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ABSTRACT
In online advertising, the advertiser’s goal is usually a tradeoff be-

tween achieving high volumes and high profitability. The companies’

business units customarily address this tradeoff by maximizing the

volumes while guaranteeing a minimum Return On Investment

(ROI). This paper investigates combinatorial bandit algorithms for

the bid optimization of advertising campaigns subject to uncertain
budget and ROI constraints. We show that the problem is inapprox-

imable within any factor unless P = NP even without uncertainty,

and we provide a pseudo-polynomial-time algorithm that achieves

an optimal solution. Furthermore, we show that no online learn-

ing algorithm can violate the (budget or ROI) constraints during

the learning process a sublinear number of times while guarantee-

ing a sublinear pseudo-regret. We provide the GCBsafe algorithm

guaranteeing w.h.p. a constant upper bound on the number of

constraints violations at the cost of a linear pseudo-regret bound.

However, a simple adaptation of GCBsafe provides a sublinear

pseudo-regret when accepting the satisfaction of the constraints

with a fixed tolerance. Finally, we experimentally evaluateGCBsafe
in terms of pseudo-regret/constraint-violation tradeoff in settings

generated from real-world data.

KEYWORDS
Regret Minimization; Online Learning; Safe Online Learning; Un-

certain Constraints; Advertising

1 INTRODUCTION
Nowadays, Internet advertising is the leading advertising medium.

Notably, while the expenditure on physical ads, radio, and television

has been stable for a decade, that on Internet advertising is increas-

ing with an average ratio of 20% per year, reaching the considerable

amount of 124 billion USD in 2019 only in the US [15]. Internet

advertising has two main advantages over traditional advertising

channels. The former is to provide a precise ad targeting, and the

latter is to allow an accurate evaluation of investment performance.

On the other hand, the amount of data provided by the platforms

and the plethora of parameters to be set make its optimization

impractical without AI tools.
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The advertiser’s goal is to set bids to balance the tradeoff be-

tween achieving high volumes, maximizing the sales of the products

to advertise, and high profitability, maximizing ROI. The compa-

nies’ business units need simple ways to address this tradeoff, and,

usually, they maximize the volumes while constraining the ROI

to be above a threshold. The analysis of data on the auctions on

Google’s AdX by Golrezaei et al. [13] shows that many advertisers

have ROI constraints, particularly in hotel booking, e.g., on Google

Hotels. However, most of the platforms do not provide any feature

to force the satisfaction of these constraints, which are uncertain as

the revenues and costs are a priori unknown. Thus, the bidders need
to develop bidding strategies (usually referred to as safe) satisfying
these uncertain constraints during the entire learning process. In

particular, the violation of constraints in the early stages, whose

nature is almost purely explorative, can worry the bidders and be a

concrete obstacle to the adoption of algorithms in this field. Our

paper investigates bidding algorithms when ROI constraints and,

potentially, budget constraints (e.g., when the daily budget limit

cannot be set on the platform) are uncertain, providing theoretical

guarantees on pseudo-regret and safety.

Related Works. Many works study Internet advertising, both

from the publisher perspective (e.g., Vazirani et al. [29] design auc-

tions for ads allocation and pricing) and from the advertiser perspec-
tive (e.g., Feldman et al. [10] study the budget optimization problem

in search advertising). Few works deal with ROI constraints, and,

to the best of our knowledge, they only focus on the auction mech-

anisms (e.g., Szymanski and Lee [26] and Borgs et al. [4] show that

ROI-based bidding heuristics lead to cyclic behavior and reduce

the allocation’s efficiency, while Golrezaei et al. [13] propose more

efficient auctions with ROI constraints). Existing learning algo-

rithms for daily bid optimization address only budget constraints

in the restricted case in which the platform allows the advertis-

ers to set a daily budget limit (notice that some platforms such as,

e.g., TripAdvisor and Trivago, do not even allow the setting of the

daily budget limit). For instance, Zhang et al. [30] provide an offline
algorithm that exploits accurate models of the campaigns’ perfor-

mance based on low-level data, which are rarely available to the

advertisers. Nuara et al. [20] provide an online learning algorithm

that combines combinatorial multi-armed bandit techniques [6]

with regression by Gaussian Processes [23]. More recent works

also present pseudo-regret bounds [21], and study subcampaigns



interdependencies [19]. Thomaidou et al. [27] provide a genetic

algorithm for budget optimization of advertising campaigns. [9]

and [28] address the bid optimization problem in a single subcam-

paign scenario when the budget constraint is cumulative over time.

Very recent works study bandit problems with safe exploration,

in which the constraints are uncertain, and the goal is to guarantee

w.h.p. their satisfaction during the entire learning process. However,

the only known results are for continuous and convex arm spaces

and convex constraints. In such settings, the learner can achieve

the optimal solution without violating the constraints [2, 18]. Con-

versely, the case with discrete and/or non-convex arm spaces or

non-convex constraints, such as ours, is unexplored in the litera-

ture so far. Some bandit algorithms address uncertain constraints

where the goal is their satisfaction on average [5, 17]. However,

the per-round violation can be arbitrarily large, and this does not

fit with our setting, as the advertisers could be alarmed and, thus,

give up on adopting the algorithm. Several other works in the re-

inforcement learning [12, 14, 22] and multi-armed bandit [11, 25]

fields investigate safe exploration, providing safety guarantees on

the revenue provided by the algorithm, but not on the satisfaction

w.h.p. of uncertain constraints.

Original Contributions. As customary in the literature, see, e.g.,
Devanur and Kakade [8], we make the assumption of stochastic

(i.e., non-adversarial) clicks, and we adopt Gaussian Processes (GPs)

to model the problem parameters.
1
We show that no approxima-

tion within any strictly positive factor is possible with ROI and

budget constraints unless P = NP, even in simple instances when

all the parameter values are known. However, when dealing with

a discretized space of the bids as it happens in practice, the prob-

lem admits an exact pseudo-polynomial time algorithm based on

dynamic programming. Remarkably, we prove that, in cases be-

yond those with continuous and convex arm spaces and convex

constraints, no online learning algorithm can violate the uncer-

tain constraints a sublinear number of times while guaranteeing

a sublinear pseudo-regret (this result holds in generic bandit set-

tings with uncertain constraints beyond advertising). We show that

a sublinear pseudo-regret can be obtained by adopting the GCB

algorithm proposed by Accabi et al. [1], and we propose a novel

algorithm, called GCBsafe, guaranteeing w.h.p. a constant upper

bound on the number of constraints’ violations. Most interestingly,

when accepting a tolerance𝜓 in the satisfaction of the constraints,

a simple adaptation of GCBsafe, namely GCBsafe (𝜓 ), guarantees
both the violation w.h.p. of the constraints for a constant number

of times and a sublinear pseudo-regret O
(√︃
𝑇

∑𝑁
𝑗=1 𝛾 𝑗,𝑇

)
, where 𝑇

is the time horizon of the learning process, and 𝛾 𝑗,𝑇 is the maxi-

mum information gain of the GP used to model the 𝑗-th advertising

subcampaign. Finally, we experimentally evaluate the performance

of our algorithms, showing the tradeoff between pseudo-regret

and constraint-violation with realistic settings generated from real-

world data.

1
The assumption that clicks are generated stochastically is reasonable in practice

as advertising platforms can limit manipulation due to malicious bidders. For instance,

Google Ads can identify invalid clicks and exclude them from the advertisers’ spending.

2 PROBLEM FORMULATION
We are given an advertising campaign C = {𝐶1, . . . ,𝐶𝑁 }, with 𝑁 ∈
N, where 𝐶 𝑗 is the 𝑗-th subcampaign, and a finite time horizon of

𝑇 ∈ N rounds (each corresponding to one day in our application). In

this work, as common in the literature on ad allocation optimization,

we refer to a subcampaign as a single ad or a group of homogeneous

ads requiring to set the same bid. For each day 𝑡 ∈ {1, . . . ,𝑇 } and
for every subcampaign 𝐶 𝑗 , the advertiser needs to specify the bid

𝑥 𝑗,𝑡 ∈ 𝑋 𝑗 , where 𝑋 𝑗 ⊂ R+ is a finite set of bids we can set in

subcampaign 𝐶 𝑗 . The goal is, for every day 𝑡 ∈ {1, . . . ,𝑇 }, to find

the values of bids that maximize the overall cumulative expected

revenue while keeping the overall ROI above a fixed value 𝜆 ∈ R+
and the overall budget below a daily value 𝛽 ∈ R+. Formally, the

resulting constrained optimization problem at day 𝑡 is as follows:

max

(𝑥1,𝑡 ,...,𝑥𝑁,𝑡 ) ∈𝑋1×...×𝑋𝑁

𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 ) (1a)

s.t.

∑𝑁
𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

≥ 𝜆, (1b)

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 ) ≤ 𝛽, (1c)

where 𝑛 𝑗 (𝑥 𝑗,𝑡 ) and 𝑐 𝑗 (𝑥 𝑗,𝑡 ) are the expected number of clicks and

the expected cost given the bid 𝑥 𝑗,𝑡 for subcampaign 𝐶 𝑗 , respec-

tively, and 𝑣 𝑗 is the value per click for subcampaign 𝐶 𝑗 . Moreover,

Constraint (1b) is the ROI constraint, forcing the revenue to be at

least 𝜆 times the costs, and Constraint (1c) keeps the daily spend

under a predefined overall budget 𝛽 .2

In our online learning setting, 𝑛 𝑗 (·) and 𝑐 𝑗 (·) are unknown func-

tions that we need to estimate within the time horizon 𝑇 , whereas

the available arms are the different values of the bid 𝑥 𝑗,𝑡 ∈ 𝑋 𝑗 satis-

fying the combinatorial constraints of the optimization problem.
3

A super-arm is a profile specifying one bid per subcampaign. A

learning policy𝔘 solving such a problem is an algorithm returning,

for each day 𝑡 , a set of bid

{
𝑥 𝑗,𝑡

}𝑁
𝑗=1

. The policy 𝔘 can only use

estimates of the unknown number-of-click and cost functions built

during the learning process. Therefore, the returned solutions may

not be optimal and/or violate Constraints (1b) and (1c) computed

on the true functions. Notice that, even if this setting is closely

related to the one presented in the work by Badanidiyuru et al. [3],

the specific non-matroidal nature of the constraints do not allow to

cast the bid allocation problem above into the bandit with knapsack

framework.

We are interested in evaluating learning policies 𝔘 in terms of

both loss of revenue (a.k.a. pseudo-regret) and violation of those

constraints. The pseudo-regret and safety of a learning policy 𝔘

are defined as follows:

2
In economic literature, it is also used an alternative definition of ROI:∑𝑁

𝑗=1

[
𝑣𝑗 𝑛𝑗 (𝑥𝑗,𝑡 )−𝑐 𝑗 (𝑥𝑗,𝑡 )

]
∑𝑁
𝑗=1

𝑐 𝑗 (𝑥𝑗,𝑡 )
. To capture this case, it is sufficient to substitute the right

hand side of Constraint (1b) with 𝜆 + 1.

3
Here, we assume that the value per click 𝑣𝑗 is known. In the case one needs its

estimates, refer to Nuara et al. [20] for details.



Algorithm 1Meta-algorithm

Input: sets 𝑋 𝑗 of bid values, ROI threshold 𝜆, daily budget 𝛽

1: Initialize the GPs for the number of clicks and costs

2: for 𝑡 ∈ {1, . . . ,𝑇 } do
3: for 𝑗 ∈ {1, . . . , 𝑁 } do
4: for 𝑥 ∈ 𝑋 𝑗 do
5: Produce estimates 𝑛̂ 𝑗,𝑡−1 (𝑥), 𝜎̂𝑛𝑗,𝑡−1 (𝑥) using the GP

on the number of clicks

6: Produce estimates 𝑐 𝑗,𝑡−1 (𝑥), 𝜎̂𝑐𝑗,𝑡−1 (𝑥) using the GP
on the costs

7: Compute 𝝁 using the GPs estimates

8: Run the Opt(𝝁, 𝜆) procedure to get a solution

{
𝑥 𝑗,𝑡

}𝑁
𝑗=1

9: Set the prescribed allocation during day 𝑡

10: Get revenue

∑𝑁
𝑗=1 𝑣 𝑗 𝑛̃ 𝑗 (𝑥 𝑗,𝑡 )

11: Update the GPs using the new information 𝑛̃ 𝑗,𝑡 (𝑥 𝑗,𝑡 ) and
𝑐 𝑗,𝑡 (𝑥 𝑗,𝑡 )

Definition 1 (Learning policy pseudo-regret). Given a learning
policy 𝔘, we define the pseudo-regret as:

𝑅𝑇 (𝔘) := 𝑇 𝐺∗ − E

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )
 ,

where 𝐺∗
:=

∑𝑁
𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥∗𝑗 ) is the expected revenue provided by a

clairvoyant algorithm, the set of bids
{
𝑥∗
𝑗

}𝑁
𝑗=1

is the optimal clairvoy-

ant solution to the problem in Equations (1a)–(1c), and the expectation
E[ · ] is taken w.r.t. the stochasticity of the learning policy 𝔘.

Our goal is the design of algorithms that minimize the pseudo-

regret𝑅𝑇 (𝔘). In particular, we are interested in no-regret algorithms

guaranteeing a regret that increases sublinearly in 𝑇 .

Definition 2 (𝜂-safe learning policy). Given 𝜂 ∈ (0, 𝑇 ], a learning
policy 𝔘 is 𝜂-safe if

{
𝑥 𝑗,𝑡

}𝑁
𝑗=1

, i.e., the expected number of times at
least one of the Constraints (1b) and (1c) is violated from 𝑡 = 1 to 𝑇
is less than 𝜂 or, formally:

𝑇∑︁
𝑡=1

P
©­«
∑𝑁

𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

< 𝜆 ∨
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 ) > 𝛽
ª®¬ ≤ 𝜂.

Our goal is the design of safe algorithms that minimize 𝜂. In

particular, we are interested in safe algorithms guaranteeing that 𝜂

increases sublinearly in (or independently of) 𝑇 .

3 META-ALGORITHM
We provide the pseudo-code of our meta-algorithm in Algorithm 1.

It solves the problem in Equations (1a)–(1c) in an online fashion.

