︁
𝑠∈S

𝜙𝜃 (𝑠)Rev(V, 𝑓 (𝑠), 𝜉𝑠 )=
∑︁

𝜉 ∈supp(𝛾 )
𝛾 (𝜉)Rev(V, 𝑓 ◦(𝜉), 𝜉).

Next, we show that, in order to find an approximately-optimal

pair (𝛾, 𝑓 ◦), we can restrict the attention to 𝑞-uniform posteri-

ors (with 𝑞 suitably defined). First, we introduce the following LP

that computes an optimal probability distribution restricted over

𝑞-uniform posteriors.

max

𝛾 ∈ΔΞ𝑞

∑︁
𝜉 ∈Ξ𝑞

𝛾 (𝜉) max

𝑝∈[0,1]𝑛
Rev(V, 𝑝, 𝜉) s.t. (5a)∑︁

𝜉 ∈Ξ𝑞
𝛾 (𝜉) 𝜉 (𝜃 ) = 𝜇𝜃 ∀𝜃 ∈ Θ. (5b)

The following Lemma 6 shows the optimal value of LP 5 is “close”

to 𝑂𝑃𝑇 . Its proof is based on the following core idea. Given the

signaling scheme 𝜙 in a revenue-maximizing pair (𝜙, 𝑓 ), letting
𝛾 be the distribution over ΔΘ induced by 𝜙 , we can decompose

each posterior in the support of 𝛾 according to Corollary 1. Then,

the obtained distributions over 𝑞-uniform posteriors are consistent

according to Equation (2), and, thus, they satisfy Constraints (5b).

Moreover, since such distributions are also decreasing around the

decomposed posteriors, by Lemma 4 each time a posterior is decom-

posed there exists a price vector resulting in a small revenue loss.

These observations allow us to conclude that the seller’s expected

revenue provided by an optimal solution to LP 5 is within some

small additive loss of 𝑂𝑃𝑇 .

Lemma 6. Given 𝜂 > 0 and letting 𝑞 = 1

𝜂2
128 log

6

𝜂 , an optimal

solution to LP 5 has value at least 𝑂𝑃𝑇 − 𝜂.

Finally, we are ready to provide our PTAS. Its main idea is to solve

LP 5 (of polynomial size) for the value of 𝑞 in Lemma 6. This results

in a small revenue loss. The last part missing for the algorithm

is computing the terms appearing in the objective of LP 5, i.e., a

revenue-maximizing price vector (together with its revenue) for

every 𝑞-uniform posterior. In order to do so, we can use Algorithm 1

(see also Lemma 3), which allows us to obtain in polynomial time

good approximations of such price vectors, with high probability.

Theorem 3. There exists an additive PTAS for computing a revenue-

maximizing (𝜙, 𝑓 ) pair with public signaling.

7 PRIVATE SIGNALING
With private signaling, computing a (𝜙, 𝑓 ) pair amounts to specify-

ing a pair (𝜙𝑖 , 𝑓𝑖 ) for each buyer 𝑖 ∈ N—composed by a marginal

signaling scheme𝜙𝑖 : Θ→ ΔS𝑖 and a price function 𝑓𝑖 : S𝑖 → [0, 1]
for buyer 𝑖—, and, then, correlating the 𝜙𝑖 so as to obtain a (non-

marginal) signaling scheme 𝜙 : Θ→ ΔS . We leverage this fact to

design our PTAS.

In Subsection 7.1, we first show that it is possible to restrict the

set of marginal signaling schemes of a given buyer 𝑖 ∈ N to those

encoded as distributions over 𝑞-uniform posteriors, as we did with

public signaling. Then, we provide an LP formulation for computing

an approximately-optimal (𝜙, 𝑓 ) pair, dealing with the challenge of

correlating marginal signaling schemes in a non-trivial way. Finally,

in Subsection 7.2, we show how to compute a solution to the LP

in polynomial time, which requires the application of the ellipsoid

method in a non-trivial way, due to the features of the formulation.

