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ABSTRACT
Most of the economic reports forecast that almost half of the world-

wide market value unlocked by AI over the next decade (up to 6

trillion USD per year) will be in marketing&sales. In particular, AI

will enable the optimization of more and more intricate economic

settings, in which multiple different activities need to be jointly

automated. This is the case of, e.g., Google Hotel Ads and Tripad-
visor, where auctions are used to display ads of similar products

or services together with their prices. As in classical ad auctions,

the ads are ranked depending on the advertisers’ bids, whereas,

differently from classical settings, ads are displayed together with

their prices, so as to provide a direct comparison among them. This

dramatically affects users’ behavior, as well as the properties of ad

auctions. We show that, in such settings, social welfare maximiza-

tion can be achieved by means of a direct-revelation mechanism

that jointly optimizes, in polynomial time, the ads allocation and

the advertisers’ prices to be displayed with them. However, in prac-

tice it is unlikely that advertisers allow the mechanism to choose

prices on their behalf. Indeed, in commonly-adopted mechanisms,

ads allocation and price optimization are decoupled, so that the

advertisers optimize prices and bids, while the mechanism does so

for the allocation, once prices and bids are given. We investigate

how this decoupling affects the efficiency of mechanisms. In partic-

ular, we study the Price of Anarchy (PoA) and the Price of Stability
(PoS) of indirect-revelation mechanisms with both VCG and GSP

payments, showing that the PoS for the revenue may be unbounded

even with two slots, and the PoA for the social welfare may be as

large as the number of slots. Nevertheless, we show that, under

some assumptions, simple modifications to the indirect-revelation

mechanism with VCG payments achieve a PoS of 1 for the revenue.
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1 INTRODUCTION
Most of the economic reports forecast that artificial intelligence
(AI) will unlock up to 12 trillion USD per year worldwide by the

next decade, and almost half of this amount will derive from the

marketing&sales area (see, e.g., [8]). In particular, AI is playing

a crucial role to tackle various problems, including, e.g., auction
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design [2, 3, 7, 25], the automation of advertisers’ budget [6, 24]

and bidding strategies [16], and the optimization of conversion

funnels [23].

In this paper, we focus on recently-emerged online advertising

settings where ad auctions are employed to display ads of similar

products or services together with their prices. This is the case of,

e.g., Google Hotel Ads and Tripadvisor, where users search for the

availability of a hotel room in a given date. The web page of results

shows a ranking of banners advertising similar hotel rooms that

match the search criteria. Each banner displays the name of the

advertiser providing the online booking service, together with the

per-night selling price of the room. Such settings are similar to

standard ad auctions, since the ads are ranked depending on the

advertisers’ bids. On the other hand, they also fundamentally differ

from them, as the ad allocation must also take prices into account,

and these are displayed inside the banners so as to provide a direct

comparison among them. This dramatically affects users’ behavior,

as well as the efficiency and the properties of ad auctions. The goal

of this work is to investigate how the additional degree of freedom

introduced by prices influences the problem of finding an optimal

ad allocation and the revenue of the mechanisms.

The price-displaying feature of our setting introduces external-
ities among the ads, since the probability that a user clicks on an

ad depends on the prices displayed with both the ad being clicked

and the other ads in the allocation. Several forms of externalities

are investigated in the literature on ad auctions. However, to the

best of our knowledge, no previous work takes into account price

displaying. For instance, Kempe and Mahdian [18] and Aggarwal

et al. [1] introduce a basic user model that is currently adopted by

most of the mechanisms. In this model, a Markovian user observes

the slots in a top-down fashion, moving down slot by slot with a

given continuation probability and stopping on a slot to observe

its ad with the remaining probability. Kempe and Mahdian [18]

also propose richer models where the probability with which a

user moves from a slot to the next one depends on the ad actually

displayed in the former. In this case, it is not known whether the ad

allocation problem admits a polynomial-time algorithm; however,

Farina and Gatti [9, 10] provide several algorithms showing that

in special cases a constant approximation can be achieved. Further

externalities models are explored by Fotakis et al. [11] and Gatti

et al. [13], which allow for potentially different externalities for

each pair of ads. However, with these models, the ad allocation

problem is NP-hard and, in some cases, even inapproximable. It is



also worth mentioning that similar models are adopted in mobile

geo-located advertising by Gatti et al. [12].

In our model, we assume that the probability with which a user

clicks on an ad depends on the price displayed with the ad and on

the lowest among all displayed prices. In particular, we model the

click probability as a monotonically decreasing function of the ad

price, assuming that the demand curve is monotonically decreasing

in the price and that it is unlikely that a user clicks on an ad with a

price larger than her reserve value. We also assume that the click

probability is monotonically decreasing in the difference between

the ad price and the lowest displayed price, as the user’s interest in

any feature different from price (e.g., brand and loyalty) decreases

as such difference increases.

In our setting, the private information of each advertiser (i.e.,
her type) is a pair composed by the probability with which a user

visiting the advertiser’s web page produces a conversion (e.g., a
purchase) and the advertiser’s cost for a unit of product or service.

On the other hand, the prices constitute an additional degree of

freedom that can be controlled by either the advertisers or the

mechanism.

As a first step, we present a direct-revelation mechanism that

maximizes the social welfare by jointly optimizing over the ad allo-

cations and the prices displayed with the ads. Differently from what

happens in most of the externalities models studied in the literature,

such optimization problem can be solved in polynomial time for a

given discretization of price values. We also study the properties

of the direct-revelation mechanism when VCG payments are used,

showing that incentive compatibility, individual rationality and

weak budget-balance hold in our setting.

In real-world scenarios, it is unlikely that the advertisers let the

mechanism select prices on their behalf, as required by the direct-

revelation mechanism. In the (indirect-revelation) mechanisms that

are currently adopted in real-world applications, the optimization

over ad allocations and that over prices are decoupled. In particular,

each advertiser finds her optimal price and bid, while the mecha-

nism optimizes over ad allocations once prices and bids are given.