Algorithm 1 is based on three components: Gaussian Processes

(GPs) [23] to model the parameters whose values are unknown, an

estimation subroutine to generate estimates of the parameters from

the GPs, and an optimization subroutine to solve the optimization

problem given the estimates.

In particular, GPs are used to model the functions 𝑛 𝑗 (·) and
𝑐 𝑗 (·) describing the number of clicks and the costs, respectively.

The employment of GPs to model these functions provides several

advantages w.r.t. other regression techniques, such as the provision

of a probability distribution over the possible values of the functions

for every bid value 𝑥 ∈ 𝑋 𝑗 relying on a finite set of samples. GPs use

the noisy realization of the number of clicks 𝑛̃ 𝑗,ℎ (𝑥 𝑗,ℎ) collected
from each subcampaign 𝐶 𝑗 for each past day ℎ ∈ {1, . . . , 𝑡 − 1}
to generate, for every bid 𝑥 ∈ 𝑋 𝑗 , the estimates for the expected

value 𝑛̂ 𝑗,𝑡−1 (𝑥) and the standard deviation of the number of clicks

𝜎̂𝑛
𝑗,𝑡−1 (𝑥). Analogously, using the noisy realizations of the cost

function 𝑐 𝑗,ℎ (𝑥 𝑗,ℎ), with ℎ ∈ {1, . . . , 𝑡 − 1}, GPs generate, for every
bid 𝑥 ∈ 𝑋 𝑗 , the estimates for the expected value 𝑐 𝑗,𝑡−1 (𝑥) and the

standard deviation of the costs 𝜎̂𝑐
𝑗,𝑡−1 (𝑥). Details on the use of the

GPs are provided by Rasmussen and Williams [23].

The estimation subroutine returns the vector 𝝁 composed of

the estimates generated from the GPs. In the following sections,

we investigate two subroutines to compute 𝝁. Then, the vector 𝝁
is given as input to the optimization subroutine, called Opt(𝝁, 𝜆),
that solves the problem stated in Equations (1a)–(1c) and returns

the bid strategy

{
𝑥 𝑗,𝑡

}𝑁
𝑗=1

to play the next day 𝑡 . Finally, once the

strategy has been applied, the revenue

∑𝑁
𝑗=1 𝑣 𝑗 𝑛̃ 𝑗 (𝑥 𝑗,𝑡 ) is obtained

and the stochastic realization of the number of clicks 𝑛̃ 𝑗,𝑡 (𝑥 𝑗,𝑡 ) and
costs 𝑐 𝑗,𝑡 (𝑥 𝑗,𝑡 ) are observed and provided to the GPs to update the

models used for the next day 𝑡 + 1. For the sake of presentation, we

first present the Opt(𝝁, 𝜆) subroutine and, then, some estimation

subroutines together with the theoretical guarantees provided by

Algorithm 1 when these subroutines are adopted.

4 OPTIMIZATION SUBROUTINE
At first, we show that, even if all the values of the parameters of

the optimization problem are known, the optimal solution cannot

be approximated in polynomial time within any strictly positive

factor (even depending on the size of the instance), unless P = NP.

We reduce from SUBSET-SUM that is an NP-hard problem. Given

a set 𝑆 of integers 𝑢𝑖 ∈ N+ and an integer 𝑧 ∈ N+, SUBSET-SUM
requires to decide whether there is a set 𝑆∗ ⊆ 𝑆 with ∑

𝑖∈𝑆∗ 𝑢𝑖 = 𝑧.
4

Theorem 1 (Inapproximability). For any 𝜌 ∈ (0, 1], there is
no polynomial-time algorithm returning a 𝜌-approximation to the
problem in Equations (1a)–(1c), unless P = NP.

It is well known that SUBSET-SUM is a weaklyNP-hard problem,

admitting an exact algorithm whose running time is polynomial

in the size of the problem and the magnitudes of the data involved

rather than the base-two logarithm of their magnitudes. The same

can be showed for our problem. Indeed, we can design a pseudo-

polynomial-time algorithm to find the optimal solution in polyno-

mial time w.r.t. the number of possible values of revenues and costs.

In real-world settings, the values of revenue and cost are in limited

ranges and rounded to the nearest cent, allowing the problem to be

solved in a reasonable time. From now on, we assume for simplicity

that the discretization of the ranges of the values of the daily cost

𝑌 and revenue 𝑅 is evenly spaced.

The pseudo-code of the Opt(𝝁, 𝜆) subroutine, solving the prob-
lem in Equations (1a)–(1c) with a dynamic programming approach,

is provided in Algorithm 2. It takes as input the set of the possible

4
The proofs are deferred to the Supplementary Material.



Algorithm 2 Opt(𝝁, 𝜆) subroutine
Input: sets 𝑋 𝑗 of bid values, set 𝑌 of cumulative cost values,

set 𝑅 of revenue values, vector 𝝁, ROI threshold 𝜆
1: Initialize𝑀 empty matrix with dimension |𝑌 | × |𝑅 |
2: Initialize x𝑦,𝑟 = x𝑦,𝑟

next
= [ ], ∀𝑦 ∈ 𝑌, 𝑟 ∈ 𝑅

3: 𝑆 (𝑦, 𝑟 ) = ⋃ {𝑥 ∈ 𝑋1 | 𝑐1 (𝑥) ≤ 𝑦 ∧𝑤1
(𝑥) ≥ 𝑟 } ∀𝑦 ∈ 𝑌, 𝑟 ∈ 𝑅

4: x𝑦,𝑟 = argmax𝑥∈𝑆 𝑤1 (𝑥) ∀𝑦 ∈ 𝑌, 𝑟 ∈ 𝑅
5: 𝑀 (𝑦, 𝑟 ) = max𝑥∈𝑆 𝑤1 (𝑥) ∀𝑦 ∈ 𝑌, 𝑟 ∈ 𝑅
6: for 𝑗 ∈ {2, . . . , 𝑁 } do
7: for 𝑦 ∈ 𝑌 do
8: for 𝑟 ∈ 𝑅 do
9: Update 𝑆 (𝑦, 𝑟 ) according to Equation (2)

10: x𝑦,𝑟
next

= argmaxs∈𝑆 (𝑦,𝑟 )
∑𝑗

𝑖=1
𝑤𝑖 (𝑠𝑖 )

11: 𝑀 (𝑦, 𝑟 ) = maxs∈𝑆 (𝑦,𝑟 )
∑𝑗

𝑖=1
𝑤𝑖 (𝑠𝑖 )

12: x𝑦,𝑟 = x𝑦,𝑟
next

13: Select (𝑦∗, 𝑟∗) according to Equation (3)

14: Output: x𝑦
∗,𝑟 ∗

bid values𝑋 𝑗 for each subcampaign𝐶 𝑗 , the set of the possible cumu-

lative cost values 𝑌 such that max𝑦∈𝑌 𝑦 = 𝛽 , the set of the possible

revenue values 𝑅, a ROI threshold 𝜆, and a vector of parameters

characterizing the specific instance of the optimization problem:

𝝁 :=
[
𝑤1 (𝑥1), . . . ,𝑤𝑁 (𝑥 |𝑋𝑁 | ),𝑤1

(𝑥1), . . . ,𝑤𝑁 (𝑥 |𝑋𝑁 | ),
− 𝑐1 (𝑥1), . . . ,−𝑐𝑁 (𝑥 |𝑋𝑁 | )

]
,

where𝑤 𝑗 (𝑥 𝑗 ) := 𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗 ) denotes the revenue for a subcampaign

𝐶 𝑗 . We use ℎ and ℎ to denote potentially different estimated values

of a generic function ℎ used by the learning algorithms in the next

sections. In particular, if the functions are known beforehand, then

it holds ℎ = ℎ = ℎ for both ℎ = 𝑤 𝑗 and ℎ = 𝑐 𝑗 . For the sake of clarity,

𝑤 𝑗 (𝑥) is used in the objective function, while𝑤 𝑗 (𝑥) and 𝑐 𝑗 (𝑥) are
used in the constraints. At first, the subroutine initializes a matrix

𝑀 in which it stores the optimal solution for each combination of

values𝑦 ∈ 𝑌 and 𝑟 ∈ 𝑅, and initializes the vectors x𝑦,𝑟 = x𝑦,𝑟
next

= [ ],
∀𝑦 ∈ 𝑌,∀𝑟 ∈ 𝑅 (Lines 1–2). Then, the subroutine generates the set

𝑆 (𝑦, 𝑟 ) of the bids for subcampaign 𝐶1 (Line 3). More precisely, the

set 𝑆 (𝑦, 𝑟 ) contains only the bids 𝑥 that induce the overall costs

to be lower or equal than 𝑦 and the overall revenue to be higher

or equal than 𝑟 . The bid in 𝑆 (𝑦, 𝑟 ) that maximizes the revenue

calculated with parameters𝑤 𝑗 is included in the vector x𝑦,𝑟 , while
the corresponding revenue is stored in the matrix 𝑀 . Then, the

subroutine iterates over each subcampaign 𝐶 𝑗 , with 𝑗 ∈ {2, . . . , 𝑁 },
all the values 𝑦 ∈ 𝑌 , and all the values 𝑟 ∈ 𝑅 (Lines 9–11). At each

iteration, for every pair (𝑦, 𝑟 ), the subroutine stores in x𝑦,𝑟 the

optimal set of bids for subcampaigns𝐶1, . . . ,𝐶 𝑗 that maximizes the

objective function, and stores the corresponding optimum value

in𝑀 (𝑦, 𝑟 ). At every 𝑗-th iteration, the computation of the optimal

bids is performed by evaluating a set of candidate solutions 𝑆 (𝑦, 𝑟 ),
computed as follows:

𝑆 (𝑦, 𝑟 ) :=
⋃ {

s = [x𝑦
′,𝑟 ′ , 𝑥] s.t. 𝑦′ + 𝑐 𝑗 (𝑥) ≤ 𝑦 ∧

𝑟 ′ +𝑤 𝑗 (𝑥) ≥ 𝑟 ∧ 𝑥 ∈ 𝑋 𝑗 ∧ 𝑦′ ∈ 𝑌 ∧ 𝑟 ′ ∈ 𝑅
}
. (2)

This set is built by combining the optimal bids x𝑦
′,𝑟 ′

computed at

the ( 𝑗 − 1)-th iteration with one of the bids 𝑥 ∈ 𝑋 𝑗 available for

the 𝑗-th subcampaign, such that these combinations satisfy the ROI

and budget constraints. Then, the subroutine assigns the element of

𝑆 (𝑦, 𝑟 ) that maximizes the revenue to x𝑦,𝑟
next

and the corresponding

revenue to𝑀 (𝑦, 𝑟 ). At the end, the subroutine computes the optimal

pair (𝑦∗, 𝑟∗) as follows:

(𝑦∗, 𝑟∗) =
{
𝑦 ∈ 𝑌, 𝑟 ∈ 𝑅 s.t.

𝑟

𝑦
≥ 𝜆 ∧

𝑀 (𝑦, 𝑟 ) ≥ 𝑀 (𝑦′, 𝑟 ′), ∀𝑦′ ∈ 𝑌,∀𝑟 ′ ∈ 𝑅
}
, (3)

as well as the corresponding set of bids x𝑦
∗,𝑟 ∗

, containing one bid

for each subcampaign. We can state the following:

Theorem 2 (Optimality). Subroutine Opt(𝝁, 𝜆) returns the op-
timal solution to the problem in Equations (1a)–(1c) when𝑤 𝑗 (𝑥) =
𝑤 𝑗 (𝑥) = 𝑣 𝑗 𝑛 𝑗 (𝑥) and 𝑐 𝑗 (𝑥) = 𝑐 𝑗 (𝑥) for each 𝑗 ∈ {1, . . . , 𝑁 } and the
values of revenues and costs are in 𝑅 and 𝑌 , respectively.

The asymptotic running time of the Opt procedure is:

Θ
©­«
𝑁∑︁
𝑗=1

|𝑋 𝑗 | |𝑌 |2 |𝑅 |2ª®¬ ,
where |𝑋 𝑗 | is the cardinality of the set of bids 𝑋 𝑗 , since it has to

cycle over all the subcampaigns and, for each one of them, to find

the maximum bids and compute the values in the matrix 𝑆 (𝑦, 𝑟 ).
Moreover, the asymptotic space complexity of the Opt procedure is

Θ(max𝑗={1,...,𝑁 } |𝑋 𝑗 | |𝑌 | |𝑅 |) since it has to store the values in the

matrix 𝑆 (𝑦, 𝑟 ) and perform a maximum operation over the possible

bids 𝑥 ∈ 𝑋 𝑗 .

5 ESTIMATION SUBROUTINE
Initially, we focus on the nature of our learning problem, and we

show that no online learning algorithm can provide a sublinear

pseudo-regret while guaranteeing safety.

Theorem 3 (Pseudo-regret/safety tradeoff). For every 𝜖 > 0

and time horizon 𝑇 , there is no algorithm with pseudo-regret smaller
than (1/2 − 𝜖)𝑇 that violates (in expectation) the constraints less
than (1/2 − 𝜖)𝑇 times.

Notice that, for the sake of simplicity, our proof is based on

the violation of (budget) Constraint (1c), but its extension to the

violation of (ROI) Constraint (1b) is direct. Since we cannot simul-

taneously guarantee sublinear regret and a sublinear number of

violations of the constraints, we focus on algorithms guaranteeing

only one property. In particular, in the following, we provide two

algorithms, the first guaranteeing sublinear regret and the second

guaranteeing a sublinear number of violations of the constraints.

The results provided in the following hold under the assumption

that 𝑛 𝑗 and 𝑐 𝑗 can be modeled as GPs.

The asymptotic running time of the GP estimation subroutine is

Θ(∑𝑁
𝑗=1 |𝑋 𝑗 | 𝑡2), where 𝑡 is the number of samples (current round),

and the asymptotic space complexity is Θ(𝑁𝑡2), i.e., the space re-
quired to store the Gram matrix. The dependence on the number of

days 𝑡 due to the GP update procedure can be reduced to linear using

the recursive formula for the GP mean and variance computation

(see Chowdhury and Gopalan [7] for details).



