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ABSTRACT
Games are natural models for multi-agent machine learning set-

tings, such as generative adversarial networks (GANs). The desir-

able outcomes from algorithmic interactions in these games are

encoded as game theoretic equilibrium concepts, e.g. Nash and

coarse correlated equilibria. As directly computing an equilibrium

is typically impractical, one often aims to design learning algo-

rithms that iteratively converge to equilibria. A growing body of

negative results casts doubt on this goal, from non-convergence

to chaotic and even arbitrary behaviour. In this paper we add a

strong negative result to this list: learning in games is Turing com-

plete. Specifically, we prove Turing completeness of the replicator

dynamic on matrix games, one of the simplest possible settings.

Our results imply the undecicability of reachability problems for

learning algorithms in games, a special case of which is determining

equilibrium convergence.
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1 INTRODUCTION
Many multi-agent machine learning settings can be modeled as

games, from social or economic systems with algorithmic decision-

makers to popular learning architectures such as generative ad-

versarial networks (GANs). Desired outcomes in these settings are

often encoded as equilibrium concepts, and therefore a primary

goal is identifying machine learning algorithms with provable con-

vergence to these equilibria.

While there has been progress in deriving strong time-average

convergence guarantees for popular online learning algorithms,

the per-iteration behaviour of learning in games remains elusive.

Recent results attempt to formalize how elusive these dynamics

can be, from non-convergence results to establishing chaotic, or

even essentially arbitrary, behaviour [1, 3, 8, 10, 15]. Experiments

confirm that chaos can actually be typical behaviour [21].

In this work, we add an even more sobering negative result to

this list: learning in games is Turing complete. Specifically, we

show that replicator dynamics in matrix games, one of the sim-

plest possible settings, can simulate an arbitrary Turing machine

(Theorem 1). Here simulation is defined in terms of reachability, a

natural decision problem for dynamical systems that asks whether

a given system and initial condition eventually intersects (reaches)

a certain set; a dynamical system simulates a Turing machine if the

corresponding halting problem reduces to the reachability problem.
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Our proof combines two recent results, on the Turing complete-

ness of fluid dynamics [5], and on the approximate universality of

learning in games [1].

We believe our results have far-reaching implications for the

literature on learning in games. Most immediate is the fact that

the reachability problem is undecidable for no-regret learning in

general (Corollary 3). This result calls into question the feasibility

of equilibration as a goal, since even deciding whether a learning

algorithm gets close to an equilibrium is a special case of reachabil-

ity. More broadly, these results establish the computational power

of learning dynamics in games—and accordingly, their inherent

complexity as formalized by computabiity theory.

Beyond the continuous-time setting, we borrow tools from nu-

merical analysis to show that the multiplicative weights algorithm

can simulate any bounded Turing machine (Theorem 2). Extending

this analysis to arbitrary Turing machines, and thus establishing

Turing completeness for the discrete-time setting, may not be pos-

sible with the techniques we consider. Establishing (or refuting) the

Turing completeness of multiplicative weights is therefore left as an

important open question, and one that will likely require entirely

new techniques.

2 PRELIMINARIES
2.1 Matrix Games
A finite 𝑛-player normal form game consists of 𝑛 agents [𝑛] =

{1, . . . , 𝑛}, where each agent 𝑖 ∈ [𝑛] can choose actions from a finite

action set 𝑆𝑖 . Actions are chosen by agent 𝑖 according to a mixed
strategy, a distribution x𝑖 in the probability |𝑆𝑖 |-simplex Δ |𝑆𝑖 | =

{x𝑖 ∈ R |𝑆𝑖 |+ :

∑
𝑠∈𝑆𝑖 𝑥𝑖𝑠 = 1}. In normal form games, agents receive

payoffs from pairwise interactions according to payoff matrices

𝐴𝑖, 𝑗 ∈ R |𝑆𝑖 |× |𝑆 𝑗 |
where 𝑖, 𝑗 ∈ [𝑛] and 𝑖 ≠ 𝑗 . Given that mixed

strategies x𝑖 ∈ Δ |𝑆𝑖 |
and x𝑗 ∈ Δ |𝑆 𝑗 |

are chosen, agent 𝑖 receives

payoff x⊺
𝑖
𝐴𝑖, 𝑗x𝑗 . These payoffs yield a natural optimization problem

for each agent, where agents act strategically and independently

to maximize their expected payoff over the other agents’ mixed

strategies, i.e.

max

x𝑖 ∈Δ|𝑆𝑖 |

∑︁
𝑗 ∈[𝑛]; 𝑗≠𝑖

x⊺
𝑖
𝐴𝑖, 𝑗x𝑗 , 𝑖 ∈ [𝑛] . (1)

Throughout the paper we’ll restrict our attention to the case known

as matrix games, when 𝑛 = 2.

2.2 Follow-the-Regularized-Leader (FTRL)
Learning and Replicator Dynamics

In many game settings, the optimization in eq. (1) is a moving target

since the opponent adaptively updates their strategy and the payoff

matrix may be unknown. In such settings, arguably the most well

known class of algorithms is Follow-the-Regularized-Leader (FTRL).



The continuous-time version of an FTRL algorithm is as follows.

Given initial payoff vector y𝑖 (0), an agent 𝑖 that plays against agent

𝑗 in a matrix game𝐴𝑖, 𝑗 updates their strategy at time 𝑡 according to

y𝑖 (𝑡) = y𝑖 (0) +
∫ 𝑡

0

𝐴𝑖, 𝑗x𝑗 (𝑠)𝑑𝑠

x𝑖 (𝑡) = argmax

x𝑖 ∈Δ|𝑆𝑖 |
{⟨x𝑖 , y𝑖 (𝑡)⟩ − ℎ𝑖 (x𝑖 )}

(2)

where ℎ𝑖 is strongly convex and continuously differentiable. FTRL

effectively performs a balancing act between exploration and ex-

ploitation. The cumulative payoff vector y𝑖 (𝑡) indicates the total
payouts until time 𝑡 , i.e. if agent 𝑖 had played strategy 𝑠𝑖 ∈ 𝑆𝑖 contin-

uously from 𝑡 = 0 until time 𝑡 , agent 𝑖 would receive a total reward

of y𝑖𝑠𝑖 (𝑡). The two most well-known instantiations of FTRL dynam-

ics are the online gradient descent algorithm when ℎ𝑖 (x𝑖 ) = | |x𝑖 | |2
2
,

and the replicator dynamics (the continuous-time analogue of Mul-

tiplicative Weights Update [2]) when ℎ𝑖 (x𝑖 ) =
∑
𝑠𝑖 ∈𝑆𝑖 x𝑖𝑠𝑖 lnx𝑖𝑠𝑖 .

FTRL dynamics in continuous time has bounded regret in arbitrary

games [17]. For more information on FTRL dynamics and online

optimization, see [24].

In this paper, we will focus on replicator dynamics (RD) as the
learning process generating game dynamics. In addition to its role in

optimization, replicator dynamics is the prototypical dynamic stud-

ied in evolutionary game theory [22, 30] and is one of the key math-

ematical models of evolution and biological competition [23, 28].

