
Convergence of Iterative Multi-Issue Voting under Uncertainty
Joshua Kavner

Rensselaer Polytechnic Institute

Troy, New York, United States of America

kavnej@rpi.edu

Reshef Meir

Technion Israel Institute of Technology

Haifa, Israel

reshefm@ie.technion.ac.il

Francesca Rossi

IBM T.J. Watson Research Center

Yorktown Heights, New York, United States of America

Francesca.Rossi2@ibm.com

Lirong Xia

Rensselaer Polytechnic Institute

Troy, New York, United States of America

xial@cs.rpi.edu

Abstract
We study the effect of strategic behavior in iterative voting for

multiple issues under uncertainty. We synthesize binary multi-issue

voting with Meir et al.’s local dominance theory for iterative voting

and determine its convergence properties. While restricted local

dominance improvement dynamics may fail to converge, with or

without uncertainty, we how that cycles are an borderline-case

that require exact conditions. We prove that if voters are restricted

to O-legal preferences, or are part of a very large (nonatomic)

population, then the game is guaranteed to converge for any level

of uncertainty.

Keywords
Computational Social Choice; Equilibrium Computation; Uncer-

tainty in AI

1 Introduction
Consider a wedding planner that is determining a wedding’s main

meal and wants to incorporate the party’s invitees’ preferences

into their decision. Suppose they need to decide on three issues

that have two options each: the main course (chicken or beef), the

paired wine (red or white), and the dessert cake’s flavor (chocolate

or vanilla). How should the wedding planner incorporate the large

party’s preferences? This question lies in the realm of voting in

multi-issue domains [17] which focuses on studying social choice
rules that efficiently aggregate agents’ preferences when multiple

group decisions have to be coordinated. On the one hand, the plan-

ner could ask for a lot of information from each attendee (agent)

and request their full preference order over the 2
𝑝
possibilities (al-

ternatives), for 𝑝 binary issues. This, however, has an exponential

computational cost and a high cognitive cost for each agent, as

it requires them to report their full preference order over many

alternatives.

On the other hand, the planner could only ask for each agent’s

top ranked alternative and decide each of the 𝑝 issues independently

of one another. Although this option is computationally and cog-

nitively simple, it may result in a multiple election paradox, where
agents can select each of their least favored alternatives by voting

for each issue independently. For example, consider our decision

problem with three binary issues, and suppose three agents prefer
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(1, 1, 0), (1, 0, 1), and (0, 1, 1) first respectively and all prefer (1, 1, 1)
last [15]. By using the majority rule on each issue independently,

the agents collectively vote for (1, 1, 1), their least favored outcome.

A middle-of-the-road approach is for the planner to elicit agents’

most preferred alternative and, given information about every other

agents’ vote, allow agents to deliberate and exchange their votes

during a fixed time period. In the single-issue setting, with multiple

options in the issue’s domain, this type of iterative voting was first

explored in depth by Meir et al. [22]. By the celebrated Gibbard-

Satterthwaite theorem, most social choice rules are susceptible

to strategic manipulation [11, 27]. This means that an agent may

have be incentivized to vote against their truthful preferences in

order for the social choice rule to pick a more preferred alternative

overall. Meir and colleagues studied the convergence properties of

the plurality voting rule when agents sequentially and myopically

make best response improvement steps to their votes, given all other

agents’ current votes. Meir et al. inspired a line of research that re-

searched the dynamics, equilibrium, and social welfare properties of

other social choice rules and assumptions on agents’ behavior (see

Related Work). The conclusion from previous research is mixed, as

Plurality and Veto have strong convergence properties, but almost

any other rule that was studied admits cycles.

A related line of work considered uncertainty in voting, and in

particular strict uncertainty and dominating actions [5, 21, 25].

In contrast to the simple single-issue setting, uncertainty in a

multi-issue domain plays a double role. First (as in single-issue

voting), it means that the voter is considering herself as potentially

pivotal on any issue that is sufficiently close to a tie. Second—and

this part is new—the voter may be uncertain regarding her own

preferences on a particular issue, as there depend on undecided

issues.