Guaranteeing Sublinear Pseudo-regret: GCB.. Accabi et al. [1] pro-
vide the GCB algorithm, a combinatorial bandit algorithm in which

the reward is modeled by a single GP. In this work, we use a specific

instance of the GCB in which multiple parameters are modeled by

independent GPs. The details on how to properly set the values in

the vector 𝝁 as prescribed by GCB are described in the Supplemen-

tary Material. The result provided in Theorem 1 by [1] bounds the

GCB pseudo-regret in terms of the maximum information gain of

the GP modeling the number of clicks of subcampaign𝐶 𝑗 , formally

defined as:

𝛾 𝑗,𝑡 :=
1

2

max

(𝑥 𝑗,1,...,𝑥 𝑗,𝑡 ),𝑥 𝑗,ℎ∈𝑋 𝑗

����𝐼𝑡 + Φ(𝑥 𝑗,1, . . . , 𝑥 𝑗,𝑡 )
𝜎2

���� ,
where 𝐼𝑡 is the identity matrix of order 𝑡 , Φ(𝑥 𝑗,1, . . . , 𝑥 𝑗,𝑡 ) is the
Gram matrix of the GP computed on the vector (𝑥 𝑗,1, . . . , 𝑥 𝑗,𝑡 ), and
𝜎 ∈ R+ is the noise standard deviation.

From the above results, we can state the following:

Theorem 4 (GCB pesudo-regret). Given 𝛿 ∈ (0, 1), GCB ap-
plied to the problem in Equations (1a)–(1c), with probability at least
1 − 𝛿 , suffers from a pseudo-regret of:

𝑅𝑇 (GCB ) ≤

√√√√
16𝑇𝑁 3𝑏𝑡

ln(1 + 𝜎2)

𝑁∑︁
𝑗=1

𝛾 𝑗,𝑇 ,

where 𝑏𝑡 := 2 ln

(
𝜋2𝑁𝑄𝑇𝑡2

3𝛿

)
is an uncertainty term used to guarantee

the confidence level required by GCB, and 𝑄 := max𝑗∈{1,...,𝑁 } |𝑋 𝑗 |
is the maximum number of bids in a subcampaign.

On the other hand, the GCB algorithm violates (in expectation)

the constraints a linear number of times in 𝑇 .

Theorem 5 (GCB safety). Given 𝛿 ∈ (0, 1), GCB applied to the
problem in Equations (1a)–(1c) is 𝜂-safe where 𝜂 ≥ 𝑇 − 𝛿

2𝑁𝑄𝑇
and,

therefore, the number of constraints violations is linear in 𝑇 .5

Guaranteeing Safety: GCBsafe. We propose GCBsafe, a variant

of GCB relying on different values to be used in the vector 𝝁. More

specifically, we employ optimistic estimates for the parameters

used in the objective function and pessimistic estimates for the

parameters used in the constraints. Formally, in GCBsafe, we set:

𝑤 𝑗 (𝑥) := 𝑣 𝑗
[
𝑛̂ 𝑗,𝑡−1 (𝑥) +

√︁
𝑏𝑡−1𝜎̂𝑛𝑗,𝑡−1 (𝑥)

]
,

𝑤 𝑗 (𝑥) := 𝑣 𝑗
[
𝑛̂ 𝑗,𝑡−1 (𝑥) −

√︁
𝑏𝑡−1𝜎̂𝑛𝑗,𝑡−1 (𝑥)

]
,

𝑐 𝑗 (𝑥) := 𝑐 𝑗,𝑡−1 (𝑥) +
√︁
𝑏𝑡−1𝜎̂𝑐𝑗,𝑡−1 (𝑥) .

Furthermore, GCBsafe needs a default set of bids

{
𝑥d
𝑗,𝑡

}𝑁
𝑗=1

, that

is known a priori to be feasible for the problem in Equations (1a)–

(1c) with the actual values of the parameters.
6
The pseudo-code of

GCBsafe is provided in Algorithm 1 with the above definition of the

parameters of vector 𝝁, except that it returns
{
𝑥 𝑗,𝑡

}𝑁
𝑗=1

=

{
𝑥d
𝑗,𝑡

}𝑁
𝑗=1

if the optimization problem does not admit any feasible solution

with the current estimates. We can show the following:

5
In the Supplementary Material, we also present Theorem 9 that provides results

on the magnitude of the violation of GCB.

6
A trivial default feasible bid allocation is

{
𝑥d

𝑗,𝑡
= 0

}𝑁
𝑗=1

.

Theorem 6 (GCBsafe safety). Given 𝛿 ∈ (0, 1), GCBsafe ap-
plied to the problem in Equations (1a)–(1c) is 𝛿-safe and, therefore,
the number of constraints violations is constant in 𝑇 .

The safety property comes at the cost that GCBsafe may suffer

from a much larger pseudo-regret than GCB:

Theorem 7 (GCBsafe pseudo-regret). Given𝛿 ∈ (0, 1),GCBsafe
applied to the problem in Equations (1a)–(1c) suffers from a pseudo-
regret 𝑅𝑡 (GCBsafe) = Θ(𝑇 ).

Guaranteeing Sublinear Pseudo-regret and Safety with Tolerance:
GCBsafe (𝜓 ). We can show that, when a tolerance in the violation

of the constraints is accepted, GCBsafe can be exploited to obtain

a sublinear pseudo-regret. We focus on the case in which we a
priori know that the budget constraint is not active at the optimal

solution. Similar results can be derived both when we a priori know
that the ROI constraint is not active and when we have no a priori
information on which constraint is active, see the Supplementary

Material; furthermore, the extension to the case in which the budget

constraint is not uncertain as it is guaranteed by the platform is

direct. Given an instance of the problem in Equations (1a)–(1c) that

we call original problem, we build an auxiliary problem in which

we slightly relax the ROI constraint, substituting 𝜆 with 𝜆 −𝜓 . We

defineGCBsafe (𝜓 ) asGCBsafe applied to the auxiliary problem. By

definition, GCBsafe (𝜓 ), w.h.p., does not violate the ROI constraint
of the original problem by more than the tolerance𝜓 .

Theorem 8 (GCBsafe (𝜓 ) pseudo-regret and safety with

tolerance). When𝜓 ≥ 2

𝛽𝑜𝑝𝑡+𝑛max

𝛽2𝑜𝑝𝑡

∑𝑁
𝑗=1 𝑣 𝑗

√︂
2 ln

(
𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
𝜎 and

𝛽𝑜𝑝𝑡 < 𝛽

∑𝑁
𝑗=1 𝑣𝑗

𝑁 𝛽𝑜𝑝𝑡𝜓

𝛽𝑜𝑝𝑡 +𝑛max

+∑𝑁
𝑗=1 𝑣𝑗

, where 𝛿 ′ ≤ 𝛿 , 𝛽𝑜𝑝𝑡 is the spend at the

optimal solution of the original problem, and 𝑛max := max𝑗,𝑥 𝑛 𝑗 (𝑥) is
the maximum over the sub-campaigns and the admissible bids of the
expected number of clicks, GCBsafe provides a pseudo-regret w.r.t. the

optimal solution to the original problem of O
(√︃
𝑇

∑𝑁
𝑗=1 𝛾 𝑗,𝑇

)
with

probability at least 1−𝛿− 𝛿 ′

𝑄𝑇 2
, while being 𝛿-safe w.r.t. the constraints

of the auxiliary problem.

This result states that, on the result provided in Theorem 1 can

be circumvented on a subset of the possible instances of the opti-

mization problem, if we allow a violation of at most𝜓 of the ROI

constraint. In this case, GCBsafe (𝜓 ) guarantees sublinear regret
and a number of constraints violations that is constant in 𝑇 .

Notice that the magnitude of the violation𝜓 increases linearly

in the maximum number of clicks 𝑛𝑚𝑎𝑥 and

∑𝑁
𝑗=1 𝑣 𝑗 , that, in its

turn, increases linearly with the number of sub-campaigns 𝑁 . This

suggests that in large instances this value may be large. However,

in practice, the maximum number of clicks of a sub-campaign 𝑛max

is a sublinear function in the optimal budget 𝑏𝑜𝑝𝑡 , and usually it

goes to a constant as the budget spent goes to infinity. Moreover,

the number of sub-campaigns 𝑁 usually depends on the budget,

i.e., the choice of the budget is such that the budget is linear in the

number of sub-campaigns. Therefore, the result is that 𝑏𝑜𝑝𝑡 is of

the same order of

∑𝑁
𝑗=1 𝑣 𝑗 . In conclusion, since 𝑛𝑚𝑎𝑥 is sublinear

in 𝑏𝑜𝑝𝑡 and
∑𝑁

𝑗=1 𝑣 𝑗 is of the order of 𝑏𝑜𝑝𝑡 , the final expression of

𝜓 is sub-linear in 𝑏𝑜𝑝𝑡 .
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Figure 1: Results of Experiment #1: daily revenue (a), ROI (b), and spend (c) obtained by GCB and GCBsafe. Dash-dotted lines
correspond to the optimum values for the revenue and ROI, while dashed lines correspond to the values of the ROI and budget
constraints.
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Figure 2: Results of Experiment #2: Median values of the daily revenue (a), ROI (b) and spend (c) obtained by GCBsafe with
different values of 𝜖𝑥 .
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Figure 3: Results of Experiment #3: Median values of the daily revenue (a), ROI (b) and spend (c) obtained by GCB, GCBsafe,
and GCBsafe(𝜖𝑥 = 0.95).

6 EXPERIMENTAL EVALUATION
We compare theGCB algorithmwithGCBsafe in synthetic settings,

generated from real-world data, in terms of pseudo-regret and

safety.

Experiment #1. We simulate 𝑁 = 5 subcampaigns, with |𝑋 𝑗 | =
201 bid values evenly spaced in [0, 2], |𝑌 | = 101 cost values evenly

spaced in [0, 100], and |𝑅 | = 151 revenue values evenly spaced

in [0, 1200]. For a generic subcampaign 𝐶 𝑗 , at every 𝑡 , the daily

number of clicks is returned by function 𝑛̃ 𝑗 (𝑥) := 𝜃 𝑗 (1 − 𝑒−𝑥/𝛿 𝑗 ) +

𝜉𝑛
𝑗
and the daily cost by function 𝑐 𝑗 (𝑥) = 𝛼 𝑗 (1 − 𝑒−𝑥/𝛾 𝑗 ) + 𝜉𝑐

𝑗
,

where 𝜃 𝑗 ∈ R+ and 𝛼 𝑗 ∈ R+ represent the maximum achievable

number of clicks and cost for subcampaign 𝐶 𝑗 in a single day,

𝛿 𝑗 ∈ R+ and 𝛾 𝑗 ∈ R+ characterize how fast the two functions

reach a saturation point and 𝜉𝑛
𝑗
and 𝜉𝑐

𝑗
are noise terms drawn from

a N(0, 1) Gaussian distribution (these functions are customarily

used in the advertising literature, e.g., by Kong et al. [16]). The

values used for the parameters of the above functions for the 𝑁 = 5



subcampaigns have been estimated relying on a real-world dataset.
7

We assume a unitary value for each click, i.e., 𝑣 𝑗 = 1 for each

𝑗 ∈ {1, . . . , 𝑁 }. The values of the parameters of cost and revenue

functions of the subcampaigns are specified in Table 1 reported

in the Supplementary Material. We set a daily budget 𝛽 = 100 for

every 𝑡 , 𝜆 = 10 in the ROI constraint, and a time horizon 𝑇 = 60.

The peculiarity of this setting is that, at the optimal solution, the

budget constraint is active, while the ROI one is not (below, in

Experiment #2, we study a setting in which the ROI constraint is

active at the optimal solution).

For both GCB and GCBsafe, we use GPs with a squared expo-

nential kernel of the form 𝑘 (𝑥, 𝑥 ′) := 𝜎2
𝑓
exp

{
− (𝑥−𝑥 ′ )2

𝑙

}
for each

𝑥, 𝑥 ′ ∈ 𝑋 𝑗 , where the parameters 𝜎𝑓 ∈ R+ and 𝑙 ∈ R+ are estimated

from data, as suggested by Rasmussen and Williams [23]. The con-

fidence for the algorithms is 𝛿 = 0.2. We evaluate the algorithms in

terms of:

• daily revenue: 𝑃𝑡 (𝔘) := ∑𝑁
𝑗=1 𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 );

• daily ROI: 𝑅𝑂𝐼𝑡 (𝔘) :=
∑𝑁

𝑗=1 𝑣𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

;

• daily spend: 𝑆𝑡 (𝔘) := ∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 ).

We perform 100 independent runs for each algorithm.

Results . In Figure 1, for the daily revenue, ROI, and spend achieved
by GCB and GCBsafe at every 𝑡 , we show the 50𝑡ℎ percentile (i.e.,
the median) with solid lines and the 90𝑡ℎ and 10𝑡ℎ percentiles with

dashed lines surrounding the semi-transparent area. While GCB

achieves a larger revenue than GCBsafe, it violates the budget con-

straint over the entire time horizon and the ROI constraint in the

first 7 days in more than 50% of the runs. This happens because,

in the optimal solution, the ROI constraint is not active, while the

budget constraint is. Conversely, GCBsafe satisfies the budget and

ROI constraints over the time horizon for more than 90% of the

runs, and has a slower convergence to the optimum revenue. If we

focus on the median revenue, GCBsafe has a similar behaviour to

that of GCB for 𝑡 > 15. This makes GCBsafe a good choice even in

terms of overall revenue. However, it is worth to notice that, in the

10% of the runs, GCBsafe does not converge to the optimal solution

before the end of the learning period. These results confirm our

theoretical analysis showing that limiting the exploration to safe

regions might lead the algorithm to get large regret.

Experiment #2. We study a setting in which the ROI constraint

is active at the optimal solution, i.e., 𝜆 = 𝜆𝑜𝑝𝑡 , while the budget

constraint is not. This means that, at the optimal solution, the

advertiser would have an extra budget to spend. However, such

budget is not spent, otherwise the ROI constraint would be violated.

The experimental setting is the same of Experiment #1, except that

we set the budget constraint as 𝛽 = 300. The optimal daily spend is

𝛽𝑜𝑝𝑡 = 161.