As for the direct-revelation mechanism, the best ad allocation can

be found in polynomial time given prices and bids. However, even

if these indirect-revelation mechanisms allow the advertisers not

to reveal private (and potentially sensitive) information, they can

lead to inefficient equilibria.

We investigate the equilibrium inefficiency of indirect-revelation

mechanisms with GSP and VCG payments, in terms of Price of An-
archy (PoA) and Price of Stability (PoS) in complete information

settings. In the literature, PoA and PoS are commonly-adopted effi-

ciency metrics for standard ad auctions, in which the price variable

is not taken into account. For instance, Caragiannis et al. [4], Lucier

and Leme [19], and Caragiannis et al. [5] show that the PoA for the

social welfare of the GSP is upper bounded by 1.3 with complete

information and by 3 with incomplete information, while Farina

and Gatti [10] and Giotis and Karlin [14] study the inefficiency with

specific externalities. In our setting, the presence of externalities

precludes the adoption of the tools provided by Roughgarden et al.

[26] and Hartline et al. [15] to bound the inefficiency of equilibria

for the social welfare and the revenue, respectively, thus pushing

us to develop ad hoc approaches. In particular, we show that, in

our setting, the inefficiency of the indirect-revelation mechanisms

with VCG and GSP mechanisms is much higher than that of the

classical mechanisms without prices, even when excluding over-

bidding, since the PoS for the revenue may be unbounded even

with two slots and the PoA for the social welfare may be as large

as the number of slots. Furthermore, with VCG payments, the PoS

for the social welfare is 1, while, with GSP payments, it is at least 2,

suggesting that GSP payments perform worse than VCG ones.

A crucial question is whether inefficiency can be reduced when

letting the advertisers choose their prices. We show that, under

some assumptions, simple modifications to the indirect-revelation

mechanism with VCG payments—requiring each advertiser to re-

port an additional price—achieve a PoS of 1 for the revenue.

2 FORMAL MODEL
There is a set 𝑁 = {1, . . . , 𝑛} of 𝑛 agents, who simultaneously play

the role of advertisers and sellers. Each agent sells a single good

on her own website (e.g., an online marketplace) and relies on an

external ad publisher that advertises the good through a single

ad in which the price is displayed. Since the goods being sold by

the agents are similar, the price comparison that users perform on

the publisher’s website results in a high competition level among

the agents, as happening in classical comparator websites [17]. In

the following, for the ease of presentation, we use index 𝑖 ∈ 𝑁 to

refer to the agent, her good, and also her ad. Figure 1 provides an

overview of our scenario.

For every 𝑖 , we denote with 𝑐𝑖 ∈ R≥0 and 𝑝𝑖 ∈ R≥0 the cost
of supply and the selling price of agent 𝑖’s good, respectively. Fur-
thermore, we denote with 𝛼𝑖 ∈ [0, 1] the probability with which a

user buys agent 𝑖’s good when visiting her website. Thus, agent 𝑖’s

expected gain from a visit of a user on her website is 𝛼𝑖 (𝑝𝑖 − 𝑐𝑖 ).
Let us remark that the conversion probability 𝛼𝑖 is constant w.r.t. the
price 𝑝𝑖 , since we assume that the user is aware of the price before

visiting the website and, thus, she does not visit it if the price is

larger than her reserve value. As previously discussed, the user first

observes the ads on the publisher’s website, together with their
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Figure 1: An example of ad auction with price displaying. A
user visits a web page with three ads (ad 1, ad 2, and ad 3)
together with their prices (𝑝1, 𝑝2, and 𝑝3). The user observes
slot 3 with probability _3. Once observed slot 3, the user
clicks on the ad displayed in slot 3, i.e., ad 3, with proba-
bility 𝑞3 (𝑝3, 𝑝min) where 𝑝min is the minimum price among
𝑝1, 𝑝2, 𝑝3. The user visits the web page of advertiser 3 (e.g., an
online marketplace), and, then, produces a conversion (e.g.,
purchase) with probability 𝛼3. The value that advertiser 3

gets from the conversion is 𝑝3 − 𝑐3.



prices, and, then, she clicks on an ad so as to visit the corresponding

advertiser’s website. Therefore, the motivation behind an uncom-

pleted conversion following the user’s visit to the advertiser’s web

page does not concern the price (e.g., it may be due to the user

acquiring more information on the seller, or potential extra fees

and/or ancillary services). The pair (𝛼𝑖 , 𝑐𝑖 ) is a private information

of agent 𝑖 , and sometimes we will refer to it as her type \𝑖 . We let

Θ = [0, 1] × R≥0 be the space of types of every agent.

The ad publisher has a set 𝑀 = {1, . . . ,𝑚} of slots in which

the ads are displayed. An assignment of ads to slots (also called

allocation) is represented by a function 𝑓 : 𝑁 → 𝑀 ∪ {⊥} such
that there is at most one ad per slot (i.e., there are no ads 𝑖, ℎ ∈ 𝑁

such that 𝑖 ≠ ℎ and 𝑓 (𝑖) = 𝑓 (ℎ) ∈ 𝑀). All the ads that are not

assigned to slots in 𝑀 are assigned to ⊥, meaning that these ads

are not displayed. For every slot 𝑗 ∈ 𝑀 , we denote with _ 𝑗 ∈
[0, 1] the probability (called prominence) that a user observes the
ad displayed in that slot. As customary in the literature, we assume

that _1 ≥ _2 ≥ . . . ≥ _𝑚 . For the ease of notation, we define

_⊥ = 0. Furthermore, for every agent 𝑖 , we denote with 𝑞𝑖 ∈ [0, 1]
the probability (called quality) that a user clicks on ad 𝑖 conditioned

on its observation. In our setting, 𝑞𝑖 depends on the prices, as

they are displayed with the ads. In particular, 𝑞𝑖 is a function of

the prices p = {𝑝𝑖 }𝑖∈𝑁 of agents whose ads are displayed, since

the user can compare all the prices shown on the web page when

deciding the website from which to buy a good. This dependency

introduces externalities among the ads. In this work, we assume

that 𝑞𝑖 : R≥0 × R≥0 → [0, 1], where 𝑞𝑖 (𝑝𝑖 , 𝑝min) denotes the agent
𝑖’s quality when her price is 𝑝𝑖 and the minimum price among all