Our primary question is then:

Under what conditions does iterative voting for multiple issues under
uncertainty converge?

1.1 Our Contribution
On the conceptual side, we extend the Local Dominance model

to multiple referenda, where voting is on one issue at a time. The

generalized model naturally captures both types of uncertainty

discussed above.

On the technical side, we first show that iterative voting on

multiple referenda may not converge, with or without uncertainty.
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However, we show two possible restrictions of the model under

which voting is guaranteed to converge when starting from the

truth: (a) when preferences are restricted to O-legal preferences (i.e.,

there is an order on issues that restrict the possible dependencies);

(b) when dynamics is restricted by assuming that voters are more

certain about the current issue than about other issues. Furthermore,

we show a strong convergence result without any restriction, in a

nonatomic variation of the model, which can be thought of as the

limit case of a large population.

Finally, we empirically demonstrate that adding uncertainty elim-

inates almost all cycles in iterative voting. We show that the length

of an improvement sequence is correlated with an increase in the

quality of the resulting outcome over the truthful winning alterna-

tive.

1.2 Related Work
The study of iterative voting in the single-issue setting was initi-

ated by Meir et al. [22]. The authors found an initial convergence

result for plurality for best response dynamics under determinis-

tic tie-breaking and provided an upper bound for how quickly an

improvement sequence could converge. Subsequent work demon-

strated that iterative veto converges [18, 26] while any other voting

rules do not [14].

Iterative voting in the multiple-issue setting was studied by Bow-

man et al. [4], Grandi et al. [13]. They utilize computer simulations

and human experiments to show that iterative voting can eliminate

multiple election paradoxes and raise agents’ social welfare for the

chosen outcome. However, the former work’s simulations presume

agents follow a learning procedure rather than best response or

local dominant dynamics.

Our work primarily extends the local dominance model in the

single-issue social choice setting of Meir [20], Meir et al. [21] to the

multi-issue case. These works introduced agents’ local dominance

improvement heuristic as a risk-averse behavior using a reasonable

amount of information that agents have access to. Meir et al. [21]

also found broad conditions for voting equilibrium to exist accord-

ing to the plurality social choice rule. Meir [20] study a nonatomic

version of the local dominance model, where agents have negligible

impact on the voting outcome and multiple agents update their

votes simultaneously. They showed that a nonatomic model greatly

simplifies the dynamics and has stronger convergence properties.

Strategic behavior in single-issue voting when agents have lim-

ited information about other agents’ votes has also been studied by

Conitzer et al. [6], Endriss et al. [9], Reijngoud and Endriss [25]. All

three works assume that agents have access to limited amount of

information about a vote profile. Conitzer et al. [6] assume agents

have access to a subset of the preference relations exhibited by the

vote profile, whereas Endriss et al. [9], Reijngoud and Endriss [25]

both assume agents have access to a summary of the profile, such as

the winner or score of each alternative. Rather than consider which

score vectors are possible, as in the local dominance framework,

agents reason about which vote profiles 𝐸 could elicit the same

information they receive. Agents can then change their vote if the

outcome improves for some profile in 𝐸, and cannot worsen for all

profiles in 𝐸. All three works study different voting rules’ suscepti-

bility to manipulation for various types of information functions,

while the latter two works analyze convergence properties when

manipulations are taken iteratively.

Strategic behavior for binary multi-issue voting was studied by

Lang and Xia [16], Xia et al. [28]; see Lang and Xia [17] for a survey.

Different models for Gibbard-Satterthwaite games analyzing the

game-theoretic properties of agent strategic behavior in social

choice was studied by [1, 7, 8, 12].