Results. In Figure 3, we show the median values of the daily

revenue, the ROI, and the spend of GCB, GCBsafe, GCBsafe (0.05).
We notice that, even in this setting,GCB violates the ROI constraint

for the entire time horizon, and the budget constraint in 𝑡 = 6 and

7
The dataset is provided by AdsHotel (https://www.adshotel.com/), an Italian

media agency working in the hotel booking market. The estimated values and the

code used in the experiments are available at: https://github.com/oi-tech/safe_bid_opt.

𝑡 = 7. However, it achieves a revenue larger than the optimum.

On the other side, GCBsafe always satisfies both the constraints,

but it does not perform enough exploration to quickly converge

to the optimal solution. We observe that it is sufficient to allow

a tolerance in the ROI constraint violation by slightly perturbing

the input value 𝜆 (𝜓 = 0.05, corresponding to a violation of the

constraint by at most 5%) to make GCBsafe capable of approaching

the optimal solution while satisfying both constraints for every 𝑡 ∈
{0, . . . ,𝑇 }. This suggests that, in real-world applications, GCBsafe
with a given tolerance represents an effective solution, providing

guarantees on the violation of the constraints while returning high

values of revenue. Such results are also confirmed by the additional

experiments provided in the Supplementary Material.

7 CONCLUSIONS AND FUTUREWORKS
In this paper, we propose a novel framework for Internet adver-

tising campaigns. While previous works available in the literature

focus only on the maximization of the revenue provided by the

campaign, we introduce the concept of safety for the algorithms

choosing the bid allocation each day. More specifically, we aim that

the allocation satisfies, with high probability, some daily ROI and

budget constraints fixed by the business units of the companies. The

constraints are uncertain, as their parameters are not a priori known
(some platforms do not allow the bidders to set daily budget con-

straint, while no platform allows the bidders to set daily constraints

on ROI). Our goal is to maximize the revenue satisfying w.h.p. the

uncertain constraints (a.k.a. safety). We model this setting as a con-

strained optimization problem, and we prove that such a problem is

inapproximable within any strictly positive factor, unless P = NP,

but it admits an exact pseudo-polynomial-time algorithm. Most in-

terestingly, we prove that no online learning algorithm can provide

sublinear pseudo-regret while guaranteeing a sublinear number of

violations of the uncertain constraints. We show that the adaption

of GCB suffers from a sublinear pseudo-regret, however, it may

violate the constraints a linear number of times. Thus, we design

GCBsafe, a novel algorithm that guarantees safety at the cost of a

linear pseudo-regret. Remarkably, a simple adaptation of GCBsafe,

namely GCBsafe (𝜓 ), guarantees a sublinear pseudo-regret and a

safety with a fixed tolerance𝜓 . Finally, we evaluate the empirical

performance of our algorithms on synthetically advertising prob-

lems generated from real-world data. These experiments show that

GCBsafe (𝜓 ) provides good performance in terms of safety, while

suffering from a small cumulative revenue w.r.t. GCB.

An interesting open research direction is the design of an al-

gorithm which adopts constraints changing during the learning

process, so as to identify the active constraint and relax those that

are not active. Moreover, understanding the relationship between

the relaxation of one of the constraints and the increase of the

revenue constitutes an interesting line of research.

https://www.adshotel.com/
https://github.com/oi-tech/safe_bid_opt
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A SUPPLEMENTARY MATERIAL FOR THE PAPER “SAFE ONLINE BID OPTIMIZATIONWITH
UNCERTAIN RETURN-ON-INVESTMENT AND BUDGET CONSTRAINTS”

A.1 Optimization Subroutine Analysis
Theorem 1 (Inapproximability). For any 𝜌 ∈ (0, 1], there is no polynomial-time algorithm returning a 𝜌-approximation to the problem in

Equations (1a)–(1c), unless P = NP.

Proof. We restrict to the instances of SUBSET-SUM such that 𝑧 ≤ ∑
𝑖∈𝑆 𝑢𝑖 . Solving these instances is trivially NP-hard, as any instance

with 𝑧 >
∑
𝑖∈𝑆 𝑢𝑖 is not satisfiable, and we can decide it in polynomial time. Given an instance of SUBSET-SUM, let ℓ =

∑
𝑖∈𝑆 𝑢𝑖+1

𝜌 . Let us

notice that, the lower the degree of approximation we aim, the larger the value of ℓ . For instance, when study the problem of computing an

exact solution, we set 𝜌 = 1 and therefore ℓ =
∑
𝑖∈𝑆 𝑢𝑖 + 1, whereas, when we require a 1/2-approximation, we set 𝜌 = 1/2 and therefore

ℓ = 2(∑𝑖∈𝑆 𝑢𝑖 + 1). We have |𝑆 | + 1 subcampaigns, each denoted with 𝐶 𝑗 . The available bids belong to {0, 1} for every subcampaign 𝐶 𝑗 . The

parameters of the subcampaigns are set as follows:

• subcampaign 𝐶0: we set 𝑣0 = 1, and

𝑐0 (𝑥) =
{
2ℓ + 𝑧 if 𝑥 = 1

0 otherwise

, 𝑛0 (𝑥) =
{
ℓ if 𝑥 = 1

0 otherwise

;

• subcampaign 𝐶 𝑗 for every 𝑗 ∈ 𝑆 : we set 𝑣 𝑗 = 1, and

𝑐 𝑗 (𝑥) =
{
𝑢𝑖 ℓ + 𝑧 if 𝑥 = 1

0 otherwise

, 𝑛 𝑗 (𝑥) =
{
𝑢𝑖 if 𝑥 = 1

0 otherwise

.

We set the daily budget 𝛽 = 2(𝑧 + ℓ) and the ROI limit 𝜆 = 1

2
.
8

We show that, if a SUBSET-SUM instance is satisfiable, then the corresponding instance of our problem admits a solution with a revenue

larger than ℓ , while, if a SUBSET-SUM instance is not satisfiable, the maximum revenue in the corresponding instance of our problem

is at most 𝜌 ℓ − 1. Thus, the application of any polynomial-time 𝜌-approximation algorithm to instances of our problem generated from

instances of SUBSET-SUM as described above would return a solution whose value is not smaller than 𝜌 ℓ when the SUBSET-SUM instance

is satisfiable and it is not larger than 𝜌 ℓ − 1 when the SUBSET-SUM instance is not satisfiable. As a result, whenever such an algorithm

returns a solution with a value that is not smaller than 𝜌 ℓ , we can decide that the corresponding SUBSET-SUM instance is satisfiable.

Analogously, whenever such an algorithm returns a solution with a value that is in the range [𝜌 (𝜌 ℓ − 1), 𝜌 ℓ − 1], we can decide that the

corresponding SUBSET-SUM instance is not satisfiable. Let us notice that the range [𝜌 (𝜌 ℓ − 1), 𝜌 ℓ − 1] is well defined for every 𝜌 ∈ (0, 1],
as, by construction, 𝜌 ℓ =

∑
𝑖∈𝑆 𝑢𝑖 + 1 ≥ 1 and therefore 𝜌 ℓ − 1 ≥ 𝜌 (𝜌 ℓ − 1). Hence, such an algorithm would decide in polynomial time

whether or not a SUBSET-SUM instance is satisfiable, but this is not possible unless P = NP. Since this holds for every 𝜌 ∈ (0, 1], then no

𝜌-approximation to our problem is allowed in polynomial time unless P = NP.

If. Suppose SUBSET-SUM is satisfied by the set 𝑆∗ ⊆ 𝑆 and that the solution assigns 𝑥𝑖 = 1 if 𝑖 ∈ 𝑆∗ and 𝑥𝑖 = 0 otherwise, and it assigns

𝑥0 = 1. The total revenue is ℓ + 𝑧 ≥ ℓ and the constraints are satisfied. In particular, the sum of the costs is 2ℓ + 𝑧 + 𝑧 = 2(ℓ + 𝑧), while
ROI = ℓ+𝑧

2ℓ+2𝑧 = 1

2
.

Only if. Assume by contradiction that the instance of our problem admits a solution with a revenue strictly larger than 𝜌 ℓ − 1 and

that SUBSET-SUM is not satisfiable. Then, it is easy to see that we need 𝑥0 = 1 for campaign 𝐶0 as the maximum achievable revenue is∑
𝑖∈𝑆 𝑢𝑖 = 𝜌 ℓ − 1 when 𝑥0 = 0. Thus, since 𝑥0 = 1, the budget constraint forces

∑
𝑖∈𝑆 :𝑥𝑖=1 𝑐𝑖 (𝑥𝑖 ) ≤ 𝑧, thus implying

∑
𝑖∈𝑆 :𝑥𝑖=1 𝑢𝑖 ≤ 𝑧. By

the satisfaction of the ROI constraint, i.e.,
∑

𝑖∈𝑆 :𝑥𝑖=1 𝑢𝑖+𝑙∑
𝑖∈𝑆 :𝑥𝑖=1 𝑢𝑖+2𝑙+𝑧

≥ 1

2
, it must hold

∑
𝑖∈𝑆 :𝑥𝑖=1 𝑢𝑖 ≥ 𝑧. Therefore, the set 𝑆∗ = {𝑖 ∈ 𝑆 : 𝑥𝑖 = 1} is a

solution to SUBSET-SUM, thus reaching a contradiction. This concludes the proof. □

Theorem 2 (Optimality). Subroutine Opt(𝝁, 𝜆) returns the optimal solution to the problem in Equations (1a)–(1c) when𝑤 𝑗 (𝑥) = 𝑤 𝑗 (𝑥) =
𝑣 𝑗 𝑛 𝑗 (𝑥) and 𝑐 𝑗 (𝑥) = 𝑐 𝑗 (𝑥) for each 𝑗 ∈ {1, . . . , 𝑁 } and the values of revenues and costs are in 𝑅 and 𝑌 , respectively.

Proof. Since all the possible values for the revenues and costs are taken into account in the subroutine, the elements in 𝑆 (𝑦, 𝑟 ) satisfy the

two inequalities in Equation (2) with the equal sign. Therefore, all the elements in 𝑆 (𝑦, 𝑟 ) would contribute to the computation of the final

value of the ROI and budget constraints, i.e., the ones after evaluating all the 𝑁 subcampaigns, with the same values for revenue and costs,

being their overall revenue equal to 𝑟 and their overall cost equal to 𝑦. Notice that Constraint (1c) is satisfied as long as it holds max(𝑌 ) = 𝛽 .
The maximum operator in Line 11 excludes only solutions with the same costs and a lower revenue, therefore, the subroutine excludes only

solutions that would never be optimal (and, for this reason, said dominated). The same reasoning holds also for the subcampaign𝐶1 analysed

by the algorithm. Finally, after all the dominated allocations have been discarded, the solution is selected by Equation (3), i.e., among all the

solutions satisfying the ROI constraints the one with the largest revenue is selected. □
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For the ease of exposition, the proof uses simple instances. The adoption of simple cases is crucial to identify the most basic settings in which the problem is hard, and it is

customary in the theory literature. Let us notice that it is possible to prove the theorem using instances that satisfy real-world assumptions. For example, we can build a reduction in

which the costs are smaller than the values, i.e., 𝑐𝑖 (𝑥 ) < 𝑛𝑖 (𝑥 )𝑣𝑖 . In particular, the reduction holds even if we set 𝑐0 (1) = 𝜖 (2𝑙 + 𝑧 ) , 𝑐 𝑗 (1) = 𝜖𝑢𝑖 , 𝛽 = 2𝜖 (𝑧 + 𝑙 ) , and 𝜆 = 1/(2𝜖 )
for an arbitrary small 𝜖 .



In what follows, we provide an impossibility result for the optimization problem in Equations (1a)–(1c). For the sake of simplicity, our

proof is based on the violation of (budget) Constraint (1c), but its extension to the violation of (ROI) Constraint (1b) is direct.

Theorem 3 (Pseudo-regret/safety tradeoff). For every 𝜖 > 0 and time horizon 𝑇 , there is no algorithm with pseudo-regret smaller than
(1/2 − 𝜖)𝑇 that violates (in expectation) the constraints less than (1/2 − 𝜖)𝑇 times.

Proof. Initially, we show that an algorithm satisfying the two conditions of the theorem can be used to distinguish between N(1, 1)
and N(1 + 𝛿, 1) with an arbitrarily large probability using a number of samples independent from 𝛿 . Consider two instances of the bid

optimization problem defined as follows. Both instances have a single subcampaign with 𝑥 ∈ {0, 1}, 𝑐 (0) = 0, 𝑟 (0) = 0, 𝑟 (1) = 1, 𝛽 = 1,

and 𝜆 = 0. The first instance has cost 𝑐1 (1) = N(1, 1), while the second one has 𝑐2 (1) = N(1 + 𝛿, 1). With the first instance, the algorithm

must choose 𝑥 = 1 at least 𝑇 (1/2 + 𝜖) times in expectation, otherwise the pseudo-regret would be strictly greater than 𝑇 (1/2 − 𝜖), while,
with the second instance, the algorithm must choose 𝑥 = 1 at most than 𝑇 (1/2 − 𝜖) times in expectation, otherwise the constraint on the

budget would be violated strictly more than 𝑇 (1/2 − 𝜖) times. Standard concentration inequalities imply that, for each 𝛾 > 0, there exists a

𝑛(𝜖,𝛾) such that, given 𝑛(𝜖,𝛾) runs of the learning algorithm, with the first instance the algorithm plays 𝑥 = 1 strictly more than 𝑇𝑛(𝜖,𝛾)/2
times with probability at least 1 − 𝛾 , while with the second instance it is played strictly less than 𝑇𝑛(𝜖,𝛾)/2 times with probability at least

1 − 𝛾 . This entails that the learning algorithm can distinguish with arbitrarily large success probability (independent of 𝛿) between the two

instances using (at most) 𝑛(𝜖,𝛾)𝑇 samples from one of the normal distributions.