the displayed ads is 𝑝min, with 𝑝min = minℎ∈𝑁 :𝑓 (ℎ) ∈𝑀 {𝑝ℎ} (for the
sake of notation, we omit the dependency of 𝑝min on 𝑓 ). Moreover,

given 𝑝min, 𝑞𝑖 is (non-strictly) monotonically decreasing in 𝑝𝑖 since,

as previously discussed, a user clicks on the ad if the price is non-

larger than the user’s reserve value. Finally, 𝑞𝑖 is (non-strictly)

monotonically increasing in 𝑝min, given 𝑝𝑖 . The rationale behind

this assumption is that, given 𝑝𝑖 , the probability that a user clicks

on ad 𝑖 decreases as the gap between 𝑝𝑖 and the minimum price

𝑝min increases, capturing a potential reduction of the user’s interest

for agent 𝑖’s good. A simple example is when the users are only

interested in the price and, thus, 𝑞𝑖 is zero if 𝑝𝑖 > 𝑝min. We also

assume that there exists 𝑝𝑖 ∈ R≥0 maximizing 𝑞𝑖 (𝑝𝑖 , 𝑝𝑖 ) 𝛼𝑖 (𝑝𝑖 −𝑐𝑖 )
and, thus, there exists 𝑝𝑖 < ∞ that agent 𝑖 would use when displayed

alone. Finally, we remark that, as it is customary in the literature,

parameters _ and 𝑞 are estimated by the ad publisher.

Everymechanism receives some input (or bid) from every agent 𝑖 ,

chooses an allocation 𝑓 , and charges every agent 𝑖 of a payment 𝜋𝑖 .

We say that the mechanism is direct-revelation if the input provided

by agent 𝑖 belongs to Θ, i.e., it consists of a conversion probabil-

ity and a cost, which are not necessarily the real ones (her type).

Otherwise we say that the mechanism is indirect-revelation.
In our setting, a direct-revelation mechanism takes as input a

reported type \ ′
𝑖
= (𝛼 ′

𝑖
, 𝑐 ′
𝑖
) ∈ Θ for each agent 𝑖 , and chooses some

prices p = {𝑝𝑖 }𝑖∈𝑁 and an allocation function 𝑓 . We let b = {𝑏𝑖 }𝑖∈𝑁
be the vector of declared gains, where 𝑏𝑖 = 𝛼 ′

𝑖
(𝑝𝑖 − 𝑐 ′

𝑖
) is agent

𝑖’s gain for the reported type \ ′
𝑖
. On the other hand, an indirect-

revelation mechanism takes as input a price 𝑝𝑖 and a declared gain

𝑏𝑖 for each agent 𝑖 , and chooses an allocation function 𝑓 . We say

that agent 𝑖 does not overbid if 𝑏𝑖 ≤ 𝛼𝑖 (𝑝𝑖 − 𝑐𝑖 ), where 𝑝𝑖 is the
price given as input and (𝛼𝑖 , 𝑐𝑖 ) = \𝑖 is the true agent 𝑖’s type.

Given an allocation 𝑓 , prices p, and𝑏𝑖 , we denotewith �̂�𝑖 (𝑓 , p, 𝑏𝑖 ) =
_𝑓 (𝑖) 𝑞𝑖 (𝑝𝑖 , 𝑝min) 𝑏𝑖 the expected (w.r.t. clicks and purchase) value of
agent 𝑖 according to her declared gain. The true expected value that

she receives from allocation 𝑓 is 𝑣𝑖 = _𝑓 (𝑖) 𝑞𝑖 (𝑝𝑖 , 𝑝min) 𝛼𝑖 (𝑝𝑖 − 𝑐𝑖 ),
while agent 𝑖’s expected utility is 𝑢𝑖 = 𝑣𝑖 − 𝜋𝑖 since the environ-

ment is quasi-linear.
1
The social welfare of an allocation with re-

spect to the declared gains is ŜW(𝑓 , p, b) = ∑
𝑖 �̂�𝑖 (𝑓 , p, 𝑏𝑖 ), where

b = {𝑏𝑖 }𝑖∈𝑁 . The true social welfare is SW =
∑
𝑖 𝑣𝑖 . The revenue is

instead Rev =
∑
𝑖 𝜋𝑖 .

We informally introduce notable properties ofmechanisms; see [20]

for formal definitions. A mechanism, both direct- and indirect-

revelation, is individually rational, if for every agent 𝑖 , the assigned

payment 𝜋𝑖 is non-larger than her value 𝑣𝑖 (𝑓 , p, 𝑏𝑖 ) according the
declared gain. Furthermore, a mechanism isweakly budget-balanced
if the sum of payments is always non-negative. A direct-revelation

mechanism is truthful if for every agent 𝑖 it is a dominant strat-

egy to report the true type \𝑖 = (𝛼𝑖 , 𝑐𝑖 ) to the mechanism, i.e., the
utility that agent 𝑖 achieves by reporting \𝑖 is at least as large as

with every alternative input, regardless of other agents’ actions.

For indirect-revelation mechanisms, we say that a set of inputs is

in equilibrium according to Nash [21] if no agent may increase her

utility by submitting a different bid, whenever the inputs of other

agents remain unchanged.

3 MECHANISMS
Next, we introduce our direct-revelationmechanism and two indirect-

revelation mechanisms.

3.1 Direct-revelation Mechanism
We letMVCG

D
be the direct-revelationmechanism defined as follows.

Given the agent 𝑖’s input \ ′
𝑖
= (𝛼 ′

𝑖
, 𝑐 ′
𝑖
) ∈ Θ, the mechanism defines

𝑏𝑖 = 𝛼 ′
𝑖
(𝑝𝑖 − 𝑐 ′

𝑖
) for every price 𝑝𝑖 . Then, the mechanism computes

an assignment 𝑓 ∗ and prices p∗ that maximize the social welfare

with respect to the declared gains; formally,

ŜW(𝑓 ∗, p∗, b) = max

𝑓 ,p
ŜW(𝑓 , p, b).