2 Preliminaries
Basic Model Suppose we have 𝑛 agents making a decision on 𝑝

issues P = {1, 2, . . . , 𝑝}, over the finite domain D = ×𝑝
𝑖=1

𝐷𝑖
. Each

agent 𝑗 ≤ 𝑛 is endowed with a preference ranking 𝑅 𝑗 ∈ L(D), the
set of strict linear orders over the (×𝑝

𝑖=1
|𝐷𝑖 |)! alternatives. We call

the collection of agents’ preferences 𝑃 = (𝑅1, . . . , 𝑅𝑛) a preference
profile and take top(𝑃) = (𝑡𝑜𝑝 (𝑅1), . . . , 𝑡𝑜𝑝 (𝑅𝑛)) ∈ D𝑛

to denote

each agent’s truthful most preferred outcome.

Agents submit their preferences as votes for single alternatives
into the vote profile 𝑎 = (𝑎1, . . . , 𝑎𝑛), where 𝑎 𝑗 = (𝑎1

𝑗
, . . . , 𝑎

𝑝

𝑗
) ∈ D.

A resolute voting rule 𝑓 : D𝑛 → D maps vote profiles to a single

multi-issue outcome. We will refer to 𝑎 ∈ D and 𝑎𝑖 ∈ 𝐷𝑖
, for 𝑖 ∈ P,

as an alternative when referring to an agent’s vote or preference,

whereas we will maintain 𝑎 and 𝑎𝑖 as an outcome when output by

𝑓 and 𝑓 𝑖 .

Simultaneous Binary Voting Voting on multiple issues may either

happen sequentially, in which the outcome of each issue is revealed

to agents prior to voting on the next issue, or simultaneously, in
which the outcome per issue is revealed at the same time [15]. In

this work, we take the latter approach and adopt the multi-issue

notation of Xia et al. [28].

We take all issues as binary, so that the domain 𝐷𝑖 = {0, 1}
for all issues 𝑖 ∈ P and denotes whether each issue is rejected
or accepted, respectively. We will use the issue-by-issue majority
function 𝑓 (𝑎) = (𝑓 1 (𝑎), . . . , 𝑓 𝑝 (𝑎)) ∈ D that returns whether a

strict majority of agents approved each issue. That is, let 𝑠𝑖 (𝑎) =
|{ 𝑗 ≤ 𝑛 : 𝑎𝑖

𝑗
= 1}| be the number of agents that approve (i.e. vote

𝑎𝑖
𝑗
= 1) of issue 𝑖 in the vote profile 𝑎. Then 𝑓 𝑖 (𝑎) = 1{𝑠𝑖 (𝑎) >

𝑛
2
}. We call 𝑠 (𝑎) = (𝑠1 (𝑎), . . . , 𝑠𝑝 (𝑎)) the induced score vector of 𝑎

and
𝑛
2
the decision threshold, since this value partitions scores of

issues that are rejected or approved. For the duration of this work,

we will therefore assume 𝑛 is odd to disallow ties. Since the vote

profile 𝑎 induces the score vector 𝑠 , we will often use 𝑠 , 𝑠 (𝑎), and 𝑎
interchangeably for ease of notation.

For a given vote profile 𝑎, let 𝑎−𝑗 = (𝑎1−𝑗 , . . . , 𝑎
𝑝

−𝑗 ) denote the
profile without an agent 𝑗 ’s vote, where 𝑎𝑖 = (𝑎𝑖−𝑗 , 𝑎

𝑖
𝑗
). Then we

denote by 𝑠−𝑗 = (𝑠1−𝑗 , . . . , 𝑠
𝑝

−𝑗 ) the corresponding adjusted score
vector, where 𝑠𝑖−𝑗 = 𝑠𝑖 −𝑎𝑖

𝑗
is taken by component-wise subtraction.

For an alternative vote 𝑎 𝑗 , we will use 𝑠−𝑗 + 𝑎 𝑗 to denote the score

vector by replacing agent 𝑗 ’s vote 𝑎 𝑗 by 𝑎 𝑗 .