However, the Kullback-Leibler divergence between the two normal distributions is 𝐾𝐿(N (1, 1),N(1 + 𝛿, 1)) = 𝛿2/2 and each algorithm

needs at least Ω(1/𝛿2) samples to distinguish between the two distributions with arbitrarily large probability. Since 𝛿 can be arbitrarily

small, we have a contradiction. Thus, such an algorithm cannot exist. This concludes the proof.
9 □

A.2 Applying GCB to the Bid Optimization Problem
In what follows we provide the full description of the GCB algorithm applied to the problem of advertisement and state the assumptions

required to provide theoretical guarantees on the regret.

To guarantee that GCB provides a sublinear pseudo-regret, we need that a few assumptions are satisfied. More specifically, we need a

monotonicity property, stating that the value of the objective function increases as the values of the elements in 𝝁 increase and a Lipschitz
continuity assumption between the parameter vector 𝝁 and the value returned by the objective function in Equation (1a). Formally:

Assumption 1 (Monotonicity). The expected reward 𝑟𝝁 (𝑆) :=
∑𝑁

𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 ), where 𝑆 is the bid allocation, is monotonically non decreasing
in 𝝁, i.e., given 𝝁, 𝜼 s.t. 𝜇𝑖 ≤ 𝜂𝑖 for each 𝑖 , we have 𝑟𝝁 (𝑆) ≤ 𝑟𝜼 (𝑆) for each 𝑆 .

and:

Assumption 2 (Lipschitz continuity). The expected reward 𝑟𝝁 (𝑆) is Lipschitz continuous in the infinite norm w.r.t. the expected payoff vector
𝝁, with Lipschitz constant Λ > 0. Formally, for each 𝝁,𝜼 we have |𝑟𝝁 (𝑆) − 𝑟𝜼 (𝑆) | ≤ Λ| |𝝁 − 𝜼 | |∞, where the infinite norm of a payoff vector is
| |𝝁 | |∞ := max𝑖 |𝜇𝑖 |.

While it is easy to show that Lipschitz continuity holds with constant Λ = 𝑁 (number of subcampaigns), the monotonicity property holds

by definition of 𝝁, as the increase of a value of𝑤 𝑗 (𝑥) would increase the value of the objective function, and the increase of the values of

𝑤 𝑗 (𝑥) or 𝑐 𝑗 (𝑥) would enlarge the feasibility region of the problem, thus not excluding optimal solutions.

The GCB algorithms is presented in Algorithm 3. It uses two sets of GPs to estimate the number of clicks and the costs functions, one for

each subcampaigns 𝐶 𝑗 with 𝑗 ∈ {1, . . . , 𝑁 }. Then, the estimated payoffs for each arm 𝑥 𝑗,𝑡 are fed to the Opt(𝝁, 𝜆)procedure which chooses

the super-arm 𝑆𝑡 to play at round 𝑡 . The algorithm requires as input the set of bids 𝑋 𝑗 for each subcampaign, a prior for each one of the GPs

specified by the mean function 𝑛̂ 𝑗,0 (·) and the standard deviation function 𝜎̂𝑛
𝑗,0
(·) for the number of clicks and the mean function 𝑐 𝑗,0 (·)

and the standard deviation function 𝜎̂𝑐
𝑗,0
(·) for the costs. At round 𝑡 , the algorithm computes estimates for the expected payoff for each bid

𝑥 ∈ 𝑋 𝑗 . The algorithm relies on the observations provided by the advertisement process up to time 𝑡 − 1 by means of the values of the gram

matrix 𝐾𝑖,𝑡 of the number of clicks and 𝐻𝑖,𝑡 of the costs. It also requires to compute the vector of the covariance between the analysed bid 𝑥

and each bid seen up to now 𝑥 𝑗,𝑡 , formally 𝑘 𝑗,𝑡−1 := [𝑘 𝑗 (𝑥 𝑗,1, 𝑥), . . . 𝑘 𝑗 (𝑥 𝑗,𝑡−1, 𝑥)] and ℎ 𝑗,𝑡−1 := [ℎ 𝑗 (𝑥 𝑗,1, 𝑥), . . . ℎ 𝑗 (𝑥 𝑗,𝑡−1, 𝑥)], where 𝑘 𝑗 (·, ·)
and ℎ 𝑗 (·, ·) are the kernel functions for the number of clicks and the costs. Such a model provides a probability distribution for each expected

payoff, which is not directly employable in the approximation oracle, that, instead, needs a single value per expected payoff vector. We cope

with this issue we rely on upper an upper confidence bounds 𝝁 over the considered quantities:

𝑤 𝑗 (𝑥)=𝑤 𝑗 (𝑥) := 𝑣 𝑗
[
𝑛̂ 𝑗,𝑡−1 (𝑥) +

√︁
𝑏𝑡−1𝜎̂𝑛𝑗,𝑡−1 (𝑥)

]
, (4)

𝑐 𝑗 (𝑥) := 𝑐 𝑗,𝑡−1 (𝑥) −
√︁
𝑏𝑡−1𝜎̂𝑐𝑗,𝑡−1 (𝑥), (5)
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Notice The theorem can be modified to hold even with instances that satisfy real-world assumptions, e.g., with costs much smaller than the budget. Indeed, we can apply the

same reduction in which the costs are arbitrary, e.g., 𝑐 (0) = 𝑐 (1) = 𝑞 with an arbitrary small 𝑞 and 𝛽 = 1, while the utilities are 𝑟 (0) = 0, 𝑟 (1) = N(1, 1) or 𝑟 (1) = N(1 − 𝛿, 1) ,
and the ROI limit is 𝜆 = 1/𝑞.



Algorithm 3 GCB Algorithm

Input: Set of bids 𝑋 𝑗 , noise variance 𝜎
2
, GP Prior distributions 𝑛̂ 𝑗,0, 𝜎̂

𝑛
𝑗,0
, 𝑐 𝑗,0, and 𝜎̂

𝑐
𝑗,0

for all 𝑖 ∈ {1, . . . , 𝑁 }
1: for 𝑡 ∈ {1, . . . ,𝑇 } do
2: for 𝑗 ∈ {1, . . . , 𝑁 } do
3: for 𝑥 ∈ 𝑋 𝑗 do
4: Compute estimates 𝑛̂ 𝑗,𝑡−1 (𝑥) := 𝑘 𝑗,𝑡−1 (𝑥)⊤ (𝐾𝑗,𝑡−1 + 𝜎2𝐼 )−1𝑘 𝑗,𝑡−1 (𝑥)
5: Compute estimates 𝜎̂𝑛

𝑗,𝑡−1 (𝑥) := 𝑘 𝑗 (𝑥, 𝑥) − 𝑘
⊤
𝑗,𝑡−1 (𝐾𝑗,𝑡−1 + 𝜎2𝐼 )−1𝑘 𝑗,𝑡−1 (𝑥)

6: Compute estimates 𝑐 𝑗,𝑡−1 (𝑥) := ℎ 𝑗,𝑡−1 (𝑥)⊤ (𝐻 𝑗,𝑡−1 + 𝜎2𝐼 )−1ℎ 𝑗,𝑡−1 (𝑥)
7: Compute estimates 𝜎̂𝑐

𝑗,𝑡−1 (𝑥) := ℎ 𝑗 (𝑥, 𝑥) − ℎ
⊤
𝑗,𝑡−1 (𝐻 𝑗,𝑡−1 + 𝜎2𝐼 )−1ℎ 𝑗,𝑡−1 (𝑥)

8: Compute 𝝁 using the GPs estimates

9: Run the Opt(𝝁, 𝜆) procedure to get a solution

{
𝑥 𝑗,𝑡

}𝑁
𝑗=1

10: Set the prescribed allocation during day 𝑡

11: Get revenue

∑𝑁
𝑗=1 𝑣 𝑗 𝑛̃ 𝑗 (𝑥 𝑗,𝑡 )

12: Update the GPs using the new information 𝑛̃ 𝑗,𝑡 (𝑥 𝑗,𝑡 ) and 𝑐 𝑗,𝑡 (𝑥 𝑗,𝑡 )

where 𝑏𝑡 := 2 ln

(
𝜋2𝑁𝑄𝑇𝑡2

3𝛿

)
is an uncertainty term used to guarantee the confidence level required by GCB. Note that, given 𝛿 ∈ (0, 1),

𝑤 𝑗 (𝑥) and𝑤 𝑗 (𝑥) are statistical upper bounds for the actual values 𝑛 𝑗 (𝑥) and that 𝑐 𝑗 (𝑥) are statistical lower bounds for the actual values
𝑐 𝑗 (𝑥) holding for all 𝑥 ∈ 𝑋 𝑗 and for all 𝑗 ∈ {1, . . . , 𝑁 } with probability at least 1 − 𝛿 for 𝑡 ∈ {1, . . . ,𝑇 }.

For the sake of simplicity, we assume that the values of the bounds correspond to values in 𝑅 and 𝑌 , respectively. If the bound values for

𝑤 𝑗 (𝑥) are not in the set 𝑅, we need to round them up to the nearest value belonging to 𝑅. Instead, if 𝑐 𝑗 (𝑥) are not in the set 𝑌 , a rounding

down should be performed to the nearest value in 𝑌 .

Theorem 4 (GCB pesudo-regret). Given 𝛿 ∈ (0, 1), GCB applied to the problem in Equations (1a)–(1c), with probability at least 1 − 𝛿 ,
suffers from a pseudo-regret of:

𝑅𝑇 (GCB ) ≤

√√√√
16𝑇𝑁 3𝑏𝑡

ln(1 + 𝜎2)

𝑁∑︁
𝑗=1

𝛾 𝑗,𝑇 ,

where 𝑏𝑡 := 2 ln

(
𝜋2𝑁𝑄𝑇𝑡2

3𝛿

)
is an uncertainty term used to guarantee the confidence level required by GCB, and 𝑄 := max𝑗∈{1,...,𝑁 } |𝑋 𝑗 | is the

maximum number of bids in a subcampaign.

Proof. The bounds in Equations (4) and (5) guarantee that the probability that there is at least a triple ( 𝑗, 𝑥, 𝑡) with 𝑗 ∈ 𝑁 , 𝑥 ∈ 𝑋 𝑗 ,

𝑡 ∈ {1, . . . ,𝑇 } such that the actual value of 𝑣 𝑗𝑛 𝑗 (𝑥) is larger than the upper bound 𝑤 𝑗,𝑡−1 (𝑥) = 𝑤 𝑗,𝑡−1 (𝑥) or the actual value of 𝑐 𝑗 (𝑥) is
smaller than the lower bound 𝑐 𝑗,𝑡−1 (𝑥) is less than 𝛿/2 (see Accabi et al. [1] for details). This implies, using a union bound, that the values in

𝝁 used in the oracle Opt(𝝁, 𝜆) are statistical (optimistical) bounds for the true values with probability at least 1 − 𝛿 , as required by GCB.

Then, the proof follows by applying Theorem 1 by Accabi et al. [1] to our setting, using that Opt(𝝁, 𝜆) subroutine is an (𝛼, 𝛽)-approximation

algorithm with 𝛼 = 1 and 𝛽 = 1 (see Chen et al. [6] for a formal definition). □

Theorem 5 (GCB safety). Given 𝛿 ∈ (0, 1), GCB applied to the problem in Equations (1a)–(1c) is 𝜂-safe where 𝜂 ≥ 𝑇 − 𝛿
2𝑁𝑄𝑇

and, therefore,
the number of constraints violations is linear in 𝑇 .10

Proof. Let us focus on a specific day 𝑡 . Consider the case in which Constraints (1b) and (1c) are active, and, therefore, the left side equals

the right side:

∑𝑁
𝑗=1𝑤 𝑗 (𝑥 𝑗,𝑡 ) − 𝜆

∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 ) = 0 and

∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 ) = 𝛽 . For the sake of simplicity we focus on the costs 𝑐 𝑗 (𝑥 𝑗,𝑡 ), but

similar arguments also applies to the revenues 𝑤 𝑗 (𝑥 𝑗,𝑡 ). A necessary condition for which the two constraints are valid also for the real

revenue and costs is that for at least one of the costs it holds 𝑐 𝑗 (𝑥 𝑗,𝑡 ) ≤ 𝑐 𝑗 (𝑥 𝑗,𝑡 ). Indeed, if the opposite holds, i.e., 𝑐 𝑗 (𝑥 𝑗,𝑡 ) < 𝑐 𝑗 (𝑥 𝑗,𝑡 ) for each
𝑗 ∈ {1, . . . , 𝑁 } and 𝑥 𝑗,𝑡 ∈ 𝑋 𝑗 , the budget constraint would be violated by the allocation since

∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 ) >

∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 ) = 𝛽 . Since the

event 𝑐 𝑗 (𝑥 𝑗,𝑡 ) ≤ 𝑐 𝑗 (𝑥 𝑗,𝑡 ) occurs with probability at most
3𝛿

𝜋2𝑁𝑄𝑇𝑡2
, over the 𝑡 ∈ N, formally:

P
©­«
∑𝑁

𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

< 𝜆 ∨
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 ) > 𝛽
ª®¬ ≥ 1 − 3𝛿

𝜋2𝑁𝑄𝑇𝑡2
.

10
In the Supplementary Material, we also present Theorem 9 that provides results on the magnitude of the violation of GCB.



Finally, summing over the time horizon 𝑇 the probability that the constraints are not violated is at most
𝛿

2𝑁𝑄𝑇
, formally:

𝑇∑︁
𝑡=1

P
©­«
∑𝑁

𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

< 𝜆 ∨
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 ) > 𝛽
ª®¬ ≥ 𝑇 − 𝛿

2𝑁𝑄𝑇
.

□

In the following theorem we want to show that the cumulated violation by GCB of at least one of the constraints algorithm is bounded.

The following results assume that each subcampaign have a minimum cost per day 𝑐min > 0, a maximum cost 𝑐max, and a maximum number

of clicks 𝑛max := max𝑗∈{1,...,𝑁 },𝑥∈𝑋 𝑛 𝑗 (𝑥).