Finally, the mechanism assigns to each advertiser 𝑖 in the allocation

(i.e., such that 𝑓 (𝑖) ∈ 𝑀) the VCG payment

𝜋𝑖 = max

𝑓 ,p

∑︁
𝑗≠𝑖 : 𝑓 ( 𝑗) ∈𝑀

(
�̂� 𝑗 (𝑓 , p, 𝑏 𝑗 ) − �̂� 𝑗 (𝑓 ∗, p∗, 𝑏 𝑗 )

)
= �̂�𝑖 (𝑓 ∗, p∗, 𝑏𝑖 ) − Δ𝑖 ,

where

Δ𝑖 = ŜW(𝑓 ∗, p∗, b) − max

𝑓 ,p:𝑓 (𝑖)∉𝑀
ŜW(𝑓 , p, b) ≥ 0.

It is immediate to check that payments cannot be negative and

they are never larger than the value corresponding to the declared

gain. Thus, the mechanism is trivially individually-rational and

weakly budget-balanced. Moreover, it is not hard to verify that

these payments allow the mechanism to be truthful (essentially this

is a VCG mechanism and there is no interdependence among types).

1
The dependency of 𝑣𝑖 ,𝑢𝑖 , 𝜋𝑖 on the arguments 𝑓 , p, 𝑏𝑖 is omitted to avoid cumbersome

notation.



Truthfulness also implies that the mechanism maximizes the true

social welfare. These observations prove the following theorem.

Theorem 1. Mechanism MVCG

D
is truthful, individually rational,

weakly budget-balanced, and maximizes SW.

3.2 Indirect-revelation Mechanisms
Next, we introduce two alternative mechanisms, namely MVCG

I

andMGSP

I
. These mechanisms share the same structure, but they

differ in the way they compute the payments. They work as follows.

Agent 𝑖 inputs (𝑝𝑖 , 𝑏𝑖 ), where 𝑝𝑖 ∈ R≥0 is the price that agent 𝑖

wants to be displayed for her ad and 𝑏𝑖 ∈ R is the expected gain

that 𝑖 declares to achieve from a click on her ad for price 𝑝𝑖 . The

mechanism computes an assignment 𝑔∗ that maximizes the social

welfare with respect to the submitted prices and gains; formally

ŜW(𝑔∗, p, b) = max

𝑔
ŜW(𝑔, p, b).

Then,MVCG

I
assigns to each advertiser 𝑖 such that 𝑔∗ (𝑖) ∈ 𝑀 the

VCG payment

𝜋𝑖 = max

𝑔

∑︁
𝑗≠𝑖 : 𝑔 ( 𝑗) ∈𝑀

(
�̂� 𝑗 (𝑔, p, 𝑏 𝑗 ) − �̂� 𝑗 (𝑔∗, p, 𝑏 𝑗 )

)
= �̂�𝑖 (𝑔∗, p, 𝑏 𝑗 ) − 𝛿𝑖 ,

where

𝛿𝑖 = ŜW(𝑔∗, p, b) − max

𝑔:𝑔 (𝑖)∉𝑀
ŜW(𝑔, p, b) ≥ 0.

W.l.o.g., let the optimal allocation 𝑔∗ be such that only the first

ℓ ≤ 𝑚 slots are assigned and no slot 𝑗 > ℓ is assigned.MGSP

I
assigns

to each 𝑖 such that 𝑔∗ (𝑖) ∈ 𝑀 and 𝑔∗ (𝑖) < ℓ (i.e., 𝑖 is assigned to a

slot different from ℓ) the following payments:

𝜛𝑖 = _𝑔∗ (𝑖)𝑞 𝑗 (𝑝 𝑗 , 𝑝min)𝑏 𝑗 , (1)

where 𝑗 is such that 𝑔∗ ( 𝑗) = 𝑔∗ (𝑖) + 1. When 𝑔∗ (𝑖) = ℓ , there are

two possible payments. If all the not assigned agents 𝑗 (i.e., such
that 𝑔∗ ( 𝑗) = ⊥) have a price 𝑝 𝑗 < 𝑝min, then 𝜛𝑖 = 0. Otherwise, the

payment is

𝜛𝑖 = _𝑔∗ (𝑖) max

𝑗 :𝑝 𝑗 ≥𝑝min∧𝑔∗ ( 𝑗)=⊥
{𝑞 𝑗 (𝑝 𝑗 , 𝑝min)𝑏 𝑗 }. (2)

As forMVCG

D
, it is immediate to check that payments are at least

zero, and they are always less than the value corresponding to the

declared gain. Hence, MVCG

I
is individually rational and weakly

budget-balanced. Moreover, one may hope that the inputs that

agents select at any equilibrium are such that the allocation selected

by the mechanism maximize the social welfare. Unfortunately, we

will show in the next sections that this is not the case.
The payments ofMGSP

I
are at least zero, and, thus, the mecha-

nism is weakly budged-balanced. Also observe that, given agent

𝑖 , ∀𝑗 s.t. 𝑔∗ ( 𝑗) > 𝑔∗ (𝑖) or 𝑔∗ ( 𝑗) = ⊥ ∧ 𝑝 𝑗 ≥ 𝑝min, we have

that 𝑞 𝑗 (𝑝 𝑗 , 𝑝min)𝑏 𝑗 ≤ 𝑞𝑖 (𝑝𝑖 , 𝑝min)𝑏𝑖 . Otherwise, the allocation 𝑔

achieved from 𝑔∗ by fixing 𝑔( 𝑗) = 𝑔∗ (𝑖), 𝑔(𝑖) = 𝑔∗ ( 𝑗), and 𝑔(𝑘) =
𝑔∗ (𝑘) ∀𝑘 ∉ {𝑖, 𝑗} would achieve a larger social welfare (according

to declared gains). Hence, we have that 𝜛𝑖 ≤ �̂�𝑖 (𝑔∗, p, 𝑏𝑖 ), and, thus,
the mechanism is individually rational. We remark that for this

property to hold, it is fundamental that, in Equation 2, we consider

only the not assigned agents 𝑗 who have a declared price 𝑝 𝑗 ≥ 𝑝min.