In this context, replicator dynamics can be thought of as a normal-

ized form of ecological population models, and is studied given a

single payoff matrix 𝐴 and a single probability distribution x that

can be thought abstractly as capturing the proportions of different

species/strategies in the current population. Species/strategies get

randomly paired up and the resulting payoff determines which

strategies will increase/decrease over time.

Formally, the dynamics are as follows. Let𝐴 ∈ R𝑚×𝑚
be a matrix

game and x ∈ Δ𝑚 be the mixed strategy played. RD on 𝐴 are given

by:

¤𝑥𝑖 =
𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖 ((𝐴x)𝑖 − x⊺𝐴x) , 𝑖 ∈ [𝑚] (3)

Under the symmetry of 𝐴𝑖, 𝑗 = 𝐴 𝑗,𝑖 , and of initial conditions (i.e.

x𝑖 = x𝑗 at 𝑡 = 0), it is immediate to see that under the x𝑖 , x𝑗
solutions of eq. (2) are identical to each other and to the solution

of eq. (3) with 𝐴 = 𝐴𝑖, 𝑗 = 𝐴 𝑗,𝑖 . For our purposes, it will suffice to

focus on exactly this setting of matrix games defined by a single

payoff matrix 𝐴 and a single probability distribution x, which is

actually the standard setting within evolutionary game theory.

2.3 Dynamical Systems Theory
A dynamical system is a mathematical model of a time-evolving

process. The objects undergoing change in a dynamical system

is called its state and is often denoted by x ∈ X, where X is a

topological space called a state space. For most of this paper we will

be focusing on continuous time systems, but in §5 we will consider

discrete time systems derived from numerical approximations of

their continuous counterpart. To distinguish between continuous

and discrete time, we will use x(𝑡) to describe the state as a function
of continuous time 𝑡 ∈ R and x𝑡 to describe the state as a function

of discrete time 𝑡 ∈ Z.

Change between states in a continuous time dynamical system

is described by a flow Φ : X × R→ X satisfying two properties:

(i) For each 𝑡 ∈ R, Φ(·, 𝑡) : X→ X is bijective, continuous, and

has a continuous inverse.

(ii) For every 𝑠, 𝑡 ∈ R and x ∈ X, Φ(x, 𝑠 + 𝑡) = Φ(Φ(x, 𝑡), 𝑠).

Intuitively, flows describe the evolution of states in the dynamical

system. Given a time 𝑡 ∈ R, the flow gives us the relative movement

of every point x ∈ X; we will denote this by the map Φ𝑡 : X→ X.
Similarly, given a point x ∈ X, the flow captures the trajectory of x
as a function of time; in an abuse of notation, we will denote this

by x(𝑡) where 𝑡 is changing.
Continuous time dynamical systems are often given as systems

of ordinary differential equations (ODEs). Systems of ODEs describe

a vector field 𝑉 : X → 𝑇X which assigns to each x ∈ X a vector

in the tangent space of X at x. The unit sphere S𝑛 = {x ∈ R𝑛+1 :

∥𝑥 ∥2
2
= 1} will play a special role in proving Theorem 1, in which

case the tangent space 𝑇S𝑛 at each x ∈ S𝑛 is {y ∈ R𝑛 : x · y =

0}. Intuitively, the tangent space defines bundles of vectors that
ensure the system’s states remain well defined on the state space

as time progresses. A system of ODEs is said to generate (or give)
a flow Φ if Φ describes a solution of the ODEs at each point x ∈
X. Throughout this paper we assume that all dynamical systems

discussed can be given by a system of ODEs. For this reason, we

will use the term dynamical system to refer to the system of ODEs,

the associated vector field, and a generated flow interchangeably.

A well known result in dynamical systems theory states that, for

Lipschitz-continuous systems of ODEs, the generated flow is unique

(see [16, 19]) and using these terms interchangeably is well defined.

An important notion for proving Theorem 1, and for dynamical

systems in general, is that of a global attracting set of the dynamical

system. Let Φ be a flow generated by some dynamical system on

X. We say Y ⊂ X is forward invariant for the flow Φ if Φ𝑡 (y) ∈ Y
for every 𝑡 ≥ 0, y ∈ Y. We say Y ⊂ X is globally attracting for the

flow Φ if Y is nonempty, forward invariant, and

Y ⊇
⋂
𝑡>0

{Φ𝑡 (x) : x ∈ X} . (4)

Stated informally, if Y is globally attracting it will eventually cap-

ture the dynamics of Φ starting from any point in X after some

transitionary period of time.

Now let X and Y be two topological spaces. We say that a func-

tion 𝑓 : X → Y is a homeomorphism if (i) 𝑓 is bijective, (ii) 𝑓 is

continuous, and (iii) 𝑓 has a continuous inverse. Furthermore, two

flows Φ : X × R → X and Ψ : Y × R → Y are homeomorphic if
there exists a homeomorphism 𝑔 : X→ Y such that for each x ∈ X
and 𝑡 ∈ R we have 𝑔(Φ(x, 𝑡)) = Ψ(𝑔(x), 𝑡). If 𝑔 is also 𝐶1

and has a

𝐶1
inverse, then we say 𝑔 is a diffeomorphism and that the flows Φ

and Ψ are diffeomorphic. Observe that every diffeomorphism is also

a homeomorphism, and thus every pair of diffeomorphic flows are

also homeomorphic. Homeomorphic (resp. diffeomorphic) flows

satisfy a strong, and typical, notion of equivalence between dynam-

ical systems. Intuitively, two dynamical systems are homeomorphic

if their trajectories can be mapped to one another by stretching and

bending space.



2.4 Turing Machines
Throughout this paper we rely crucially on the notion of a Turing

complete dynamical systems, i.e. a dynamical system able to simu-

late any Turing machine. We will briefly recall the Turing machine

model and formalize its relationship with dynamical systems.

A Turing machine is given by a tuple𝑇 = (𝑄, Σ, 𝛿, 𝑞0, 𝑞halt) where
• 𝑄 is a finite set of states, including an initial state 𝑞0 and a

halting state 𝑞
halt

;

• Σ is an alphabet with cardinality at least two;

• 𝛿 : 𝑄 × Σ → 𝑄 × Σ × {−1, 0, 1} is a transition function.
For a given Turing machine 𝑇 and an input tape 𝑠 = (𝑠𝑖 )𝑖∈Z ∈ ΣZ,
the Turing machine’s computation is carried out according to the

following process:

[0] Initialize the current state 𝑞 to 𝑞0, and the current tape

𝑤 = (𝑤𝑖 )𝑖∈Z to be 𝑠 .

[1] If𝑞 = 𝑞
halt

then halt the algorithm and return𝑤 as output.

Otherwise compute 𝛿 (𝑞,𝑤0) = (𝑞′,𝑤 ′
0
, 𝜎), where 𝜎 ∈

{−1, 0, 1}.
[2] Update the current state and tape by setting 𝑞 = 𝑞′ and

the 0
th
position of𝑤 to𝑤0 = 𝑤 ′

0
.

[3] Update 𝑤 with the 𝜎 shifted tape (𝑤𝑖+𝜎 ), then return

to [1].