Theorem 9 (GCB cumulated violation). The cumulated violation of the two constraints provided by the GCB algorithm satisfies:

• ∑𝑇
𝑡=1

∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 ) −𝑇 𝛽 ≤ O

(√︃
𝑇

∑𝑁
𝑗=1 𝛾

𝑐
𝑗,𝑇

)
,

• 𝑇𝜆 − ∑𝑇
𝑡=1

∑𝑁
𝑗=1 𝑣𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

≤ O
(√︃
𝑇

∑𝑁
𝑗=1 (𝛾 𝑗,𝑡 + 𝛾𝑐𝑗,𝑡 )

)
,

where 𝛾𝑐
𝑗,𝑡

is the maximum information gain of the GPs modeling the costs of 𝑗-th subcampaign after 𝑡 samples.

Proof. We analyse the violation of the ROI constraint 𝑣𝑟𝑡 at a specific day 𝑡 and the one of the budget constraint 𝑣𝑏𝑡 .

Focusing on the budget constraint, we have:

𝑣𝑏 𝑗 =

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 ) − 𝑦 ≤
𝑁∑︁
𝑗=1

(𝑐 𝑗 (𝑥 𝑗,𝑡 ) +
√︁
𝑏𝑡−1𝜎̂𝑐𝑗,𝑡−1 (𝑥 𝑗,𝑡 )) − 𝛽 (6)

=

𝑁∑︁
𝑗=1

(𝑐 𝑗 (𝑥 𝑗,𝑡 ) −
√︁
𝑏𝑡−1𝜎̂𝑐𝑗,𝑡−1 (𝑥 𝑗,𝑡 )) − 𝛽︸                                            ︷︷                                            ︸
≤0

+2
𝑁∑︁
𝑗=1

√︁
𝑏𝑡−1𝜎̂𝑐𝑗,𝑡−1 (𝑥 𝑗,𝑡 ) (7)

≤ 2

𝑁∑︁
𝑗=1

√︁
𝑏𝑡−1𝜎̂𝑐𝑗,𝑡−1 (𝑥 𝑗,𝑡 ), (8)

where the inequality in Equation (7) holds from the fact that the solution selected by GCB has to satisfy the budget constraint. Define

𝑛 𝑗 (𝑥 𝑗,𝑡 ) := 𝑛̂ 𝑗 (𝑥 𝑗,𝑡 ) +
√
𝑏𝑡−1𝜎̂𝑛𝑗 (𝑥 𝑗,𝑡 ). Notice that the previous bound holds w.p. at least 1 − 𝛿 due to the fact that this is the probability for

which the bounds on the number of clicks and the costs hold.

Since we have 𝜆 ≤
∑𝑁

𝑗=1 𝑣𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

:

𝑣𝑟𝑡 = 𝜆 −
∑𝑁

𝑗=1 𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

≤
∑𝑁

𝑗=1 𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

−
∑𝑁

𝑗=1 𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

(9)

≤
∑𝑁

𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )
∑𝑁

𝑗=1 𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 ) −
∑𝑁

𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )
∑𝑁

𝑗=1 𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

(10)

≤ 1

𝑁 2𝑐min (𝑐min −
√︁
𝑏𝑇𝜎)

©­«
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 )
𝑁∑︁
𝑗=1

𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 ) −
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 )
𝑁∑︁
𝑗=1

𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )

+
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 )
𝑁∑︁
𝑗=1

𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 ) −
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 )
𝑁∑︁
𝑗=1

𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )ª®¬ (11)

≤ 1

𝑁 2𝑐min (𝑐min −
√︁
𝑏𝑇𝜎)


𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 )
©­«
𝑁∑︁
𝑗=1

𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 ) −
𝑁∑︁
𝑗=1

𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )
ª®¬

+
𝑁∑︁
𝑗=1

𝑣 𝑗𝑛 𝑗 (𝑥 𝑗,𝑡 )
©­«
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 ) −
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 )ª®¬
 (12)

≤
𝑁𝑐max𝑣max2

∑𝑁
𝑗=1

√
𝑏𝑡−1𝜎̂𝑛𝑗 (𝑥 𝑗,𝑡 ) + 𝑁𝑛max𝑣max2

∑𝑁
𝑗=1

√
𝑏𝑡−1𝜎̂𝑐𝑗 (𝑥 𝑗,𝑡 )

𝑁 2𝑐min (𝑐min −
√︁
𝑏𝑇𝜎)

(13)



=
2𝑐max𝑣max

∑𝑁
𝑗=1

√
𝑏𝑡−1𝜎̂𝑛𝑗 (𝑥 𝑗,𝑡 ) + 2𝑛max𝑣max

∑𝑁
𝑗=1

√
𝑏𝑡−1𝜎̂𝑐𝑗 (𝑥 𝑗,𝑡 )

𝑁𝑐min (𝑐min −
√︁
𝑏𝑇𝜎)

, (14)

where

∑𝑁
𝑗=1 𝑣 𝑗 𝑛̂ 𝑗 (𝑥 𝑗,𝑡 ) ≥

∑𝑁
𝑗=1 𝑣 𝑗𝑛 𝑗 (𝑥∗𝑗 ) by definition of the GCB selection rule, 𝑣max := max

𝑁
𝑗=1

𝑣 𝑗 , and we assume that 𝑐min −
√︁
𝑏𝑇𝜎 > 0.

Using arguments similar to what has been used to bound the instantaneous regret 𝑟𝑡 in Srinivas et al. [24] and Accabi et al. [1], and

summing over the time horizon 𝑇 , provides the final statement of the theorem. □

A.3 GCBsafe Analysis (Complete Proofs)
Theorem 6 (GCBsafe safety). Given 𝛿 ∈ (0, 1), GCBsafe applied to the problem in Equations (1a)–(1c) is 𝛿-safe and, therefore, the number

of constraints violations is constant in 𝑇 .

Proof. Let us focus on a specific day 𝑡 . Constraints (1b) and (1c) are satisfied by the solution of Opt(𝝁, 𝜆) for the properties of the
optimization procedure. Define 𝑛 𝑗 (𝑥 𝑗,𝑡 ) := 𝑛̂ 𝑗 (𝑥 𝑗,𝑡 ) −

√
𝑏𝑡−1𝜎̂𝑛𝑗 (𝑥 𝑗,𝑡 ). Thanks to the specific construction of the upper bounds we have that

𝑐 𝑗 (𝑥 𝑗,𝑡 ) ≤ 𝑐 𝑗 (𝑥 𝑗,𝑡 ) and 𝑛 𝑗 (𝑥 𝑗,𝑡 ) ≥ 𝑛 𝑗 (𝑥 𝑗,𝑡 ), each holding with probability at least 1 − 3𝛿
𝜋2𝑁𝑄𝑇𝑡2

. As a consequence, we have:∑𝑁
𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

>

∑𝑁
𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

≥ 𝜆

and

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 ) <
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 ) ≤ 𝛽.

Using a union bound over:

• the two GPs (number of clicks and costs);

• the time horizon 𝑇 ;

• the number of times each bid is chosen in a subcampaign (at most 𝑡 );

• the number of arms present in each subcampaign (|𝑋 𝑗 |);
• the number of subcampaigns (𝑁 );

we have:

𝑇∑︁
𝑡=1

P
©­«
∑𝑁

𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

< 𝜆 ∨
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥 𝑗,𝑡 ) > 𝛽
ª®¬ ≤ 2

𝑁∑︁
𝑗=1

|𝑋 𝑗 |∑︁
𝑘=1

𝑇∑︁
ℎ=1

𝑡∑︁
𝑙=1

3𝛿

𝜋2𝑁𝑄𝑇𝑙2
(15)

≤ 2

𝑁∑︁
𝑗=1

𝑄∑︁
𝑘=1

𝑇∑︁
ℎ=1

+∞∑︁
𝑙=1

3𝛿

𝜋2𝑁𝑄𝑇𝑙2
= 𝛿. (16)

(17)

This concludes the proof. □

Theorem 7 (GCBsafe pseudo-regret). Given 𝛿 ∈ (0, 1), GCBsafe applied to the problem in Equations (1a)–(1c) suffers from a pseudo-regret
𝑅𝑡 (GCBsafe) = Θ(𝑇 ).

Proof. The optimal solution has at least one of the constraints which is active, i.e., it has the left-hand side equal to the right-hand side.

Assume that the optimal clairvoyant solution

{
𝑥∗
𝑗

}𝑁
𝑗=1

to the optimization problem has a value of the ROI 𝜆𝑜𝑝𝑡 equal to 𝜆. We showed in

the proof of Theorem 6 that for any allocation, with probability at least 1 − 3𝛿
𝜋2𝑁𝑄𝑇𝑡2

, it holds that

∑𝑁
𝑗=1 𝑣𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

>

∑𝑁
𝑗=1 𝑣𝑗 𝑛 𝑗 (𝑥 𝑗,𝑡 )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥 𝑗,𝑡 )

. This

is true also for the optimal clairvoyant solution

{
𝑥∗
𝑗

}𝑁
𝑗=1

, for which 𝜆 =

∑𝑁
𝑗=1 𝑣𝑗 𝑛 𝑗 (𝑥∗ )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗ ) >

∑𝑁
𝑗=1 𝑣𝑗 𝑛 𝑗 (𝑥∗ )∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗ ) , implying that the values used in

the ROI constraint make this allocation not feasible for the Opt(𝝁, 𝜆) procedure. As shown before, this happens with probability at least

1 − 3𝛿
𝜋2𝑁𝑄𝑇𝑡2

at day 𝑡 , and 1 − 𝛿 over the time horizon 𝑇 . To conclude, with probability 1 − 𝛿 , not depending on the time horizon 𝑇 , we will

not choose the optimal arm during the time horizon and, therefore, the regret of the algorithm cannot be sublinear. Notice that the same line

of proof is also holding in the case the budget constraint is active, therefore, the previous result holds for each instance of the problem in

Equations (1a)–(1c). □



Theorem 8 (GCBsafe (𝜓 ) pseudo-regret and safety with tolerance). When𝜓 ≥ 2

𝛽𝑜𝑝𝑡+𝑛max

𝛽2𝑜𝑝𝑡

∑𝑁
𝑗=1 𝑣 𝑗

√︂
2 ln

(
𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
𝜎 and 𝛽𝑜𝑝𝑡 <

𝛽

∑𝑁
𝑗=1 𝑣𝑗

𝑁 𝛽𝑜𝑝𝑡𝜓

𝛽𝑜𝑝𝑡 +𝑛max

+∑𝑁
𝑗=1 𝑣𝑗

, where 𝛿 ′ ≤ 𝛿 , 𝛽𝑜𝑝𝑡 is the spend at the optimal solution of the original problem, and 𝑛max := max𝑗,𝑥 𝑛 𝑗 (𝑥) is the maximum

over the sub-campaigns and the admissible bids of the expected number of clicks, GCBsafe provides a pseudo-regret w.r.t. the optimal solution to

the original problem of O
(√︃
𝑇

∑𝑁
𝑗=1 𝛾 𝑗,𝑇

)
with probability at least 1 − 𝛿 − 𝛿 ′

𝑄𝑇 2
, while being 𝛿-safe w.r.t. the constraints of the auxiliary problem.

Proof. In what follows, we show that, at a specific day 𝑡 , since the optimal solution of the original problem

{
𝑥∗
𝑗

}𝑁
𝑗=1

is included in the set

of feasible ones, we are in a setting analogous to the one of GCB, in which the regret is sublinear. Let us assume that the upper bounds on

all the quantities (number of clicks and costs) holds. This has been shown before to occur with overall probability 𝛿 over the whole time

horizon 𝑇 . Moreover, notice that combining the properties of the budget of the optimal solution of the original problem 𝛽𝑜𝑝𝑡 and using

𝜓 = 2

𝛽𝑜𝑝𝑡+𝑛max

𝛽2𝑜𝑝𝑡

∑𝑁
𝑗=1 𝑣 𝑗

√︂
2 ln

(
𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
𝜎 , we have:

𝛽𝑜𝑝𝑡 < 𝛽

∑𝑁
𝑗=1 𝑣 𝑗

𝑁 𝛽𝑜𝑝𝑡𝜓

𝛽𝑜𝑝𝑡+𝑛max

+ ∑𝑁
𝑗=1 𝑣 𝑗

(18)

©­«
𝑁 𝛽𝑜𝑝𝑡𝜓

𝛽𝑜𝑝𝑡 + 𝑛max

+
𝑁∑︁
𝑗=1

𝑣 𝑗
ª®¬ 𝛽𝑜𝑝𝑡 < 𝛽

𝑁∑︁
𝑗=1

𝑣 𝑗 (19)

2𝑁

𝑁∑︁
𝑗=1

𝑣 𝑗

√︄
2 ln

(
𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
𝜎 +

𝑁∑︁
𝑗=1

𝑣 𝑗 𝛽𝑜𝑝𝑡 < 𝛽

𝑁∑︁
𝑗=1

𝑣 𝑗 (20)

𝛽 > 𝛽𝑜𝑝𝑡 + 2𝑁

√︄
2 ln

(
𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
𝜎. (21)

First, let us evaluate the probability that the optimal solution is not feasible. This occurs if its bounds are either violating the ROI or

budget constraints. First, we show that analysing the budget constraint, the optimal solution of the original problem is feasible with high

probability. Formally, it is not feasible with probability:

P
©­«
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗) > 𝛽
ª®¬ ≤ P ©­«

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗) > 𝛽𝑜𝑝𝑡 + 2𝑁

√︄
2 ln

(
𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
𝜎
ª®¬ (22)

= P
©­«
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗) >
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗) + 2𝑁

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎
ª®¬ (23)

≤
𝑁∑︁
𝑗=1

P

(
𝑐 𝑗 (𝑥∗) > 𝑐 𝑗 (𝑥∗) + 2

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎

)
(24)

=

𝑁∑︁
𝑗=1

P

(
𝑐 𝑗,𝑡−1 (𝑥∗) − 𝑐 𝑗 (𝑥∗) > −

√︁
𝑏𝑡 𝜎̂

𝑐
𝑗,𝑡−1 (𝑥

∗) + 2

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎

)
(25)

≤
𝑁∑︁
𝑗=1

P

(
𝑐 𝑗,𝑡−1 (𝑥∗) − 𝑐 𝑗 (𝑥∗) >

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎̂𝑐𝑗,𝑡−1 (𝑥

∗)
)

(26)

≤
𝑁∑︁
𝑗=1

P

(
𝑐 𝑗,𝑡−1 (𝑥∗) − 𝑐 𝑗 (𝑥∗)

𝜎̂𝑐
𝑗,𝑡−1 (𝑥∗)

>

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
(27)

≤
𝑁∑︁
𝑗=1

3𝛿 ′

𝜋2𝑁𝑄𝑇 3
=

3𝛿 ′

𝜋2𝑄𝑇 3
, (28)

where, in the inequality in Equation (22) we used Equation (21), in Equation (27) we used the fact that
𝜋2𝑁𝑄𝑡2𝑇

3𝛿
≤ 𝜋2𝑁𝑄𝑇 3

3𝛿 ′ for each

𝑡 ∈ {1, . . . ,𝑇 }, 𝜎̂𝑐
𝑗,𝑡−1 (𝑥

∗) ≤ 𝜎 for each 𝑗 and 𝑡 , and the inequality in Equation (28) is from Srinivas et al. [24]. Summing over the time horizon



𝑇 , we get that the optimal solution of the original problem

{
𝑥∗
𝑗

}𝑁
𝑗=1

is excluded from the set of the feasible ones with probability at most

3𝛿 ′

𝜋2𝑄𝑇 2
.