Indeed, an agent 𝑗 with 𝑝 𝑗 < 𝑝min may have a large 𝑞 𝑗 (𝑝 𝑗 , 𝑝 𝑗 )𝑏 𝑗 so

that, if the 𝑗-th ad is displayed, the minimum price changes from

𝑝min to 𝑝 𝑗 , 𝑞 𝑗 (𝑝 𝑗 , 𝑝 𝑗 )𝑏 𝑗 > 𝑞𝑖 (𝑝𝑖 , 𝑝min)𝑏𝑖 , and 𝜛𝑖 > �̂�𝑖 (𝑔∗, p, 𝑏𝑖 ),
where 𝑖 is the agent assigned to the slot ℓ . Nevertheless, this agent

may not be chosen by the allocation 𝑔∗ because of the negative

externalities that its low price would put on other agents (by lower-

ing their value and thus the social welfare). As a result an optimal

allocation may not assign all the available slots. We finally observe

that, as for MVCG

I
, even MGSP

I
may fail to optimize the true social

welfare. The following sections will bound the extent of this failure.

4 COMPUTATIONAL COMPLEXITY
In general, externalities make hard the problem of computing the

allocation maximizing the social welfare. In this section, we prove

that in our setting the problem of allocating advertisers to slots can

be solved in polynomial time by both the direct- and the indirect-

revelation mechanisms.

Let us start with the problem of computing the allocation 𝑔∗ in
the indirect-revelation mechanisms. We show in the next theorem

that 𝑔∗ can be efficiently computed.

Theorem 2. There is an algorithm that computes the allocation 𝑔∗

in time 𝑂 (𝑛2
log𝑛).

Proof. Let b and p be the set of gains and prices submitted by

agents. First observe that, given a minimum displayed price 𝑝min,

the allocation that maximizes the social welfare (with respect to

gains and prices in input), can be trivially computed by sorting

agents in {𝑖 : 𝑝𝑖 ≥ 𝑝min} in order of 𝑞𝑖 (𝑝𝑖 , 𝑝min)𝑏𝑖 and assigning

slot 1 to the agent that maximizes this quantity, slot 2 to the second

such agent, and so on. Note that this operation requires 𝑂 (𝑛 log𝑛)
steps.

However, in order to provide the allocation 𝑔∗, we also need to

decide which is the best value for 𝑝min. However, since 𝑝min must

belong to p, it is sufficient to compute the best allocation by using

as minimum displayed price each of the at most 𝑛 different prices in

p, and choosing the allocation that optimizes the social welfare. □

Computing 𝑔∗ is an easier problem than the one faced by the

direct-revelation mechanism, since, for the former, prices are given

and we optimize only over the allocation function, while, for the

latter, optimization occurs both on the allocation function and

prices. Nevertheless, the following theorem shows that 𝑓 ∗ and p∗

can also be computed efficiently, as long as the set 𝑃 of allowed

prices is discrete and finite.

Theorem 3. There is an algorithm that computes the allocation 𝑓 ∗

and prices p∗ in time 𝑂 (𝑛2 |𝑃 | ( |𝑃 | + log𝑛)).

Proof. Let 𝑏𝑖 (𝑝) = 𝛼 ′
𝑖
(𝑝 − 𝑐 ′

𝑖
) be the expected gain of agent 𝑖

according to her input when ad 𝑖 is displayed with price 𝑝 , where

(𝛼 ′
𝑖
, 𝑐 ′
𝑖
) is the input of agent 𝑖 . For each agent 𝑖 and every price 𝑝 ∈ 𝑃

we compute 𝑝∗
𝑖
(𝑝) as follows: ifmax𝑝∈𝑃 :𝑝≥𝑝 𝑞𝑖 (𝑝, 𝑝)𝑏𝑖 (𝑝) > 0, then

𝑝∗𝑖 (𝑝) = arg max

𝑝∈𝑃 :𝑝≥𝑝
𝑞𝑖 (𝑝, 𝑝)𝑏𝑖 (𝑝),

otherwise we set 𝑝∗
𝑖
(𝑝) = ⊥. Roughly speaking, 𝑝∗

𝑖
(𝑝) is the best

price (according to her input) for agent 𝑖 when the minimum dis-

played price is 𝑝 and the 𝑖-th ad is displayed (and thus 𝑖’s price

is at least 𝑝). Clearly, if there is no price larger than or equal to 𝑝



guaranteeing to agent 𝑖 a positive utility, then she prefers to be not

displayed. For this reason, in the latter case, we do not assign any

value to 𝑝∗
𝑖
(𝑝). Notice that 𝑝∗

𝑖
(𝑝) can be computed by evaluating

the function for every 𝑝 ∈ 𝑃 with 𝑝 ≥ 𝑝 , requiring at most 𝑂 ( |𝑃 |)
operations.

Then, if the minimum displayed price 𝑝min was given, along

with the agent to which it is assigned, then we simply choose

price 𝑝∗
𝑖
(𝑝min) for each remaining agent 𝑖 (this can be done in

𝑂 (𝑛𝑃) steps), prune out agents for which 𝑝∗
𝑖
(𝑝min) = ⊥, and finally

compute the corresponding optimal assignment by sorting the

remaining agents in order of 𝑏𝑖 (𝑝∗𝑖 (𝑝min)), as shown in Theorem 2

(in 𝑂 (𝑛 log𝑛) steps).
Unfortunately, selecting 𝑝min is much harder than in the indirect

case: not only the value of 𝑝min can assume every value in 𝑃 (and

not just one among at most 𝑛 alternatives), but we also need to

decide which agent should display this price. For this reason, we

need to go through every price 𝑝 ∈ 𝑃 and every agent 𝑖 and com-

pute the best solution that would be achieved when 𝑖 is the agent

displaying the minimum price 𝑝 . Since for each of the 𝑛𝑃 possible

choices, computing the best solution requires time 𝑂 (𝑛𝑃 + 𝑛 log𝑛),
we achieve the desired running time. □

Observe that the dependence on |𝑃 | in Theorem 3 is in some

way necessary as long as we would like to keep quality function as

general as possible. It is not hard to see that we can avoid to check

all prices by doing opportune restriction on the quality functions.