Without loss of generality, we will assume that Turing machines

adhere to standard simplifying conventions (cf. [26]). Specifically,

we assume that the alphabet Σ = {0, . . . , 9} and any given tape of

the Turing machine only has a finite number of symbols different

from 0, where 0 represents the special “blank symbol”. Under these

assumptions it follows that there exists a finite (possibly large)

integer 𝑘0 > 0 such that any tape𝑤 satisfies

𝑤 = (𝑤𝑖 )𝑖∈Z = . . . 000𝑤−𝑘0 . . .𝑤𝑘0000 . . . (5)

with each 𝑤𝑖 ∈ Σ. Equivalently, at any given step in the Turing

machine’s evolution, these assumptions ensure there can be at most

2𝑘0 +1 non-blank symbols on the tape. In particular, we get that the

space of configurations of a Turing machine 𝑇 is 𝑄 ×𝐴 ⊂ 𝑄 × ΣZ,
where 𝐴 is the subset of strings taking the form (5).

The construction of dynamical systems that simulate Turing ma-

chines is at the heart of our results, and has been studied for various

problems in physics [6, 9, 20]. Although equivalent definitions exist,

our analyses will adopt the formalisms used by recent work on fluid

dynamics [5, 27]. An analogous definition can be given for flows

on a manifold.

Definition 1. A vector field 𝑋 on a manifold 𝑀 simulates a
Turing machine 𝑇 if there exists an explicitly constructible open set
𝑈𝑤−𝑘 ,...,𝑤𝑘

⊂ 𝑀 corresponding to each finite string𝑤−𝑘 , . . . ,𝑤𝑘 ∈ Σ,
and an explicitly constructible point 𝑝𝑠 ∈ 𝑀 corresponding to each
𝑠 ∈ ΣZ, such that: 𝑇 with input tape 𝑠 halts with an output tape
having values𝑤−𝑘 , . . . ,𝑤𝑘 in positions −𝑘, . . . , 𝑘 respectively if and
only if the trajectory of 𝑋 through 𝑝𝑠 intersects𝑈𝑤−𝑘 ,...,𝑤𝑘

.

Intuitively, a dynamical system simulates a Turing machine if

there is a correspondence between trajectories reaching certain sets

and computations halting with certain configurations. In particular,

constructing the point 𝑝𝑠 depends only on the Turing machine 𝑇

and input tape 𝑠 , while constructing the set 𝑈𝑤−𝑘 ,...,𝑤𝑘
depends

only on the specified halting configuration of 𝑇 . Both here and

throughout the paper, we say a mathematical object (e.g. points,

sets, or matrices) is constructible if it can be computed in finite

time; constructability is not explicitly used in our arguments, but

is important for nuanced technical reasons since it disallows patho-

logical scenarios such as having all information about a machine’s

computations being encoded in an initial condition.

Definition 1 leads to a natural notion of Turing completeness for

dynamical systems.

Definition 2. A dynamical system is Turing complete if it can
simulate a universal Turing machine 𝑇 .

3 TURING COMPLETE DYNAMICS ON
MATRIX GAMES

Our goal in this section is to establish the Turing completeness

of replicator dynamics; in §3.1 we provide all precursory results

required to prove the main result in §3.2.

3.1 Turing Complete Vector Fields and
Approximation-Free Game-Embeddings

Our construction of Turing complete game dynamics relies crucially

on the notion of generalized Lotka-Volterra (GLV) vector fields. In
particular, two properties of GLV vector fields will play a key role

in the proof: (i) polynomial vector fields on R𝑛++ are a special case

of GLV vector fields, and (ii) GLV vector fields can be embedded

into RD on a matrix games without approximation.

Formally, a GLV vector field is a vector field on R𝑛++ given by the

system of ODEs

¤𝑥𝑖 =
𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖

©«_𝑖 +
∑︁

𝑗 ∈[𝑚]
𝐴𝑖 𝑗

∏
𝑘∈[𝑛]

𝑥
𝐵 𝑗𝑘

𝑘

ª®¬ , 𝑖 ∈ [𝑛] (6)

where𝑚 is some positive integer, _ ∈ R𝑛 ,𝐴 ∈ R𝑛×𝑚 , and 𝐵 ∈ R𝑚×𝑛
.

Since exponents given by 𝐵 can be any real number, the terms in

the parentheses are multivariate generalized polynomials. In spe-

cial cases where the ODEs are standard multivariate polynomi-

als, GLV vector fields equate to polynomial vector fields—a fact

straightforwardly shown by noting that any polynomial vector

field 𝑃 = {𝑃𝑖 }𝑖∈[𝑛] on R𝑛++ is equivalent to the GLV vector field

𝑃 = {𝑥𝑖 ( 1

𝑥𝑖
𝑃𝑖 )}𝑖∈[𝑛] .

Polynomial and GLV vector fields play an integral role by allow-

ing us to invoke recent results by [5] and [1]. The starting point of

our construction can stated as follows:

Proposition 1 (Theorem 4.1 of [5]). There exists a constructible
polynomial vector field𝑋 of degree 58 on S17 which is Turing complete
and bounded.

In Appendix A we provide a proof sketch of this result; we refer

the reader to [5] for the full proof. In §3.2 we will extend the Turing

completeness from Proposition 1 to replicator dynamics in matrix

games by leveraging recent work by [1]. In essence, [1] showed

that GLV vector fields can approximate essentially any dynamical

system, and that any GLV vector field can be embedded into the

dynamics of RD on some matrix game. In this paper we only rely on

the latter result, since polynomial vector fields are already a special

case of GLV vector fields and thus do not need to be approximated.



Proposition 2 (Theorem 3 of [1]). Let 𝑃 be a GLV vector field
on R𝑛++ and Φ be the flow generated by 𝑃 . For𝑚 ≥ 𝑛, there exists a
flow Θ on relint(Δ𝑚) and a constructible diffeomorphism 𝑓 : R𝑛++ →
P ⊆ relint(Δ𝑚) such that:

(i) The flow Θ on relint(Δ𝑚) is given by RD on a matrix game
with payoff matrix 𝐴 ∈ R𝑚×𝑚 .

(ii) The flow Θ
��
P = 𝑓 (Φ) and Φ = 𝑓 −1 (Θ

��
P), where Θ

��
P is the flow

given by Θ restricted to P.
(iii) The integer𝑚 − 1 is at least the number of unique monomials

in 𝑃 .

At a high level, proving Proposition 2 boils down to composing

an embedding trick introduced by [4] with Theorem 7.5.1 by [13].

The relationship highlighted here between𝑚 − 1 and the number

of monomials was not included in the original statement by [1],

however it is shown as part of an important step in their proof and

is required for Corollary 1.

3.2 Replicator Dynamics on Matrix Games is
Turing Complete

To prove the main result of this section, Theorem 1, we will derive

a diffeomorphism of the Turing complete vector field constructed

in Proposition 1 that enables us to apply Proposition 2.

Theorem 1. There exists𝑚 ≥ 0 and a constructible matrix game
𝐴 ∈ R𝑚×𝑚 such that replicator dynamics on 𝐴 is Turing complete.