Preference Domain Restrictions Let O = {𝑜1, . . . , 𝑜𝑝 } be some

order over the 𝑝 issues. A preference ranking 𝑅 𝑗 is called O-legal
if 𝑗 ’s preference for each issue 𝑜𝑖 ∈ {1, . . . , 𝑝} is conditionally

independent of {𝑜𝑖+1, . . . , 𝑜𝑝 } given {𝑜1, . . . , 𝑜𝑖−1}, for all 𝑖 ∈ P
[28]. That is, an agent’s preference for 𝑜𝑖 may only depend on the

outcomes of the issue prior to it on the order O.
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We call the preference profile 𝑃 O-legal if every ranking is O-
legal for the same order O. A preference ranking 𝑅 𝑗 is called sepa-
rable if it is O-legal for any order O. That is, their preference for
each issue 𝑜𝑖 does not depend on the outcomes of any other issue.

Example 1. Suppose we have 𝑛 = 3 agents and 𝑝 = 2 binary issues.
Let the agents have the preferences 𝑃 = (𝑅1, 𝑅2, 𝑅3), where:

𝑅1 : (1, 0) ≻1 (1, 1) ≻1 (0, 1) ≻1 (0, 0)
𝑅2 : (1, 1) ≻2 (0, 0) ≻2 (0, 1) ≻2 (1, 0)
𝑅3 : (0, 0) ≻3 (0, 1) ≻3 (1, 0) ≻3 (1, 1)

The agents’ truthful vote profile is then 𝑎 = top(𝑃) = ((1, 0), (1, 1),
(0, 0)). The score vector for this vote is 𝑠 (𝑎) = (2, 1), where we’ve
added the number of approvals for each issue independently. The
outcome for this vote is then 𝑓 (𝑎) = (1, 0), where we’ve used the
decision rule 1{𝑠𝑖 (𝑎) > 3

2
} for each issue 𝑖 .

Notice that agent 1’s ranking 𝑅1 is O-legal for the order O = {1, 2}.
That is, they prefer 1 ≻ 0 on the first issue, independent of their
preference for the second. Still, the agent’s preference for the second
issue depends on the outcome for the first issue. Agent 3’s ranking 𝑅3 is
separable, as they always prefer 0 ≻ 1 on the each issue, independent
of their preference for the other issue. Agent 2’s ranking 𝑅2 is neither
separable nor O-legal.

Furthermore, notice that agent 2 can improve the outcome for
themselves by voting for 𝑎2 = (0, 1) instead of 𝑎2 = (1, 1). The
adjusted score vector without their vote is 𝑠−2 = (1, 0), so 𝑠−2 + 𝑎2 =

(1, 1). This gets mapped by 𝑓 to (0, 0) ≻2 (1, 0) = 𝑓 (𝑎).

Improvement Dynamics We make use of the iterative voting

model that was introduced by Meir et al. [22] and refined for vot-

ing under uncertainty by Meir et al. [21]. Given agents’ truthful

preferences 𝑃 , we consider an iterative process of vote profiles

𝑎(𝑡) = (𝑎1 (𝑡), . . . , 𝑎𝑛 (𝑡)) that describe agents’ reported votes over

time 𝑡 ≥ 0. For each round 𝑡 , a scheduler 𝜙 chooses an agent 𝑗

to make an improvement step over their prior vote 𝑎 𝑗 (𝑡) by the

application of a specified response function 𝑔 𝑗 : D𝑛 → D. All other

votes besides 𝑗 are presumed to be unchanged.

A scheduler is broadly defined as a mapping from sequences of

vote profiles {𝑎(𝑡)}𝑡 ≥0 to an agent with an improvement step in

the latest vote profile [2]. An improvement step must be selected if

one exists from a particular vote profile, and a vote profile where no

improvement step exists is called an equilibrium. If an improvement

sequence lands on an equilibrium, we say it converges.

Definition 1. A vote profile 𝑎 is an equilibrium if 𝑔 𝑗 (𝑎) = 𝑎 𝑗 for
all agents 𝑗 .