7.1 LP for Approximate Signaling Schemes
Before providing the LP, we show that restrictingmarginal signaling

schemes to𝑞-uniform posteriors results in a buyer’s behavior which

is similar to the one with arbitrary posteriors. This amounts to

showing that suitably-defined functions related to the probability

of buying are comparatively stable.

For 𝑖 ∈ N and 𝑝𝑖 ∈ [0, 1], let𝑔𝑖,𝑝𝑖 : [0, 1]𝑛 → {0, 1} be a function
that takes as input a vector of buyers’ valuations and outputs 1 if

and only if 𝑣𝑖 ≥ 𝑝𝑖 (otherwise it outputs 0).

Lemma 7. Given 𝛼, 𝜖 > 0 and some distributions V = {V𝑖 }𝑖∈N ,
for every buyer 𝑖 ∈ N , posterior 𝜉𝑖 ∈ ΔΘ, and price 𝑝𝑖 ∈ [0, 1], the
function 𝑔𝑖, [𝑝𝑖−𝜖 ]+ is (0, 𝛼, 𝜖)-stable compared with 𝑔𝑖,𝑝𝑖 for (𝜉𝑖 ,V).

The following remark will be crucial for proving Lemma 9. It

shows that, if for every 𝑖 ∈ N we decompose buyer 𝑖’s posterior

𝜉𝑖 ∈ ΔΘ by means of a distribution over 𝑞-uniform posteriors (𝛼, 𝜖)-
decreasing around 𝜉𝑖 , then the probability with which buyer 𝑖 buys

only decreases by a small amount.
15

Remark 1. Lemma 7 and Theorem 2 imply that, given a tuple

of posteriors 𝜉 = (𝜉1, . . . , 𝜉𝑛) ∈
>
𝑖∈N Δ𝜃 and some distributions

V = {V𝑖 }𝑖∈N , for every buyer 𝑖 ∈ N and price 𝑝𝑖 ∈ [0, 1], there
exists 𝛾𝑖 ∈ ΔΞ

𝑞

𝑖
with 𝑞 = 32

𝜖2
log

4

𝛼 s.t.

E
˜𝜉𝑖∼𝛾𝑖

[
˜𝜉𝑖 (𝜃 ) Pr

𝑉∼V

{
𝑉𝑖 ˜𝜉𝑖 ≥ [𝑝𝑖−𝜖]+

}]
≥ 𝜉𝑖 (𝜃 ) (1 − 𝛼) Pr

𝑉∼V
{𝑉𝑖𝜉𝑖 ≥𝑝𝑖}

and

∑
˜𝜉𝑖 ∈Ξ𝑞𝑖

𝛾𝑖 ( ˜𝜉𝑖 ) ˜𝜉𝑖 (𝜃 ) = 𝜉𝑖 (𝜃 ) for all 𝜃 ∈ Θ.

Next, we show that an approximately-optimal pair (𝜙, 𝑓 ) can be

found by solving LP 6 instantiated with suitably-defined 𝑞 ∈ N>0

and 𝑏 ∈ N>0. LP 6 employs:

15
In this section, for the ease of presentation, we abuse notation and use Ξ

𝑞

𝑖
to denote

the (all equal) sets of 𝑞-uniform posteriors (Definition 1), one per buyer 𝑖 ∈ N, while

Ξ𝑞 B
>
𝑖∈N Ξ

𝑞

𝑖
is the set of tuples 𝜉 = (𝜉1, . . . , 𝜉𝑛) specifying a 𝜉𝑖 ∈ Ξ𝑞𝑖 for each

𝑖 ∈ N.



• Variables 𝛾𝑖,𝜉𝑖 (for 𝑖 ∈ N and 𝜉𝑖 ∈ Ξ
𝑞

𝑖
), which encode the

distributions over posteriors representing the marginal sig-

naling schemes 𝜙𝑖 : Θ→ ΔS𝑖 of the buyers.
• Variables 𝑡𝑖,𝜉𝑖 ,𝑝𝑖 (for 𝑖 ∈ N , 𝜉𝑖 ∈ Ξ

𝑞

𝑖
, and 𝑝𝑖 ∈ 𝑃𝑏 ), with

𝑡𝑖,𝜉𝑖 ,𝑝𝑖 encoding the probability that the seller offers price 𝑝𝑖
to buyer 𝑖 and buyer 𝑖’s posterior is 𝜉𝑖 .