Proof. Let 𝑋 be the Turing complete polynomial vector field on

S17 given by Proposition 1. We begin by embedding 𝑋 into a poly-

nomial vector field 𝑋 on R18 where S17 is globally attracting. Since

trajectories of 𝑋 are globally attracted to S17, a standard change of

coordinates via translation yields a polynomial vector field that is

well-defined on R18++. Therefore, as polynomial vector fields on R18++
are a special case of GLV vector fields, we will conclude the proof

by applying Proposition 2 from §3.1.

Let {𝜙𝑖 }𝑖∈[18] be the set of polynomials given by 𝑋 . Define

𝜋 (x) = (1 − ∥x∥2
2
) for x ∈ R18. Now define 𝑋 as the vector field on

R18 given by the system

¤𝑥𝑖 = 𝑥𝑖

(
𝜋 (x) + 1

𝑥𝑖
𝜙𝑖 (x)

)
= 𝑥𝑖𝜋 (x) + 𝜙𝑖 (x) ,

for each 𝑖 ∈ [18]. By construction S17 is forward invariant under 𝑋 ,

as 𝜋 (x) = 0 on S17 and 𝑋 is forward invariant on S17. Furthermore,

observe that for x = x(𝑡) ∈ R18 the solutions of 𝑋 satisfy

𝑑

𝑑𝑡
∥x∥2

2
= 2

∑︁
𝑖∈[18]

𝑥𝑖 ¤𝑥𝑖

= 2
©«
∑︁

𝑖∈[18]
𝑥2𝑖 𝜋 (x) +

∑︁
𝑖∈[18]

𝑥𝑖𝜙𝑖 (x)ª®¬
= 2𝜋 (x) ©«

∑︁
𝑖∈[18]

𝑥2𝑖
ª®¬ + 2

©«
∑︁

𝑖∈[18]
𝑥𝑖𝜙𝑖 (x)ª®¬

= 2𝜋 (x)∥x∥2
2

= 2∥x∥2
2

(
1 − ∥x∥2

2

)
,

since, by definition of 𝑇S17, the constraint ∥x∥2
2
= 1 ensures 𝑋

satisfies

2

∑︁
𝑖∈[18]

𝑥𝑖𝜙𝑖 (x) = 0 .

The term 2∥x∥2
2

(
1 − ∥x∥2

2

)
is a logistic equation in ∥x∥2

2
. Thus, for

every x ∈ R18, we know ∥x∥2
2
→ 1 as 𝑡 → ∞. It follows that S17 is

globally attracting for the trajectories generated by 𝑋 .

Denote a standard translation of axes by 𝜎 ∈ R as 𝐹𝜎 : R18 →
R18, x ↦→ x + 𝜎1, where 1 is the all-ones vector. Since solutions

of 𝑋 are attracted to S17 and Proposition 1 ensures {𝜙𝑖 }𝑖∈[18] is
bounded due to the reparametrization done in eq. (4.2) in [5], there

exists suitable values of 𝜎 such that composing 𝐹𝜎 with 𝑋 yields a

polynomial vector field that is forward invariant on R18++. Formally,

let 𝐵 > 0 be the bound on {𝜙𝑖 }𝑖∈[18] given in Proposition 1, i.e. for

all 𝑖 ∈ [18] and x ∈ R18 the vector field 𝑋 satisfies |𝜙𝑖 (x) | ≤ 𝐵. To

ensure the translated vector field is forward invariant on R18++, it
suffices to find 𝜎 such that 𝑌 = 𝐹𝜎 ◦ 𝑋 is strictly positive on the

boundary when y ∈ R18++ has 𝑦𝑖 = 0 for some 𝑖 ∈ [18]. By definition
we know that 𝑌 at any y ∈ R18++ is identical to 𝑋 at x = y−𝜎1. The

system of equations { ¤𝑦𝑖 }𝑖∈[18] is given by the system of equations

{ ¤𝑥𝑖 }𝑖∈[18] under the substitution x = y − 𝜎1. Therefore we find

that, for y ∈ R18++ with 𝑦𝑖 = 0 for some 𝑖 ∈ [18],

¤𝑦𝑖 = (𝑦𝑖 − 𝜎)𝜋 (y − 𝜎1) + 𝜙𝑖 (y − 𝜎1)
≥ (−𝜎) (1 − ∥y − 𝜎1∥2

2
) − 𝐵

= 𝜎 ∥y − 𝜎1∥2
2
− 𝜎 − 𝐵

≥ 𝜎3 − 𝜎 − 𝐵 ,

which implies ¤𝑦𝑖 > 0 whenever 𝐵 < −𝜎 + 𝜎3. Thus, for values of 𝜎

satisfying 𝐵 < −𝜎 + 𝜎3, we have 𝑌 = 𝐹𝜎 ◦ 𝑋 which is well defined

on R18++ for all initial conditions in R18++.
By definition of 𝑌 , as a translated copy of 𝑋 , the set 𝐹𝜎 (S17) is

globally attracting in 𝑌 , and 𝑌
��
𝐹𝜎 (S17) is a Turing complete poly-

nomial vector field. It follows we have constructed a polynomial

vector on R18++ that inherits the Turing complete dynamics of 𝑋 .

Since polynomial vector fields on R18++ are a special case of GLV vec-

tor fields on R18++, from Proposition 2 there exists a diffeomorphism

𝑓 : R18++ → P ⊆ relint(Δ𝑚) from trajectories of 𝑌 onto trajectories

of an invariant submanifold of replicator dynamics on a matrix

game 𝐴 ∈ R𝑚×𝑚
.

We conclude by showing how the Turing completeness of 𝑋

corresponds to Turing completeness for replicator dynamics on 𝐴.

Suppose we have a given Turing machine 𝑇 , an input tape 𝑠 , and

some finite string 𝜔 . By Proposition 1 there exists a point 𝑝𝑠 and

open set 𝑈𝜔 such that trajectories of 𝑋 through 𝑝𝑠 intersect 𝑈𝜔

if and only if 𝑇 halts with input 𝑠 and output matching 𝜔 about

the machine’s head. Our analysis above shows that 𝑋

���
S17

= 𝑋 , so

trajectories of 𝑋 through 𝑝𝑠 intersect 𝑈𝜔 if and only if 𝑇 halts

with input 𝑠 and output matching 𝜔 . Therefore, after translating

𝑋 , we know trajectories of 𝑌 through 𝐹𝜎 (𝑝𝑠 ) intersect 𝐹𝜎 (𝑈𝜔 ) if
and only if 𝑇 halts with input 𝑠 and output matching 𝜔 . Finally,

since diffeomorphisms are closed under composition, we conclude

that trajectories of replicator dynamics on 𝐴 through the point

𝑓 (𝐹𝜎 (𝑝𝑠 )) intersect the set 𝑓 (𝐹𝜎 (𝑈𝜔 )) if and only if 𝑇 halts with



input 𝑠 and output matching 𝜔 , where 𝑓 is the diffeomorphism

above. Thus, on an invariant submanifold of relint(Δ𝑚), replicator
dynamics on 𝐴 simulates 𝑇 . Taking 𝑇 to be a universal Turing

machine completes the proof. □

An interesting corollary of Theorem 1 is that we arrive at a

bound on the number of actions needed for defining games where

learning dynamics can be Turing complete. The bound is likely

loose for several reasons. Firstly, the polynomial vector field from

Proposition 1 is not known to have minimal degree nor dimension.