Second, we derive a bound over the probability that the optimal solution of the original problem is feasible due to the newly defined ROI

constraint. Let us notice that since the ROI constraint is active we have 𝜆 = 𝜆𝑜𝑝𝑡 . The probability that

{
𝑥∗
𝑗

}𝑁
𝑗=1

is not feasible due to the ROI

constraint is:

P

(∑𝑁
𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥∗)∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗)

< 𝜆 −𝜓
)

(29)

≤ P ©­«
∑𝑁

𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥∗)∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗)

< 𝜆𝑜𝑝𝑡 − 2

𝛽𝑜𝑝𝑡 + 𝑛max

𝛽2𝑜𝑝𝑡

𝑁∑︁
𝑗=1

𝑣 𝑗

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎
ª®¬ (30)

= P
©­«
∑𝑁

𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥∗)∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗)

<

∑𝑁
𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥∗)∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗)

− 2

𝛽𝑜𝑝𝑡 + 𝑛max

𝛽2𝑜𝑝𝑡

𝑁∑︁
𝑗=1

𝑣 𝑗

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎
ª®¬ (31)

= P
©­«
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥
∗) <

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥∗)

−2
𝛽𝑜𝑝𝑡 + 𝑛max

𝛽2𝑜𝑝𝑡

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎
ª®¬ (32)

= P
©­«
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥
∗) −

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥∗)+

2

𝛽𝑜𝑝𝑡

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎

+
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥∗) −
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥∗)+

2𝑛max

𝛽2𝑜𝑝𝑡

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎 < 0

ª®¬ (33)

≤ P
©­­­­­«
𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥
∗) −

𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥∗) + 2

∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗)
𝛽𝑜𝑝𝑡︸          ︷︷          ︸
≥1

𝑁∑︁
𝑗=1

𝑣 𝑗

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎 < 0

ª®®®®®¬
+ P ©­«

𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥∗) −
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗)
𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛 𝑗 (𝑥∗)

+2
∑𝑁

𝑗=1 𝑐 𝑗 (𝑥∗)
∑𝑁

𝑗=1 𝑐 𝑗 (𝑥∗)
𝛽2𝑜𝑝𝑡︸                            ︷︷                            ︸
≥1

𝑁∑︁
𝑗=1

𝑣 𝑗 𝑛max︸︷︷︸
≥𝑛 𝑗 (𝑥∗ )

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎 < 0

ª®®®®®®¬
(34)

≤
𝑁∑︁
𝑗=1

P

(
𝑛 𝑗 (𝑥

∗) − 𝑛 𝑗 (𝑥∗) + 2

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎 ≤ 0

)
+

𝑁∑︁
𝑗=1

P

(
𝑐 𝑗 (𝑥∗) − 𝑐 𝑗 (𝑥∗) + 2

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎 < 0

)
(35)



≤
𝑁∑︁
𝑗=1

P

©­­­­­­«
𝑛̂ 𝑗,𝑡−1 (𝑥∗) −

√︁
𝑏𝑡 𝜎̂

𝑛
𝑗,𝑡−1 (𝑥

∗) − 𝑛 𝑗 (𝑥∗) + 2

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎︸                ︷︷                ︸

≥
√
𝑏𝑡 𝜎̂

𝑛
𝑗,𝑡−1 (𝑥∗ )

< 0

ª®®®®®®¬
+

𝑁∑︁
𝑗=1

P

©­­­­­­«
𝑐 𝑗 (𝑥∗) − 𝑐 𝑗,𝑡−1 (𝑥∗) −

√︁
𝑏𝑡 𝜎̂

𝑐
𝑗,𝑡−1 (𝑥

∗) + 2

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎︸                ︷︷                ︸

≥
√
𝑏𝑡 𝜎̂

𝑐
𝑗,𝑡−1 (𝑥∗ )

< 0

ª®®®®®®¬
(36)

≤
𝑁∑︁
𝑗=1

P

(
𝑛 𝑗 (𝑥∗) < 𝑛̂ 𝑗,𝑡−1 (𝑥∗) +

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎̂𝑛𝑗,𝑡−1 (𝑥

∗)
)

+
𝑁∑︁
𝑗=1

P

(
𝑐 𝑗 (𝑥∗) < 𝑐 𝑗,𝑡−1 (𝑥∗) −

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎̂𝑐𝑗,𝑡−1 (𝑥

∗)
)

(37)

=

𝑁∑︁
𝑗=1

P

(
𝑛 𝑗 (𝑥∗) − 𝑛̂ 𝑗,𝑡−1 (𝑥∗)

𝜎̂𝑛
𝑗,𝑡−1 (𝑥∗)

>

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
+

𝑁∑︁
𝑗=1

P

(
𝑐 𝑗,𝑡−1 (𝑥∗) − 𝑐 𝑗 (𝑥∗)

𝜎̂𝑐
𝑗,𝑡−1 (𝑥∗)

>

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
(38)

≤ 2

𝑁∑︁
𝑗=1

3𝛿 ′

𝜋2𝑁𝑄𝑇 3
=

6𝛿 ′

𝜋2𝑄𝑇 3
, (39)

where in Equation (37) we used the fact that
𝜋2𝑁𝑄𝑡2𝑇

3𝛿
≤ 𝜋2𝑁𝑄𝑇 3

3𝛿 ′ for each 𝑡 ∈ {1, . . . ,𝑇 }, 𝜎̂𝑛
𝑗,𝑡−1 (𝑥

∗) ≤ 𝜎 for each 𝑗 and 𝑡 , and the inequality

in Equation (39) is from Srinivas et al. [24]. Summing over the time horizon 𝑇 ensures that the optimal solution of the original problem{
𝑥∗
𝑗

}𝑁
𝑗=1

is excluded from the feasible solutions at most with probability
6𝛿 ′

𝜋2𝑄𝑇 2
. Finally, using a union bound, we have that the optimal

solution can be chosen over the time horizon with probability at least 1 − 3𝛿 ′

𝜋2𝑄𝑇 2
− 6𝛿 ′

𝜋2𝑄𝑇 2
≤ 1 − 𝛿 ′

𝑄𝑇 2
.

Notice that here we want to compute the regret of the GCBsafe algorithm w.r.t.

{
𝑥∗
𝑗

}𝑁
𝑗=1

which is not optimal for the analysed relaxed

problem. Nonetheless, the proof on the pseudo-regret provided in Accabi et al. [1] is valid also for suboptimal solutions in the case it is

feasible with high probability. This can be trivially shown using the fact that the regret w.r.t. a generic solution cannot be larger than the

one computed w.r.t. the optimal one. Thanks to that, using a union bound over the probability that the bounds hold and that

{
𝑥∗
𝑗

}𝑁
𝑗=1

is

feasible, we conclude that with probability at least 1− 𝛿 − 𝛿 ′

𝑄𝑇 2
the regret GCBsafe is of the order of O

(√︃
𝑇

∑𝑁
𝑗=1 𝛾 𝑗,𝑇

)
. Finally, thanks to the

property of the GCBsafe algorithm shown in Theorem 6, the learning policy is 𝛿-safe for the relaxed problem. □

In the case the active constraint is the one related to the budget we slightly relax it, substituting 𝛽 with 𝛽 + 𝜙 .

Theorem 10 (GCBsafe pseudo-regret and safety with tolerance). When 𝜙 ≥ 2𝑁

√︂
2 ln

(
𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
𝜎 , and 𝜆𝑜𝑝𝑡 > 𝜆 +

(𝛽+𝑛max )𝜙
∑𝑁

𝑗=1 𝑣𝑗

𝑁𝛽2
,

where 𝛿 ′ ≤ 𝛿 , and 𝑛max := max𝑗,𝑥 𝑛 𝑗 (𝑥) is maximum expected number of clicks, GCBsafe provides a pseudo-regret w.r.t. the optimal solution

to the original problem of O
(√︃
𝑇

∑𝑁
𝑗=1 𝛾 𝑗,𝑇

)
with probability at least 1 − 𝛿 − 6𝛿 ′

𝜋2𝑄𝑇 2
, while being 𝛿-safe w.r.t. the constraints of the auxiliary

problem.

Proof. We show that at a specific day 𝑡 since the optimal solution of the original problem

{
𝑥∗
𝑗

}𝑁
𝑗=1

is included in the set of feasible ones,

we are in a setting analogous to the one of GCB, in which the regret is sublinear. Let us assume that the upper bounds on all the quantities

(number of clicks and costs) holds. This has been shown before to occur with overall probability 𝛿 over the whole time horizon 𝑇 .



First, let us evaluate the probability that the optimal solution is not feasible. This occurs if its bounds are either violating the ROI or

budget constraints. From the fact that the ROI of the optimal solution satisfies 𝜆𝑜𝑝𝑡 > 𝜆 +
(𝛽+𝑛max )𝜙

∑𝑁
𝑗=1 𝑣𝑗

𝑁𝛽2
, we have:

P

(∑𝑁
𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥∗)∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗)

< 𝜆

)
(40)

≤ P
(∑𝑁

𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥∗)∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗)

< 𝜆𝑜𝑝𝑡 −
(𝛽 + 𝑛max)𝜙

∑𝑁
𝑗=1 𝑣 𝑗

𝑁𝛽2

)
(41)

= P
©­«
∑𝑁

𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥∗)∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗)

<

∑𝑁
𝑗=1 𝑣 𝑗 𝑛 𝑗 (𝑥∗)∑𝑁
𝑗=1 𝑐 𝑗 (𝑥∗)

− 2

𝛽𝑜𝑝𝑡 + 𝑛max

𝛽2𝑜𝑝𝑡

𝑁∑︁
𝑗=1

𝑣 𝑗

√︂
ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎
ª®¬ (42)

≤ 3𝛿 ′

𝜋2𝑄𝑇 3
, (43)

where the derivation used arguments similar to the ones applied in the proof for the ROI constraint in Theorem 8. Summing over the time

horizon 𝑇 ensures that the optimal solution of the original problem

{
𝑥∗
𝑗

}𝑁
𝑗=1

is excluded from the feasible solutions at most with probability

3𝛿 ′

𝜋2𝑄𝑇 2
.

Second, let us evaluate the probability for which the optimal solution of the original problem

{
𝑥∗
𝑗

}𝑁
𝑗=1

is excluded due to the budget

constraint, formally:

P
©­«
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗) > 𝛽 + 𝜙ª®¬ (44)

≤ P ©­«
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗) > 𝛽 + 2𝑁

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎
ª®¬ (45)

= P
©­«
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗) >
𝑁∑︁
𝑗=1

𝑐 𝑗 (𝑥∗) + 2𝑁

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎
ª®¬ (46)

≤
𝑁∑︁
𝑗=1

P
©­«𝑐 𝑗 (𝑥∗) > 𝑐 𝑗 (𝑥∗) + 2

√︄
ln

12𝑁𝑇 3

𝜋2𝛿 ′
𝜎
ª®¬ (47)

=

𝑁∑︁
𝑗=1

P

(
𝑐 𝑗,𝑡−1 (𝑥∗) − 𝑐 𝑗 (𝑥∗) ≥ −

√︁
𝑏𝑡 𝜎̂

𝑐
𝑗,𝑡−1 (𝑥

∗) + 2

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎

)
(48)

≤
𝑁∑︁
𝑗=1

P

(
𝑐 𝑗,𝑡−1 (𝑥∗) − 𝑐 𝑗 (𝑥∗) ≥

√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′
𝜎̂𝑐𝑗,𝑡−1 (𝑥

∗)
)

(49)

≤
𝑁∑︁
𝑗=1

P

(
𝑐 𝑗,𝑡−1 (𝑥∗) − 𝑐 𝑗 (𝑥∗)

𝜎̂𝑐
𝑗,𝑡−1 (𝑥∗)

≥
√︂
2 ln

𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
(50)

≤
𝑁∑︁
𝑗=1

3𝛿 ′

𝜋2𝑁𝑄𝑇 3
=

3𝛿 ′

𝜋2𝑄𝑇 3
, (51)

where we use the fact that 𝛽 = 𝛽𝑜𝑝𝑡 , and the derivation used arguments similar to the ones applied in the proof for the budget constraint in

Theorem 8. Summing over the time horizon 𝑇 , we get that the optimal solution of the original problem

{
𝑥∗
𝑗

}𝑁
𝑗=1

is excluded from the set of

the feasible ones with probability at most
𝜋2𝛿 ′

6𝑇 2
. Finally, using a union bound, we have that the optimal solution can be chosen over the time

horizon with probability at least 1 − 3𝛿 ′

𝜋2𝑄𝑇 2
.

Notice that here we want to compute the regret of the GCBsafe algorithm w.r.t.