• Variables 𝑦𝜃,𝜉,𝑝 (for 𝜃 ∈ Θ, 𝜉 ∈ Ξ𝑞 , and 𝑝 ∈ P𝑏 ), with
𝑦𝜃,𝜉,𝑝 encoding the probability that the state is 𝜃 , the buyers’

posteriors are those specified by 𝜉 , and the prices that the

seller offers to the buyers are those given by 𝑝 .

max

𝛾,𝑡,𝑦≥0

∑︁
𝜃 ∈Θ

∑︁
𝜉 ∈Ξ𝑞

∑︁
𝑝∈P𝑏

𝑦𝜃,𝜉,𝑝 Rev(V, 𝑝, 𝜉) s.t. (6a)

𝜉𝑖 (𝜃 )𝑡𝑖,𝜉𝑖 ,𝑝𝑖 =
∑︁

𝜉′∈Ξ𝑞 :𝜉′
𝑖
=𝜉𝑖

∑︁
𝑝′∈P𝑏 :𝑝′

𝑖
=𝑝𝑖

𝑦𝜃,𝜉′,𝑝′

∀𝜃 ∈ Θ,∀𝑖 ∈ N ,∀𝜉𝑖 ∈ Ξ𝑞𝑖 ,∀𝑝𝑖 ∈ 𝑃
𝑏

(6b)∑︁
𝑝𝑖 ∈𝑃𝑏

𝑡𝑖,𝜉𝑖 ,𝑝𝑖 = 𝛾𝑖,𝜉𝑖 ∀𝑖 ∈ N ,∀𝜉𝑖 ∈ Ξ𝑞𝑖 (6c)∑︁
𝜉𝑖 ∈Ξ𝑞𝑖

𝛾𝑖,𝜉𝑖 𝜉𝑖 (𝜃 ) = 𝜇𝜃 ∀𝑖 ∈ N ,∀𝜃 ∈ Θ. (6d)

Variables 𝑡𝑖,𝜉𝑖 ,𝑝𝑖 represent marginal signaling schemes, allowing

for multiple signals inducing the same posterior. This is needed

since signals may correspond to different price proposals.
16

One

may think of marginal signaling schemes in LP 6 as if they were

using signals defined as pairs 𝑠𝑖 = (𝜉𝑖 , 𝑝𝑖 ), with the convention

that 𝑓𝑖 (𝑠𝑖 ) = 𝑝𝑖 . Variables 𝑦𝜃,𝜉,𝑝 and Constraints (6b) ensure that

marginal signaling schemes are correctly correlated together, by

directly working in the domain of the distributions over posteriors.

To show that an optimal solution to LP 6 provides an approximately-

optimal (𝜙, 𝑓 ) pair, we need the following two lemmas. Lemma 8

proves that, given a feasible solution to LP 6, we can recover a

pair (𝜙, 𝑓 ) providing the seller with an expected revenue equal

to the value of the LP solution. Lemma 9 shows that the optimal

value of LP 6 is “close” to 𝑂𝑃𝑇 . These two lemmas imply that an

approximately-optimal (𝜙, 𝑓 ) pair can be computed by solving LP 6.

Lemma 8. Given a feasible solution to LP 6, it is possible to recover

a pair (𝜙, 𝑓 ) that provides the seller with an expected revenue equal

to the value of the solution.

Lemma 9. For every 𝜂 > 0, there exist 𝑏 (𝜂), 𝑞(𝜂) ∈ N>0 such that

LP 6 has optimal value at least 𝑂𝑃𝑇 − 𝜂.

7.2 PTAS
We provide an algorithm that approximately solves LP 6 in poly-

nomial time, which completes our PTAS for computing a revenue-

maximizing pair (𝜙, 𝑓 ) in the private setting. The core idea of our

algorithm is to apply the ellipsoid method on the dual of LP 6.
17

16
Notice that, in a classical setting in which the sender does not have to propose a

price (or, in general, select some action after sending signals), there always exists a

signaling scheme with no pair of signals inducing the same posterior. Indeed, two

signals that induce the same posterior can always be joined into a single signal. This

is not the case in our setting, where we can only join signals that induce the same

posterior and correspond to the same price.