Secondly, the combinatorial argument in Appendix B makes no

attempt at a nuanced count on the number of unique monomials in

the polynomials given by these vector fields. Deriving a tight bound

is not only an interesting open question for game dynamics, but also

for recent work in fluid dynamics [5, 29] and analog computing [12].

Corollary 1. For some𝑚 ≤
(
76

18

)
+ 1, there exists a matrix game

𝐴 ∈ R𝑚×𝑚 such that replicator dynamics on 𝐴 is Turing complete.

4 UNDECIDABLE PHENOMENA IN
NO-REGRET LEARNING DYNAMICS

The Turing completeness of replicator dynamics (i.e. Theorem 1)

has deep implications for machine learning and, more generally,

learning in strategic environments. Specifically, if a dynamical sys-

tem simulates a Turing machine, Definition 1 gives a reduction

from the halting problem for Turing machines to the reachability

problem for dynamical systems, which we use alongside the Turing

completeness established in Theorem 1 to uncover the existence

of undecidable reachability problems. As will be discussed in §4.2,

the existence of undecidable problems makes it increasingly impor-

tant that we understand computability in instances of reachability

arising from fundamental solution concepts for game theory and

machine learning.

4.1 The Halting and Reachability Problems
The halting problem is a prototypical decision problem for Turing

machines and is arguably the most famous undecidable problem in

computer science. Given a Turing machine𝑇 and an input tape, the

halting problem for 𝑇 asks whether or not 𝑇 will halt. By contrast,

the reachability problem is canonical for dynamical systems and

has been studied in various control settings; given a dynamical

system 𝑋 and a set of initial conditions, the reachability problem for
𝑋 asks whether or not 𝑋 ’s trajectory will intersect a predetermined

set. Although the computability of the halting problem is generally

well understood in Turing machines, the computability of the reach-

ability problem has not traditionally been studied in the context of

game dynamics. However, from the strong equivalence between

halting and reachability required by Definition 1, we immediately

get a reduction between these classic decision problems.

Proposition 3. If a dynamical system 𝑋 simulates a Turing ma-
chine 𝑇 , then the halting problem for 𝑇 reduces to the reachability
problem for 𝑋 .

The proof of this proposition follows directly from Definition 1,

since checking whether the dynamical system reaches a set be-

comes equivalent to checking whether the Turing machine halts

by definition. From Theorem 1 we know that replicator dynamics

on a matrix game can simulate a universal Turing machine. There-

fore, due to the undecidability of the halting problem in general,

we deduce that the reachability problem can be undecidable for

replicator dynamics on matrix games.

Corollary 2. There exist matrix games where the reachability
problem is undecidable for replicator dynamics.

The corollary follows immediately from Proposition 3 and Theo-

rem 1, since the undecidability of the halting problem for universal

Turing machines uncovers the undecidability of the reachability

problem for replicator dynamics on matrix games.

4.2 Implications for No-Regret Learning in
Games

Games are primarily understood and studied via equilibrium con-

cepts, e.g. Nash equilibria, evolutionary stable strategies, and coarse

correlated equilibria. It is therefore unsurprising that a central goal

of learning in games is often to converge on some set of equilibria.

Yet, beyond certain special cases (e.g. potential games), learning

behaviours remain largely enigmatic and there has been limited

progress towards resolving non-convergence in general settings.

The results in this paper may explain why: determining conver-

gence to a set of equilibria is a special case of reachability, and

identifying learning algorithms that provably converge on such a

set may be an undecidable problem even in very simple classes of

games. The goal of this section is to formalize this intuition.

In Corollary 2 we found that reachability can be undecidable for

replicator dynamics onmatrix games. Therefore, taken as a negative

result, Corollary 2 implies that undecidable trajectories can exist

in larger classes of game dynamics where replicator dynamics on

matrix games is a special case. Unfortunately, replicator dynamics

is special case of FTRL dynamics and no-regret learning dynamics

more generally [17], which suggests these popular learning dynam-

ics can inherit the negative result on any class of games containing

matrix games. Similarly, matrix games are very restricted and a

special case of many popular classes of games, e.g. normal form

and smooth games. As an example of how broadly these results

generalize, matrix games in the FTRL framework describe qua-

dratic objective functions and thus undecidable trajectories exist

for optimization-driven learning over quadratic objectives. Thus,

as Corollary 2 holds for replicator dynamics on matrix games, we

arrive at the reachability problem being generally undecidable for

rich classes of game dynamics studied in the literature and used in

practice.

Corollary 3. There exist games where reachability for no-regret
learning dynamics is undecidable.

In light of Corollary 2, the claim follows from our discussion

above. As determining convergence to sets of game theoretic solu-

tion concepts is a special case of the reachability problem, Corol-

lary 3 reveals that determining whether game dynamics converge

to fundamental solution concepts is undecidable in general. It is

important to note that the undecidability may not hold for specific

games, learning dynamics, or solution concepts; the primary take-

away is that undecidability is possible and has strong implications

about how we should approach these important questions.



5 DISCRETE LEARNING DYNAMICS AND
TURING MACHINE SIMULATIONS

Thus far we have focused on continuous-time replicator learning

dynamics, but in practice discrete-time learning dynamics are typi-

cally used. A folk result in the study of game dynamics states that

the multiplicative weights update (MWU) algorithm is essentially

an Euler discretization of replicator dynamics. It is therefore natural

to ask whether MWU, the discrete analogue of replicator dynamics,

are also Turing complete. Unfortunately, as will be shown in this

section, standard numerical error analyses are likely insufficient

for proving Turing completeness in discrete time; intuitively, the

reason is because discretizations of a continuous time process will

yield error bounds that grow as a function of time.Wewill formalize

these error bounds in §5.1 and use them in §5.2 to begin untangling

the computational power of MWU. Discussions of related open

questions are left for §6.

5.1 Discretization Error of Multiplicative
Weights Updates

The fact that MWU is a discretization of replicator dynamics is

well known in the field of game dynamics, but a precise derivation

of this relationship is often omitted. For clarity in our analysis of

discretization errors, we will highlight one possible discretization

that reveals MWU as a discrete-analogue of replicator dynamics in

Appendix C. The discretization we arrive at is used to find a bound

on the cumulative error of MWU relative to replicator dynamics,

which is crucial for the analyses and discussion to follow.

Lemma 1. Let Φ be the flow generated by replicator dynamics and
x𝑡 be the mixed strategy found on the 𝑡 th iterate of MWU. The error
accrued by a single iteration of MWU with step-size [ > 0 is

∥x𝑡+1 − Φ([, x𝑡 )∥∞ ≤ 1 − 𝑒−2[ .

The proof of Lemma 1 consists of relatively straightforward cal-

culations, but requires carefully handling nonlinearities introduced

by MWU; a full proof is included in Appendix D.