We finally highlight that the discretization of the set of prices

does not affect the property of the mechanism. In particular, truth-

fulness continues to hold, since the mechanism is maximal-in-the-

range.

5 PERFORMANCE OF THE INDIRECT
MECHANISMS

For the sake of presentation, we provide the informal definitions of

PoS and PoA for social welfare and revenue; formal definitions can

be found in [22].

• PoS for the social welfare is the minimum—w.r.t. all the Nash

equilibria—ratio between the maximum achievable social

welfare and the social welfare of an allocation achievable

in a Nash equilibrium of an indirect-revelation mechanism

MVCG

I
orMGSP

I
.

• PoA for the social welfare is the maximum—w.r.t. all the Nash

equilibria—ratio between the maximum achievable social

welfare and the social welfare of an allocation achievable

in a Nash equilibrium of an indirect-revelation mechanism

MVCG

I
orMGSP

I
.

• PoS for the revenue is the minimum—w.r.t. all the Nash

equilibria—ratio between the maximum revenue achievable

by an individually-rationalmechanism and the revenue achiev-

able in a Nash equilibrium of an indirect-revelation mecha-

nismMVCG

I
orMGSP

I
.

• PoA for the revenue is the maximum—w.r.t. all the Nash

equilibria—ratio between the maximum revenue achievable

by an individually-rationalmechanism and the revenue achiev-

able in a Nash equilibrium of an indirect-revelation mecha-

nismMVCG

I
orMGSP

I
.

Table 1 summarizes the lower and upper bounds over the mecha-

nisms’ inefficiency when agents do not overbid; the results when

agents overbid are omitted since the inefficiency can be arbitrary

even with a single slot. Interestingly, whileMVCG

I
performs as well

as MVCG

D
with a single slot as MVCG

I
and MVCG

D
are equivalent in

this case since there is no externality; with more than 2 slots the

inefficiency can be large both for social welfare and revenue even

in the basic case in which slots are indistinguishable and _ = 1. In

particular, in our proofs of the upper-bound results, we use a spe-

cial class of quality functions that we denote as only-min functions,

which assign a value 0 to the quality of an agent when her price

is not the minimum among those displayed, and we prove that in

many cases no worse instance is possible. With multiple slots, the

positive result is that, withMVCG

I
, the optimal allocation is always

achievable by some Nash equilibrium (i.e., PoS = 1). Nevertheless,

there are auction instances in which some Nash equilibria lead to

allocations whose social welfare is 1/𝑚 of the optimal allocation

(i.e., PoA =𝑚) or in which all the Nash equilibria lead to a revenue

of zero whereas the direct-revelation mechanismMVCG

D
provides

a strictly positive revenue (i.e., PoS = ∞). MGSP

I
performs even

worse than MVCG

I
, both with a single and multiple slots.

In the following, we formally provide the results on the lower

and upper bounds over the mechanisms’ inefficiency.

5.1 Price of Stability for the Social Welfare
Initially, we provide our main positive result in terms of indirect-

revelation mechanisms inefficiency.

Theorem 4. The PoS for the social welfare ofMVCG

I
is 1.

Proof. Suppose that each agent 𝑖 reports the pair (𝑝𝑖 , ˜𝑏𝑖 ) defined
as follows: if the mechanism MVCG

D
displays the ad 𝑖 when run on

truthful bids, then 𝑝𝑖 is the corresponding price, and ˜𝑏𝑖 = 𝛼𝑖 (𝑝𝑖−𝑐𝑖 ),
i.e., the true gain associated to this price; otherwise 𝑝𝑖 = ˜𝑏𝑖 = 0. It

is immediate to check that with these bids the allocation returned

byMVCG

I
is exactly the same as the one returned byMVCG

D
, and,

thus, it maximizes social welfare.

Unfortunately, we cannot conclude that inputs (𝑝𝑖 , ˜𝑏𝑖 ) are in

equilibrium directly from the truthfulness of MVCG

D
. Indeed, the

payments assigned by the indirect mechanism are different from the

ones assigned by the direct mechanism. Moreover, in the former

the agent may lie both about the price and about the expected

gain, while in the latter an agent may essentially lie only on the

1 slot 𝑚 ≥ 2 slots

Social Welfare Revenue Social Welfare Revenue

PoS PoA PoS PoS PoA PoS

MVCG

I
1 1 1 (♠) 1 𝑚 ∞

MGSP

I
1 1 ∞ ≥ 2 ≥ 𝑚 ∞

Table 1: Lower and upper bounds over PoS and PoA when
agents do not overbid. ♠: PoS here is taken w.r.t. the mecha-
nismMVCG

D
maximizing the social welfare (thus not neces-

sarily maximizing the revenue).



expected gain. Still, in the following we prove that inputs (𝑝𝑖 , ˜𝑏𝑖 )
are in equilibrium, and, thus, the theorem follows.

In particular, let p̃ = (𝑝1, . . . , 𝑝𝑛) and ˜b = ( ˜𝑏1, . . . , ˜𝑏𝑛). We prove

that the utility �̃�𝑖 of agent 𝑖 when the mechanism MVCG

I
is run on

p̃ and
˜b is at least the utility 𝑢𝑖 that she achieves if the mechanism

would be run on input p = (𝑝𝑖 , p̃−𝑖 ) and b = (𝑏𝑖 , ˜b−𝑖 ), for every 𝑖 , 𝑝𝑖 ,
and 𝑏𝑖 . Indeed if 𝑖 is allocated by the mechanism MVCG

I
when run

on input p̃ and
˜b, then, since, by definition of

˜𝑏𝑖 , 𝑣𝑖 = �̂�𝑖 (𝑓 ∗, p̃, ˜𝑏𝑖 ),

�̃�𝑖 = 𝑣𝑖 − 𝜋𝑖 = �̂�𝑖 (𝑓 ∗, p̃, ˜𝑏𝑖 ) − 𝜋𝑖

= 𝑆𝑊 (𝑓 ∗, p̃, ˜b) − max

𝑔:𝑔 (𝑖)∉𝑀
𝑆𝑊 (𝑔, p̃, ˜b) ≥ 0,

where 𝑓 ∗ is the allocation returned by MVCG

D
on truthful bids. If 𝑖

is instead, unallocated then

�̃�𝑖 = 0 = 𝑆𝑊 (𝑓 ∗, p̃, ˜b) − max

𝑔:𝑔 (𝑖)∉𝑀
𝑆𝑊 (𝑔, p̃, ˜b) .