{
𝑥∗
𝑗

}𝑁
𝑗=1

which is not optimal for the analysed relaxed

problem. Nonetheless, the proof on the pseudo-regret provided in Accabi et al. [1] is valid also for suboptimal solutions in the case it is

feasible with high probability. This can be trivially shown using the fact that the regret w.r.t. a generic solution cannot be larger than the one



computed on the optimal one. Thanks to that, using a union bound over the probability that the bounds hold and that

{
𝑥∗
𝑗

}𝑁
𝑗=1

is feasible, we

conclude that with probability at least 1 − 𝛿 − 6𝛿 ′

𝜋2𝑄𝑇 2
the regret GCBsafe is of the order of O

(√︃
𝑇

∑𝑁
𝑗=1 𝛾 𝑗,𝑇

)
. Finally, thanks to the property

of the GCBsafe algorithm shown in Theorem 6, the learning policy is 𝛿-safe for the relaxed problem. □

A final case occurs when both the constraints are active. In this setting the relaxation should be performed on both constraints, i.e., we

need to set the value of 𝜆 to 𝜆 +𝜓 and the value 𝛽 to 𝛽 + 𝜙 in the original optimization problem.
11

Theorem 11 (GCBsafe pseudo-regret for the ROI and budget relaxed problem). Setting𝜓 = 2

𝛽𝑜𝑝𝑡+𝑛max

𝛽2𝑜𝑝𝑡

∑𝑁
𝑗=1 𝑣 𝑗

√︂
2 ln

(
𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
𝜎

and 𝜙 = 2𝑁

√︂
2 ln

(
𝜋2𝑁𝑄𝑇 3

3𝛿 ′

)
𝜎 , where 𝛿 ′ ≤ 𝛿 , GCBsafe provides a pseudo-regret w.r.t. the optimal solution to the original problem of

O
(√︃
𝑇

∑𝑁
𝑗=1 𝛾 𝑗,𝑇

)
with probability at least 1 − 𝛿 − 𝛿 ′

𝑄𝑇 2
, while being 𝛿-safe w.r.t. the constraints of the auxiliary problem.

Proof. The proof follows from combining the arguments about the ROI constraint used in Theorem 8 and those about the budget

constraint used in Theorem 10. □

11
Notice that this approach might be applied also in the case we are not aware of which constraint is active or if the optimal solution does not satisfy the requirements stated in

Theorem 8 and 10.



B ADDITIONAL EXPERIMENTS FOR THE PAPER “SAFE ONLINE BID OPTIMIZATIONWITH
UNCERTAIN RETURN-ON-INVESTMENT AND BUDGET CONSTRAINTS”

In this section we provide additional information to allow full reproducibility of the experiments provided in the main paper.

B.1 Parameters and Setting of Experiment #1
The code has been run on a Intel(R) Core(TM) 𝑖7 − 4710𝑀𝑄 CPU with 16 GiB of system memory. The operating system was Ubuntu 18.04.5

LTS, and the experiments have been run on Python 3.7.6. The libraries used in the experiments, with the corresponding version were:

• matplotlib==3.1.3
• gpflow==2.0.5
• tikzplotlib==0.9.4
• tf_nightly==2.2.0.dev20200308
• numpy==1.18.1
• tensorflow_probability==0.10.0
• scikit_learn==0.23.2
• tensorflow==2.3.0

On this architecture, the average execution time of the each algorithm takes an average of ≈ 30 sec for each day 𝑡 of execution. Table 1

specifies the values of the parameters of cost and number-of-click functions of the subcampaigns used in Experiment #1.

Table 1: Parameters of the synthetic settings used in Experiment #1.

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

𝜃 𝑗 60 77 75 65 70

𝛿 𝑗 0.41 0.48 0.43 0.47 0.40

𝛼 𝑗 497 565 573 503 536

𝛾 𝑗 0.65 0.62 0.67 0.68 0.69

𝜎𝑓 GP revenue 0.669 0.499 0.761 0.619 0.582

𝑙 GP revenue 0.425 0.469 0.471 0.483 0.386

𝜎𝑓 GP cost 0.311 0.443 0.316 0.349 0.418

𝑙 GP cost 0.76 0.719 0.562 0.722 0.727



B.2 Additional Figures Experiment #2
In Figures ??, ??, and ?? we report the 90% and 10% of the quantities analysed in the experimental section for Experiment #2 provided by

the GCB, GCBsafe, and GCBsafe (0.05), respectively. These results show that the constraints are satisfied by GCBsafe, and GCBsafe (0.05)
also with high probability. While for GCBsafe this is expected due to the theoretical results we provided, the fact that also GCBsafe (0.05)
guarantees safety w.r.t. the original optimization problem suggests that in some specific setting GCBsafe is too conservative. This is reflected

in a lower cumulative revenue, which might be negative from a business point of view.
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Figure 4: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained by GCB in Experiment 3. Dash-dotted
lines correspond to the optimum values for the revenue and ROI, while dashed lines correspond to the values of the ROI and
budget constraints.
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Figure 5: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained by GCBsafe in Experiment 3. Dash-dotted
lines correspond to the optimum values for the revenue and ROI, while dashed lines correspond to the values of the ROI and
budget constraints.

B.3 Experiment #3
In real-world scenarios, the business goals in terms of volumes-profitability tradeoff are often blurred, and sometimes can be desirable to

slightly violate the constraints (usually, the ROI constraint) in favor of a significant volumes increase. However, analyzing and acquiring

information about these tradeoff curves requires to explore volumes opportunities by relaxing the constraints. In this experiment, we show

how our approach can be adjusted to address this problem in practice. We use the same setting of Experiment #1, except for the input we

pass to the GCBsafe algorithm. More precisely, we relax the ROI constraint by a value 𝜓 ∈ {0, 0.05, 0.1, 0.15}, and we run 4 instances of

GCBsafe each associated to a different 𝜓 value. Notice that GCBsafe (0) corresponds to the use of GCBsafe in the original problem, i.e.,
consists in the application of GCBsafe without any relaxation of the ROI constraint. As a result, except for the first instance, we allow
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Figure 6: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained by GCB(𝜖𝑥 = 0.95). Dash-dotted lines
correspond to the optimum values for the revenue and ROI, while dashed lines correspond to the values of the ROI and budget
constraints.
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Figure 7: Results of Experiment #3: Median values of the daily revenue (a), ROI (b) and spend (c) obtained by GCBsafe with
different values of𝜓 .

GCBsafe to violate the ROI constraint, but, with high probability, the violation is bounded by at most 5%, 10%, 15% of 𝜆, respectively. Instead,

we do not introduce any tolerance for the daily budget constraint 𝛽 .

In Figure 7, we show the median values, on 100 independent runs, of the performance in terms of daily revenue, ROI, and spend of

GCBsafe for every value of𝜓 . The 10% and 90% quantiles of these quantities are reported in Figure 8, 9 and 10. The results show that, in

practice, allowing a small tolerance in the ROI constraint violation, we can improve the exploration and, therefore, lead to faster convergence.

We note that if we set a value of𝜓 ≥ 0.05, we achieve significantly better performance in the first learning steps (𝑡 < 20) still maintaining a

robust behavior in terms of constraints violation. Most importantly, a small tolerance leads only to a violation of the ROI constraint in the

early learning stages, but the behavior at convergence is the same obtained without any tolerance.
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Figure 8: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained by GCBsafe. Dash-dotted lines correspond
to the optimum values for the revenue and ROI, while dashed lines correspond to the values of the ROI and budget constraints.

0 10 20 30 40 50

600

800

1,000

1,200

𝑡

𝑃
𝑡
(𝔘

)

GCBsafe (𝜖 = 0.95)
{𝑥∗

𝑗
}𝑁
𝑗=1

(a)

0 10 20 30 40 50

9

10

11

12

𝑡

𝑅
𝑂
𝐼 𝑡
(𝔘

)

GCBsafe (𝜖 = 0.95)
𝜆𝑜𝑝𝑡

𝜆∗

(b)

0 10 20 30 40 50

60

80

100

120

𝑡

𝑆
𝑡
(𝔘

)

GCBsafe (𝜖 = 0.95)
𝑦𝑜𝑝𝑡 = 𝑦𝑡

(c)

Figure 9: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained by and GCBsafe (𝜖𝑥 = 0.95). Dash-dotted
lines correspond to the optimum values for the revenue and ROI, while dashed lines correspond to the values of the ROI and
budget constraints.
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Figure 10: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained by and GCBsafe (𝜖𝑥 = 0.90). Dash-dotted
lines correspond to the optimum values for the revenue and ROI, while dashed lines correspond to the values of the ROI and
budget constraints.
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Figure 11: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained by and GCBsafe (𝜖𝑥 = 0.85). Dash-dotted
lines correspond to the optimum values for the revenue and ROI, while dashed lines correspond to the values of the ROI and
budget constraints.



B.4 Experiment #4
In this experiment we extend the results of Experiment #1 and Experiment #3 to other settings. We simulate 𝑁 = 5 subcampaigns with a

daily budget 𝛽 = 100, with |𝑋 𝑗 | = 201 bid values evenly spaced in [0, 2], |𝑌 | = 101 cost values evenly spaced in [0, 100], being the daily

budget 𝛽 = 100, and |𝑅 | evenly spaced revenue values depending on the setting.

We build 10 scenarios that differ in the parameters defining the cost and revenue functions, and in the ROI parameter 𝜆. Recall that the

number-of-click functions coincides with the revenue functions since 𝑣 𝑗 = 1 for each 𝑗 ∈ {1, . . . , 𝑁 }. Parameters 𝛼 𝑗 ∈ N+ and 𝜃 𝑗 ∈ N+
are sampled from discrete uniform distributions U{50, 100} and U{400, 700}, respectively. Parameters 𝛾 𝑗 and 𝛿 𝑗 are sampled from the

continuous uniform distributions U[0.2, 1.1). Finally, parameters 𝜆 are chosen so that the ROI constraint would be an active constraint for

the original problem. Table 2 summarize the values of such parameters.

Results. Table 3 reports the performances of algorithms GCB, GCBsafe, GCBsafe (0.05) and GCBsafe (0.10). In particular, E[CR𝑡=𝑡 ] is the
cumulative revenue until day 𝑡 averaged on the number of simulations, while 𝜎CR𝑡=𝑡 and 𝑖

𝑡=𝑡
𝑡ℎ

p. are the corresponding standard deviation and

𝑖𝑡ℎ percentile, respectively. These results are reported w.r.t. two different time instant: 𝑡 = ⌊𝑇
2
⌋ = 28, i.e., at half of the period, and 𝑡 = 𝑇 = 57,

i.e., at the end of the time horizon. Finally, 𝑆𝑅𝑂𝐼 and 𝑆𝑏𝑢𝑑𝑔𝑒𝑡 denotes the total number of days in which the ROI and the budget constraints

were violated, respectively. In the last two columns we report the percentage of days on which the ROI and the budget constraint were

violated, i.e., 𝑆𝑅𝑂𝐼

𝑇
and

𝑆𝑏𝑢𝑑𝑔𝑒𝑡
𝑇

, respectively, averaged by the number of simulations. We performed 100 independent runs for each setting

and each algorithm.

The results are in line with what have been observed in the main paper, showing that the GCBsafe algorithm and its relaxed variants are

able not to violate the constraints with high probability, while GCB shows the worst performance in terms of constraints violations. In terms

of cumulative revenue, the algorithms providing the largest values are the ones violating the constraint, while the algorithm showing the

largest revenue while satisfying the problem constraints is GCBsafe with𝜓 = 0.05. These results corroborates the idea that the relaxing the

constraints for a small percentage (e.g., 5%) provides a good tradeoff between revenue maximization and constraint satisfaction in most of

the cases.



Table 2: Parameters characterizing the 10 different settings in Experiment #4.

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝜆

Setting 1 𝜃 𝑗 530 417 548 571 550 10.0

𝛿 𝑗 0.356 0.689 0.299 0.570 0.245

𝛼 𝑗 83 97 72 100 96

𝛾 𝑗 0.939 0.856 0.484 0.661 0.246

Setting 2 𝜃 𝑗 597 682 698 456 444 14.0

𝛿 𝑗 0.202 0.520 0.367 0.393 0.689

𝛼 𝑗 83 98 56 60 51

𝛾 𝑗 0.224 0.849 0.726 0.559 0.783

Setting 3 𝜃 𝑗 570 514 426 469 548 10.5

𝛿 𝑗 0.217 0.638 0.694 0.391 0.345

𝛼 𝑗 97 78 53 80 82

𝛾 𝑗 0.225 0.680 1.051 0.412 0.918

Setting 4 𝜃 𝑗 487 494 467 684 494 12.0

𝛿 𝑗 0.348 0.424 0.326 0.722 0.265

𝛼 𝑗 62 79 76 69 99

𝛾 𝑗 0.460 1.021 0.515 0.894 1.056

Setting 5 𝜃 𝑗 525 643 455 440 600 14.0

𝛿 𝑗 0.258 0.607 0.390 0.740 0.388

𝛼 𝑗 52 87 68 99 94

𝛾 𝑗 0.723 0.834 1.054 1.071 0.943

Setting 6 𝜃 𝑗 617 518 547 567 576 11.0

𝛿 𝑗 0.844 0.677 0.866 0.252 0.247

𝛼 𝑗 71 53 87 98 59

𝛾 𝑗 0.875 0.841 1.070 0.631 0.288

Setting 7 𝜃 𝑗 409 592 628 613 513 11.5

𝛿 𝑗 0.507 0.230 0.571 0.359 0.307

𝛼 𝑗 77 78 91 50 71

𝛾 𝑗 0.810 0.246 0.774 0.516 0.379

Setting 8 𝜃 𝑗 602 605 618 505 588 13.0

𝛿 𝑗 0.326 0.265 0.201 0.219 0.291

𝛼 𝑗 67 80 99 77 99

𝛾 𝑗 0.671 0.775 0.440 0.310 0.405

Setting 9 𝜃 𝑗 486 684 547 419 453 13.0

𝛿 𝑗 0.418 0.330 0.529 0.729 0.679

𝛼 𝑗 53 82 58 96 100

𝛾 𝑗 0.618 0.863 0.669 0.866 0.831

Setting 10 𝜃 𝑗 617 520 422 559 457 14.0

𝛿 𝑗 0.205 0.539 0.217 0.490 0.224

𝛼 𝑗 51 86 93 61 84

𝛾 𝑗 1.0493 0.779 0.233 0.578 0.562



Table 3: Performances of the GCB, GCBsafe, GCBsafe (0.05), and GCBsafe (0.10) algorithms in the 10 different settings in
Experiment #4.
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