Using Lemma 1 as a basis, we can bound the error accrued over

multiple iterations of MWU.
1

Lemma 2. Let Φ be the flow generated by replicator dynamics and
x𝑡 be the mixed strategy found on the 𝑡 th iterate of MWU. The error
accrued after 𝑡 + 1 iterations of MWU with step-size [ > 0 is

∥x𝑡+1 − Φ(𝑡[, x0)∥ ≤ O
(
𝑒𝑡
)
.

A full derivation of Lemma 2 is found in Appendix E, and follows

from using Lemma 1 alongside standard techniques for bounding

error in iterated numerical methods.

5.2 Simulating Bounded Turing Machines with
Multiplicative Weights Update

The result in Lemma 2 shows that, relative to replicator dynamics,

the error accrued by MWU will grow with the number of iterations.

Error growing as a function of time is problematic when simulating

a Turing machine by using MWU as discretization of replicator

dynamics.

1
In the language of numerical analysis, Lemma 1 gives the local error used to find the

global error in Lemma 2.

Recall that in Theorem 1 we showed that replicator dynamics

can simulate a universal Turing machine because it can embed a

dynamical system that simulates a universal Turing machine, which

is done to ensure the Turing machine’s halting remains equivalent

to the dynamics’ trajectories reaching a certain set. However, in

general, determining whether such a Turing machine will halt or

howmany steps are required to halt is undecidable. Therefore, with-

out an a priori bound on the maximum amount of time needed to

determine whether the machine halts or not, we cannot choose

step sizes for MWU that guarantee the discretization remains suffi-

ciently close to replicator dynamics when intersecting the relevant

set.

Theorem 2. Let 𝑘 > 0 be a finite integer and T𝑘 be the set of
Turing machines that we can determine to halt or not after 𝑘 steps of
computation. For any 𝑘 , there exists step sizes [ > 0 such that MWU
with step-size [ can simulate any Turing machine in T𝑘 .

The result follows from the construction of the open sets used in

Proposition 1 and the fact that we can ensure MWU’s discretization

error stays sufficiently small over any finite window of time due to

Lemma 2. Resolving the limitations of Theorem 2, and uncovering

the true computational power of discrete algorithms such as MWU,

will likely require new technical approaches for bounding errors or

simulating Turing machines.

6 CONCLUSION
We have shown that replicator dynamics in matrix games can simu-

late universal Turingmachines. In continuous time, this observation

was extended to provide deeper insight into the complexities of

game theoretic learning. In fact, as highlighted in §4, the plural-

ity of negative results on game dynamics can be understood as

a natural byproduct of Theorem 3. Given that the present paper

uses replicator dynamics specifically and matrix games broadly,

complimenting the results given here with analyses based on other

learning dynamics and classes of games could be instrumental in

guiding future research by finding settings where designing well-

behaved game dynamics is a tractable problem. As was done for

Turing machines in computational complexity theory and becomes

more natural given the techniques used in our analyses, compart-

mentalizing the complexity of learning in games using traditional

complexity classes suggests a promising line of investigation for

finding tractable settings for learning in games.

In discrete time, the Turing completeness of replicator dynamics

was used to show that MWU can simulate bounded Turing ma-

chines. However, our approach does not disallow for the possibility

of MWU being Turing complete as well; using MWU’s relationship

to replicator dynamics seems to have inherent numerical limitations

arising from error growingwith time. Since discrete-time learning is

more applicable in practice, it remains an important open question

to determine whether MWU and other discrete learning algorithms

are Turing complete. That being said, the smoothness constraints

on continuous-time learning often leads to better behaved dynamics

than discrete-analogues, and thus the study of continuous dynam-

ics generally serves as restricted special case of what is possible

in discrete-time. As evidence of this claim, not only are complex

dynamic phenomena prevalent in low dimensional discrete sys-

tems where it is impossible in continuous systems (e.g. chaos [7]),



Figure 1: A comparison of replicator dynamics and MWU on a matrix game derived by [1] to simulate a chaotic dynamical
system. On the left is replicator dynamics with the dynamics embedded into its behaviours, whereas on the right we have
10000 iterations of MWU with a relatively large step size. Although not identical, it is clear that MWU retains the intricate and
complex behaviours of replicator dynamics.

but Figure 1 demonstrates the robustness of MWU by showing it

can follow replicator dynamics on a matrix game derived by [1]

in order to emulate the iconic Lorenz strange attractor. In future

work, instead of using continuous learning dynamics as a proxy,

directly simulating Turing machines with discrete dynamics may

provide powerful tools for learning in games. Research on Turing

machine simulations using physical systems has a rich history and

encompasses far more than what is discussed in this paper. Various

techniques have been used to directly simulate Turing machines

using discrete dynamics [18, 25], and insights from this prior work

may hold potent insights for applications to learning in games.
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A TURING COMPLETE POLYNOMIAL FLOWS
ON S17

Wewill briefly sketch the construction by [5] of the Turing complete

polynomial vector field in Proposition 1; for a complete treatment

we refer the reader to [5]. To simplify notation, throughout this

section we will represent a step in a Turing machine 𝑇 ’s evolu-

tion (i.e. an iteration of Steps 1–3 in §2.4) by the global transition

function

𝐺𝑇 : 𝑄 ×𝐴 → 𝑄 ×𝐴 ,

where we set 𝐺𝑇 (𝑞halt,𝑤) B (𝑞
halt

,𝑤) for any tape𝑤 .

Let 𝑇 = (𝑄, Σ, 𝛿, 𝑞0, 𝑞halt) be a Turing machine. We begin by

encoding each configuration of 𝑇 as a constructible point in R3.
Let 𝑟 = |𝑄 | be the cardinality of the set of states 𝑄 , then we will

represent the elements of𝑄 by [𝑟 ] = {1, . . . , 𝑟 } ∈ N. Since we know
tapes satisfy eq. (5), we can encode any such 𝑤 = (𝑤𝑖 )𝑖∈Z as the
pair of points in N2 given by

𝑦1 = 𝑤0 +𝑤110 + · · · +𝑤𝑘010
𝑘0

𝑦2 = 𝑤−1 +𝑤−210 + · · · +𝑤−𝑘010
𝑘0−1 .

Taken together, we have an encoding of every (𝑞,𝑤) ∈ 𝑄 × 𝐴

as (𝑦1, 𝑦2, 𝑞) ∈ N3 ⊂ R3. Define Z : 𝑄 × 𝐴 → N3 as the map

assigning each configuration in 𝑄 × 𝐴 its associated point in N3

that we constructed. The global transition function 𝐺𝑇 can now be

reinterpreted as a map from Z (𝑄 ×𝐴) ⊂ N3 to itself. By extending

said map to be the identity map on points in N3 \ Z (𝑄 × 𝐴), we
arrive at a map on the whole of N3 to itself—for simplicity, we will

denote this extended map by 𝐺Z (𝑇 ) : N
3 → N3.