Thus, if the agent 𝑖 is unallocated by themechanismMVCG

I
when

run on input p and b, then the equilibrium condition is trivially

satisfied. Otherwise, let
ˇ𝑏𝑖 = 𝛼𝑖 (𝑝𝑖 − 𝑐𝑖 ) and ˇb = ( ˇ𝑏𝑖 , b−𝑖 ). We have:

𝑢𝑖 = 𝑣𝑖 − 𝜋𝑖 = �̂�𝑖 (𝑔∗, p, ˇ𝑏𝑖 ) − �̂�𝑖 (𝑔∗, p, 𝑏𝑖 )

+ 𝑆𝑊 (𝑔∗, p, b) − max

𝑔:𝑔 (𝑖)∉𝑀
𝑆𝑊 (𝑔, p, b)

= 𝑆𝑊 (𝑔∗, p, ˇb) − max

𝑔:𝑔 (𝑖)∉𝑀
𝑆𝑊 (𝑔, p̃, ˜b),

where the last inequality follows since 𝑝 𝑗 = 𝑝 𝑗 and 𝑏 𝑗 = ˜𝑏 𝑗 for

every agent 𝑗 ≠ 𝑖 .

Since 𝑆𝑊 (𝑓 ∗, p̃, ˜b) ≥ 𝑆𝑊 (𝑔∗, p, ˇb), because 𝑓 ∗ and p̃ are the

allocation and the prices that maximize the social welfare, we have

that �̃�𝑖 ≥ 𝑢𝑖 , as desired. □

The proof of the theorem above shows that, with VCG payments,

there is always a Nash equilibrium in which every agent 𝑖 bids the

truthful gain 𝑏𝑖 and the price thatMVCG

D
would use. Such a strategy

profile leads to the same allocation of MVCG

D
, thus guaranteeing a

PoS for the social welfare of 1, but, as we discuss in the following

sections, the revenue of the two mechanisms can be different. The

same result does not hold in the case of GSP payments, thus leading

to a larger PoS for the social welfare.

Theorem 5. The PoS for the social welfare of MGSP

I
is at least 2

even if agents do not overbid.

5.2 Price of Anarchy for the Social Welfare
We initially focus on the basic case with a single slot, showing that

in this case MVCG

I
andMGSP

I
are efficient.

2

Theorem 6. The PoA for the social welfare of MVCG

I
and MGSP

I
is

1 if𝑚 = 1 when agents do not overbid.

Then, we study the case with multiple slots providing a lower

bound on PoA.

Theorem 7. The PoA for the social welfare of MVCG

I
and MGSP

I
is

at least𝑚 if𝑚 ≥ 2 when agents do not overbid.

2
All the proofs of the theorems in this section and the following one are in the

Supplementary Material.

In the specific case of MVCG

I
, we show that a PoA larger than

𝑚 is not possible, and therefore there are no instances worse than

those used in the proof of Theorem 7. Most interestingly, this result

holds even when 𝑞𝑖 is not monotonically decreasing in 𝑝𝑖 .

Theorem 8. The PoA for the social welfare ofMVCG

I
is at most𝑚 if

𝑚 ≥ 2 when agents do not overbid.

Finally, we show that when agents overbid, the inefficiency can

be arbitrarily large.

Theorem 9. The PoA for the social welfare of MVCG

I
and MGSP

I
is

∞ even if𝑚 = 1 when agents can overbid.

5.3 Price of Stability for the Revenue
Initially, we provide our main result, showing that MVCG

I
and

MGSP

I
can be arbitrarily inefficient even with 2 slots.

Theorem 10. The PoS for the revenue of MVCG

I
and MGSP

I
is ∞

even if𝑚 = 2.

In the specific case of MVCG

I
and 𝑚 = 1, we have a positive

result for PoS (PoA is trivially ∞ as it is ∞ even in second-price

single-item auctions).

Theorem 11. The PoS for revenue ofMVCG

I
is 1 if𝑚 = 1.

Instead, the above positive result does not hold withMGSP

I
, as

stated below.

Theorem 12. The PoS for the revenue ofMGSP

I
is∞ even if𝑚 = 1

when agents do not overbid.

In the proof of this theorem we strongly rely upon the definition

of GSP payments described above, which restricts payments to de-

pend only on agents submitting a price at least 𝑝min. This payment

format turns out to be necessary in order to guarantee individual

rationality. We leave open the problem of understanding if a better

Price of Stability for the revenue of MGSP

I
would be possible by

considering alternative non-individually rational GSP payments.

6 A BETTER POS FOR THE REVENUEWITH
INDIRECT-REVELATION MECHANISMS

As discussed in the previous section, indirect-revelation mecha-

nisms present major weaknesses in terms of efficiency. A natural

question is whether we can design indirect-revelation mechanisms

with a better efficiency when agents can choose their price. In par-

ticular, we focus onMVCG

I
, as it always guarantees PoS = 1 for the

social welfare, and we show that a simple modification of the mech-

anism leads to PoS = 1 for the revenue when some assumptions

hold. We call this new mechanismMVCG∗
I

. The rationale is to ask

agents for more information. More precisely, the input provided by

every agent is a triple composed of (𝑏𝑖 , 𝑝𝑖 , 𝑝∗𝑖 ) where (𝑏𝑖 , 𝑝𝑖 ) is the
input toMVCG