17
To be precise, we apply the ellipsoid method to the dual of a relaxed version of LP 6,

since we need an over-constrained dual. More details on these technicalities can be

found in the Appendix.

In particular, our implementation of the ellipsoid algorithm uses

an approximate separation oracle that needs to solve the following

optimization problem.

Definition 5 (MAX-LINREV). Given some distributions of buyers’

valuationsV = {V𝑖 }𝑖∈N such that eachV𝑖 has finite support and a
vector𝑤 ∈ [0, 1]𝑛×|Ξ

𝑞

𝑖
|× |𝑃𝑏 |

, solve

max

𝜉 ∈Ξ𝑞 ,𝑝∈P𝑏
Rev(V, 𝑝, 𝜉) +

∑︁
𝑖∈N

𝑤𝑖,𝜉𝑖 ,𝑝𝑖 .

As a first step, we provide an FPTAS for MAX-LINREV using a

dynamic programming approach. This will be the main building

block of our approximate separation oracle.
18

The FPTAS works as follows. Given an error tolerance 𝛿 > 0,

it first defines a step size
1

𝑐 , with 𝑐 = ⌈𝑛
𝛿
⌉, and builds a set 𝐴 =

{0, 1

𝑐 ,
2

𝑐 , . . . , 𝑛} of possible discretized values for the linear term ap-

pearing in the MAX-LINREV objective. Then, for every buyer 𝑖 ∈ N
(in reversed order) and value 𝑎 ∈ 𝐴, the algorithm computes𝑀 (𝑖, 𝑎),
which is an approximation of the largest seller’s revenue provided

by a pair (𝜉, 𝑝) when considering buyers 𝑖, . . . , 𝑛 only, and restricted
to pairs (𝜉, 𝑝) such that the inequality

∑
𝑗 ∈N:𝑗≥𝑖 𝑤 𝑗,𝜉 𝑗 ,𝑝 𝑗 ≥ 𝑎 is sat-

isfied. By letting 𝑧𝑖 B Pr𝑣𝑖∼V𝑖
{
𝑣⊤
𝑖
𝜉𝑖 ≥ 𝑝𝑖

}
, the value 𝑀 (𝑖, 𝑎) can

be defined by the following recursive formula:
19

𝑀 (𝑖, 𝑎) B max

𝜉𝑖 ∈Ξ𝑞𝑖 ,𝑝𝑖 ∈𝑃𝑏
𝑎′∈𝐴:𝑤𝑖,𝜉𝑖 ,𝑝𝑖 +𝑎

′≥𝑎

𝑧𝑖𝑝𝑖 + (1 − 𝑧𝑖 )𝑀 (𝑖 + 1, 𝑎′) .

Finally, the algorithm returns max𝑎∈𝐴 {𝑀 (1, 𝑎) + 𝑎}. Thus:

Lemma 10. For any 𝛿 > 0, there exists a dynamic programming

algorithm that provides a 𝛿-approximation (in the additive sense) to

MAX-LINREV. Moreover, the algorithm runs in time polynomial in

the size of the input and
1

𝛿
.

Now, we are ready to prove the main result of this section.

Theorem 4. There exists an additive PTAS for computing a revenue-

maximizing (𝜙, 𝑓 ) pair with private signaling.

18
Notice that, since MAX-LINREV takes as input distributions with a finite support,

we can safely assume that such distributions can be explicitly represented in memory.

In our PTAS, the inputs to the dynamic programming algorithm are obtained by

building empirical distributions thorough samples from the actual distributions of

buyers’ valuations, thus ensuring finiteness of the supports.

19
Notice that, given a pair (𝜉, 𝑝) with 𝜉 ∈ Ξ𝑞 and 𝑝 ∈ P𝑏 , it is possible to compute

in polynomial time the probability with which a buyer 𝑖 ∈ N buys the item.
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