Using this encoding, the next step in the construction is to sim-

ulate 𝑇 using a polynomial vector field 𝑃 on R𝑛+3. To this end, a

modification of a construction by [11] is given. Specifically, [11]

construct a non-autonomous polynomial vector field that simulates

𝑇 , and this vector field is made autonomous via a standard trick of

introducing a proxy variable in place of the explicit dependence

on time. Let 𝑃 on R𝑛+3 be the autonomous polynomial vector field

derived via this modification. The construction by [11] also shows

how, given an input tape 𝑠 ∈ 𝐴, a point 𝑝𝑠 = (Z (𝑞0, 𝑠), 𝑦0) ∈ R𝑛+3
is constructed so that the trajectory of 𝑃 starting from 𝑝𝑠 will sim-

ulate 𝐺Z (𝑇 ) . The term Z (𝑞0, 𝑠) ∈ R3 is defined above and the term

𝑦0 ∈ R𝑛 is from a composition of polynomials depending only

on 𝑇 and 𝑠—neither of these points are affected by the modifica-

tion and can be taken as is. The group property of flows ensures

that any trajectory passing through 𝑝𝑠 is equivalent to a trajec-

tory ending at and then “restarting” from 𝑝𝑠 , so we can assume

𝑝𝑠 is an initial condition in Definition 2 without loss of general-

ity. Suppose we have a finite string 𝑤∗ = (𝑤∗
−𝑘 , . . . ,𝑤

∗
𝑘
) of sym-

bols in Σ, we will now construct the set 𝑈𝑤∗ in Definition 2.
2
Let

𝜔 = {𝑤 ∈ ΣZ |𝑤𝑖 = 𝑤∗
𝑖
∀𝑖 ∈ [−𝑘, 𝑘]}, 𝜖 > 0 be a small positive con-

stant, and R3
��
Z (𝑞halt,𝜔) be the set of points in R

3
corresponding to

configurations of 𝑇 of the form (𝑞
halt

,𝑤 ∈ 𝜔). Defining𝑈 𝜖
𝑤∗ ⊂ R3

as an 𝜖-neighborhood of R3
��
Z (𝑞halt,𝜔) gives the open set

𝑈𝑤∗ B 𝑈 𝜖
𝑤∗ × R𝑛 .

Showing 𝑃 satisfies Definition 2 with this choice of 𝑝𝑠 and 𝑈𝑤∗

follows from a relatively straightforward argument using properties

inherited from the construction by [11]. Finally, the polynomial

vector field 𝑋 in Proposition 1 is constructed by using the pullback

of inverse stereographic projection on a suitable reparametrization

of 𝑃 and taking 𝑇 to be a universal Turing machine. The pullback

of inverse stereographic projection ensures that 𝑋 is a polynomial

vector field tangent to the sphere and the reparametrization ensures

the vector field is bounded.
3
The fact that 𝑋 is well-defined on

S17 and has degree 58 follows from an analysis by [12] of the

construction by [11].

B PROOF OF COROLLARY 1
Corollary 1. For some𝑚 ≤

(
76

18

)
+ 1, there exists a matrix game

𝐴 ∈ R𝑚×𝑚 such that replicator dynamics on 𝐴 is Turing complete.

Proof. Let 𝑋 , 𝑋 , and 𝑌 be the vector fields defined in the proof

of Theorem 1. Similarly, let 𝐴 ∈ R𝑚×𝑚
be the matrix game we

arrived at by applying Proposition 2 to 𝑌 . From Proposition 2 we

know that𝑚 − 1 is at least the number of unique monomials in the

generalized polynomials in 𝑌 , so the proof follows by bounding the

number of unique monomials from above.

From Proposition 1 we know that 𝑋 is a polynomial vector field

of degree 58. As mentioned in Appendix A, the specific degree of

2
For brevity we will brush over the construction of this set on the component corre-

sponding to the proxy variable for time. Technically this component should be a union

of small open intervals for each 𝑖 ∈ N, which intuitively associates a rough length of

time in the dynamical system with a step in the Turing machine. However, formally

introducing this portion of the construction is not particularly insightful since the

relevance to the proof is rather tautological due to the proxy variable monotonically

increasing at the same constant rate as time.

3
Technically𝑋 = 𝑋

���
S𝑛+4

, where𝑋 is a polynomial vector field onR𝑛+5 and tangent to

S𝑛+4 . Similarly, as discussed in the proof of Theorem 1.3 by [5], the reparametrization

ensures the vector field is global because it is bounded.

https://doi.org/10.1103/PhysRevLett.64.2354
https://doi.org/10.1103/PhysRevLett.64.2354
https://doi.org/10.1016/0022-5193(83)90445-9
https://doi.org/10.1561/2200000018
https://doi.org/10.1561/2200000018
https://doi.org/10.1145/130385.130432
https://doi.org/10.1145/130385.130432
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1007/s00222-021-01089-3


58 was derived from follow-up work by [12] analyzing the con-

struction by [11]. However, although the vector field is technically

constructible, actually constructing 𝑋 to simulate a universal Tur-

ing machine is non-trivial in practice. With this complication in

mind, a crude upper bound on the number of unique monomials

in 𝑋 is simply the number of unique monomials of degree 58 in

18 variables. Therefore, a standard combinatorial argument tells

us that the number of unique monomials in the polynomials of 𝑋

is at most

(
58+18
18

)
=

(
76

18

)
. The construction of 𝑋 cannot increase

the number of monomials counted by this combinatorial argument

since it can only introduce unique monomials via the term 1− ∥x∥2
2
,

which is already counted in the bound

(
76

18

)
. Similarly, we construct

𝑌 by translating 𝑋 by a constant and therefore can only introduce

the constant monomial (i.e. terms with all variables having zero

exponents) which is already being counted. Thus we have found

that𝑚 − 1 ≤
(
76

18

)
, which implies𝑚 ≤

(
76

18

)
+ 1. □

C DERIVING MWU AS DISCRETE-ANALOGUE
OF REPLICATOR DYNAMICS

Let 𝛿 : R𝑛 → Δ𝑛 be the logit map defined as

𝛿𝑖 (y) =
exp(y𝑖 )∑

𝑗 ∈[𝑛] exp(y𝑗 )
, y ∈ R𝑛, 𝑖 ∈ [𝑛] .

[14] showed that the flow generated by replicator dynamics can be

written as

x𝑖 (𝑡) = 𝛿𝑖 (y(𝑡)) =
exp(y𝑖 (𝑡))∑

𝑗 ∈[𝑛] exp(y𝑗 (𝑡))
, y(0) ∈ R𝑛, 𝑖 ∈ [𝑛], 𝑡 ∈ R ,

(7)

where x and y are the mixed strategy and cumulative payoff vectors

given in eq. (2). Rewriting eq. (7) in the form of eq. (2) gives an

explicit representation of replicator dynamics’ trajectories as a

functions of cumulative payoffs,

y𝑖 (𝑡) = y𝑖 (0) +
∫ 𝑡

0

∑︁
𝑗 ∈[𝑛]

𝐴𝑖, 𝑗𝛿 𝑗 (y(𝑠))𝑑𝑠

x𝑖 (𝑡) = 𝛿𝑖 (y(𝑡)) .
(8)

By applying a standard Euler discretization with step size [ to the

payoffs y in eq. (8), we find

y𝑖 (𝑡 + [) ≈ y𝑖 (𝑡) + [ ¤y𝑖 (𝑡) = y𝑖 (𝑡) + [
∑︁
𝑗 ∈[𝑛]

𝐴𝑖, 𝑗𝛿 𝑗 (y(𝑡)) .