I
and 𝑝∗

𝑖
is the price that advertiser 𝑖 would choose

when her ad is the only displayed ad. The property that PoS = 1

is guaranteed when function 𝑞𝑖 (𝑝𝑖 , 𝑝𝑖 ) is differentiable in 𝑝𝑖 and

non-zero in 𝑝∗
𝑖
. MechanismMVCG∗

I
is defined as follows:

(1) every agent 𝑖 submits a bid (𝑏𝑖 , 𝑝𝑖 , 𝑝∗𝑖 ), where 𝑏𝑖 , 𝑝𝑖 , and 𝑝
∗
𝑖

are defined as above;



(2) the mechanism infers the values of 𝑐𝑖 and 𝛼𝑖 for every agent 𝑖

as follows: 𝑐𝑖 = 𝑞(𝑝∗
𝑖
, 𝑝∗

𝑖
) / 𝑑𝑞 (𝑝𝑖 ,𝑝𝑖 )

𝑑𝑝𝑖

��
𝑝𝑖=𝑝

∗
𝑖
+ 𝑝∗

𝑖
, and 𝛼𝑖 =

𝑏𝑖
𝑝𝑖−𝑐𝑖 if 𝑝𝑖 ≠ 𝑐𝑖 and 𝛼𝑖 = 0 otherwise;

(3) the mechanism computes an auxiliary allocation, say
¯𝑓 , by

using the allocation function of MVCG

I
when the input is

(𝑏𝑖 , 𝑝𝑖 ) for every agent 𝑖; the corresponding social welfare

(evaluated with the declared gain 𝑏𝑖 ) is ŜW;

(4) for every agent 𝑖 , the mechanism computes an auxiliary al-

location, say
¯𝑓 −𝑖 , by using the allocation function of MVCG

D

when the values inferred above for {𝛼ℎ}ℎ∈𝑁 and {𝑐ℎ}ℎ∈𝑁
are provided in input and agent 𝑖 is removed from the opti-

mization problem. For every maximization, we denote with

SW

−𝑖
the corresponding social welfare evaluated with the

inferred values {𝛼ℎ}ℎ∈𝑁 and {𝑐ℎ}ℎ∈𝑁 . Notice that, as it hap-

penswithMVCG

D
, the prices in output to thesemaximizations

can be different from those agents provide in input;

(5) if ŜW ≥ max𝑖 SW

−𝑖
, then the mechanism chooses allocation

¯𝑓 and charges every agent 𝑖 of a payment 𝜋𝑖 = SW

−𝑖 −(ŜW−
_ ¯𝑓 (𝑖) 𝑞𝑖 (𝑝𝑖 , 𝑝min) 𝑏𝑖 ), else no ad is allocated and every agent

is charged a payment of zero.

Basically, mechanismMVCG∗
I

exploits the additional information

asked to the agents to infer their types and then uses this infor-

mation to compute the same payments thatMVCG

D
would charge.

Step 5 is necessary to guarantee individual rationality. More pre-

cisely, since the allocation
¯𝑓 is computed as the indirect mechanism

does (without optimizing over prices), while the payments {𝜋𝑖 }𝑖∈𝑁
are computed as the direct mechanism does (optimizing over prices),

individual rationality may not be satisfied. We solve this problem

setting the payments to 0 (and allocating no ads) when the pay-

ments {𝜋𝑖 }𝑖∈𝑁 are too large. As a side effect, we have that if the

submitted prices are different from the optimal one, it is possible

that the mechanism does not assign any slot. Thus, the PoA for the

social welfare and revenue can be unbounded.

Theorem13. MechanismMVCG∗
I

is individually rational andweakly
budget-balanced. Moreover, the PoS for the revenue ofMVCG∗

I
is 1.

We recall that the algorithm we provide to find the best alloca-

tion with MVCG

I
works when the values that 𝑝𝑖 can assume are

discrete, and the same holds with MVCG∗
I

. We also notice that

MVCG∗
I

requires that 𝑝∗
𝑖
is not restricted to a set of discrete values,

the mechanism could not infer the exact values of 𝛼𝑖 and 𝑐𝑖 oth-

erwise. However, requiring price 𝑝𝑖 to belong to a finite, discrete

set of values and price 𝑝∗
𝑖
to belong to R≥0 does not modify the

properties of the mechanism since 𝑝∗
𝑖
is not used in the allocation

algorithm.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we investigate how displaying prices together with

ads affects the users’ behavior and the properties of auction mecha-

nisms. Since the goods sold by the agents are similar, a high competi-

tion among the agents arises from the price comparison. Technically

speaking, the prices introduce externalities as the probability with

which a user clicks on an ad depends on the price of that ad and on

the prices of the other displayed ads. Interestingly, the social wel-

fare can be maximized when a direct-revelation mechanism jointly

optimizes over the ad allocation and the prices, and we show that

this can be done in polynomial time when the prices can assume a

finite set of values. However, in practice, it is unlikely that adver-

tisers would allow the mechanism to choose prices on their behalf

and, in commonly-adopted mechanisms, ads allocation and price

optimization are decoupled, so that the advertisers optimize prices

and bids, while the mechanism does so for the allocation, once

prices and bids are given. We show that this decoupling makes stan-

dard mechanisms with VCG and GSP payments highly inefficient

in terms of PoA and PoS for social welfare and revenue. Finally, we

investigate whether we can reduce the inefficiency of mechanisms

in which the advertisers optimize prices and bids. We show that

we can obtain PoS of 1 for the revenue by a simple modification

of the mechanisms. In particular, we ask the advertisers for an ad-

ditional price that the mechanism exploits to infer the values of

some advertisers’ parameters. Such a modification can be easily

implemented in practice without that agents reveal their private,

sensitive information.

Many research directions can be explored in future. Probably, the

most interesting concerns how the bidding strategies commonly

adopted for standard ad auctions without prices can be extended to

our case. In particular, the crucial question is whether, as in the case

of the standard GSP without prices, there are bidding strategies

converging to notable Nash equilibria. Other interesting questions

concern the analysis of PoA and PoS and the design of allocation

algorithms when the quality functions satisfy specific properties,

such as, e.g., smoothness.
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