Finally, iteratively applying this Euler discretization of the cumula-

tive payoffs and using the logit map will give us the well-known

MWU algorithm. Formally, denoting the discretization’s 𝑡 th iterate

by y𝑡 , we write MWU as

y𝑡+1𝑖 = y𝑡𝑖 + [
∑︁
𝑗 ∈[𝑛]

𝐴𝑖, 𝑗𝛿 𝑗 (y𝑡 ) = y0𝑖 + [
𝑡∑︁

𝜏=1

𝐴𝑖, 𝑗𝛿 𝑗 (y𝑡 )

x𝑡+1𝑖 = 𝛿𝑖 (y𝑡+1) = 𝛿𝑖 (y0 + [
𝑡∑︁

𝜏=1

𝐴𝑖, 𝑗𝛿 𝑗 (y𝑡 )) .

(9)

As the form of MWU in eq. (9) was found via an Euler discretiza-

tion, a standard result in numerical analysis tells us that the error

accrued by a single iteration of MWU starting from the same initial

conditions as replicator dynamics will satisfy

∥y1𝑖 − y𝑖 ([)∥ ≤ O([2) .

However, since we are simulating Turing machines in the space of

mixed strategies, we need error bounds on the probability simplex

itself and not in the space of cumulative payoffs.

D PROOF OF LEMMA 1
Lemma 1. Let Φ be the flow generated by replicator dynamics and

x𝑡 be the mixed strategy found on the 𝑡 th iterate of MWU. The error
accrued by a single iteration of MWU with step-size [ > 0 is

∥x𝑡+1 − Φ([, x𝑡 )∥∞ ≤ 1 − 𝑒−2[ .

Proof. Suppose without loss of generality that for any action 𝑖

the expected payoff is bounded to [−1, 1], i.e. ∑𝑗 ∈[𝑛] 𝐴𝑖, 𝑗𝛿 𝑗 (y) ∈
[−1, 1].4 Let𝑊 (𝑡) = ∑

𝑗 ∈[𝑛] exp(y𝑗 (𝑡)) and𝑊𝑖 (𝑡) = exp(y𝑖 (𝑡)) =
𝑥𝑖 (𝑡)𝑊 (𝑡). Then continuous time RD becomes

x𝑖 (𝑡) =
𝑊𝑖 (𝑡)
𝑊 (𝑡) .

Similarly, define �̂� 𝑡 =
∑

𝑗 ∈[𝑛] exp(y𝑡−1𝑗
) and �̂� 𝑡

𝑖
= exp(y𝑡−1

𝑖
) =

𝑥𝑡
𝑖
�̂� 𝑡

. Then MWU becomes

x𝑡𝑖 =
�̂� 𝑡

𝑖

�̂� 𝑡
.

We are interested in bounding the local error of MWU as a

discretization of RD, i.e. the error introduced by a single step of

MWU relative to RD after a single step starting from the same point.

Thus without loss of generality we will focus on the first iterate of

MWU and RD after 𝑡 = [ amount of time. Since expected payoffs

are bounded to [−1, 1] we deduce from the analysis in Appendix C

that

�̂� 1

𝑖 exp(−[) ≤𝑊𝑖 ([) ≤ �̂� 1

𝑖 exp([) ,
which implies

�̂� 1
exp(−[) ≤𝑊 ([) ≤ �̂� 1

exp([) .

Hence

x1𝑖 exp(−2[) ≤ x𝑖 ([) ≤ x1𝑖 exp(2[)
whenever RD and MWU start from the same initial condition.

We have thus found that the local error introduced by a single

time step is

∥x1 − x([)∥ ≤ ∥x1 − x1 exp(−2[)∥ ≤ |1 − exp(−2[) | .

Observing that [ > 0 gives the result. □

E PROOF OF LEMMA 2
Lemma 2. Let Φ be the flow generated by replicator dynamics and

x𝑡 be the mixed strategy found on the 𝑡 th iterate of MWU. The error
accrued after 𝑡 + 1 iterations of MWU with step-size [ > 0 is

∥x𝑡+1 − Φ(𝑡[, x0)∥ ≤ O
(
𝑒𝑡
)
.

4
The assumption that expected payoffs are bounded to [−1, 1] does not affect learning
dynamics since we can always normalize the payoff matrix by its largest element.



Proof. The flow Φ is 𝐶1
and Δ𝑛 is compact, so we know that

Φ is Lipschitz continuous. Let 𝐿 denote the Lipschitz constant for

Φ with respect to ∥ · ∥∞. It follows that for every initial condition

x0 ∈ Δ𝑛 ,

𝐸𝑡+1 = ∥x𝑡+1 − Φ((𝑡 + 1)[, x0)∥
= ∥x𝑡+1 − Φ([,Φ(𝑡[, x0))∥
= ∥x𝑡+1 − Φ([, x𝑡 ) + Φ([, x𝑡 ) − Φ([,Φ(𝑡[, x0))∥
≤ ∥x𝑡+1 − Φ([, x𝑡 )∥ + ∥Φ([, x𝑡 ) − Φ([,Φ(𝑡[, x0))∥

≤ |1 − exp(−2[) | + 𝑒[𝐿 ∥x𝑡 − Φ(𝑡[, x0)∥

= |1 − exp(−2[) | + 𝑒[𝐿𝐸𝑡

To conclude our proof, we require a special case of the discrete

Gronwall lemma. This powerful tool for numerical error analysis

tells us that if, for some constants 𝑎 and 𝑏 with 𝑎 > 0, a positive

sequence {𝑧𝜏 }𝑡
𝜏=0

satisfies

𝑧𝜏+1 ≤ 𝑏 + 𝑎𝑧𝜏 , ∀𝜏 ∈ [𝑡 − 1] ,

then for 𝑎 ≠ 1

𝑧𝜏 ≤ 𝑎𝜏𝑧0 + 𝑏 𝑎
𝜏 − 1

𝑎 − 1

, ∀𝜏 ∈ [𝑡] ,

and for 𝑎 = 1

𝑧𝜏 ≤ 𝑧0 + 𝜏𝑏 , ∀𝜏 ∈ [𝑡] .
Recall that both [ > 0 and 𝐿 > 0 by definition. Let 𝑧𝑡 = 𝐸𝑡 ,

𝑎 = 𝑒[𝐿 , and 𝑏 = |1 − exp(−2[) |. Applying the discrete Gronwall

lemma yields

𝐸𝑡+1 ≤ 𝑒 (𝑡+1)[𝐿𝐸0 + |1 − exp(−2[) | 𝑒
(𝑡+1)[𝐿 − 1

𝑒[𝐿 − 1

.

Clearly 𝐸0 = 0 since MWU and replicator dynamics have the same

initial conditions. Thus we have shown

𝐸𝑡+1 ≤ |1 − exp(−2[) | 𝑒
(𝑡+1)[𝐿 − 1

𝑒[𝐿 − 1

,

which concludes the proof. □
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