The literature on game dynamics considers different types of

response functions, schedulers and other assumptions, such as

the initial profile (see e.g., [3, 10, 19]). This means that there are

multiple levels in which a voting rule may guarantee convergence

[23]. In this work, we consider two types of response functions:

best responses, following Meir et al. [22] in the setting without

uncertainty, and local dominance, adapted from Meir et al. [21] and

Meir [20] in the setting with uncertainty. Both response functions

depend on agents’ implicit preferences.

We first define the best response (BR) function as follows.

Definition 2 (best response). Fix the vote profile𝑎. Then𝑔 𝑗 (𝑎) :=
𝑎 𝑗 such that agent 𝑗 could not have achieved a more preferred outcome
𝑓 (𝑎−𝑗 , 𝑎 𝑗 ) than voting for 𝑎 𝑗 from 𝑎.

Second, we consider response functions based on the notions of

strict uncertainty and local dominance [6, 21]. Let 𝑆 ⊆ ×𝑝
𝑖=1
N |𝐷𝑖 |

be

a set of score vectors. Informally, 𝑆 describes which score vectors

an agent believes to be possible given their uncertainty of the real

score vector 𝑠 . A local dominance step is then an improvement step

in an agent’s vote that is weakly better off than their original for

every possible vector in 𝑆 , and strictly better off for some vector in

𝑆 . This is formally defined as follows.

Definition 3. We say that the vote 𝑎 𝑗 𝑆-beats 𝑎 𝑗 if there is at
least one score vector 𝑣 ∈ 𝑆 such that 𝑓 (𝑣 + 𝑎 𝑗 ) ≻𝑗 𝑓 (𝑣 + 𝑎 𝑗 ).

This corresponds to agent 𝑗 believing that for some score 𝑣 ∈ 𝑆 ,

they can achieve a strictly better outcome by voting for 𝑎 𝑗 than 𝑎 𝑗
[6, 21].

Definition 4. We say that the vote 𝑎 𝑗 𝑆-dominates 𝑎 𝑗 if both
(I) 𝑎 𝑗 𝑆-beats 𝑎 𝑗 ; and (II) 𝑎 𝑗 does not 𝑆-beat 𝑎 𝑗 .

That is, it may be the case that 𝑗 should vote for 𝑎 𝑗 rather than

𝑎 𝑗 , but it is never the case that 𝑗 should vote for 𝑎 𝑗 rather than 𝑎 𝑗 .

We then define agent 𝑗 as having a local dominance improvement
step as follows:

Definition 5 ((Restricted) local dominance improvement).

Let 𝑎 be a vote profile, and for a given agent 𝑗 , let 𝐿𝐷 𝑗 be the set of
alternatives that 𝑆-dominate 𝑎 𝑗 and are not themselves 𝑆-dominated.
Then

𝑔 𝑗 (𝑎) :=
{
𝑎 𝑗 , 𝐿𝐷 𝑗 = ∅
𝑎 𝑗 , otherwise

where voting for 𝑎 𝑗 yields 𝑗 ’s most preferred outcome among the set
{𝑓 (𝑎−𝑗 , 𝑎 𝑗 ) : 𝑎 𝑗 ∈ 𝐿𝐷 𝑗 }. We call 𝑔 𝑗 restricted to issue 𝑖 if we only
consider alternatives in 𝐿𝐷 𝑗 that differ from 𝑎 𝑗 on the 𝑖𝑡ℎ issue.

Note that 𝑆-dominance is transitive and antisymmetric, but not

complete, so agent 𝑗 may not necessarily have a local dominance

improvement step. Moreover, to fully define the model, we need

to specify the set of possible scores 𝑆 in every profile 𝑎. For exam-

ple, if 𝑆 = {𝑠 (𝑎)} and agents have no uncertainty about the score

vector, then local dominance moves coincide with best response,

and an equilibrium coincides with Nash equilibrium. Therefore, BR

dynamics is a special case of LDI dynamics without uncertainty.

3 Multi-Issue Uncertainty Model
In the original local dominance papers, which considered single-

issue voting, the uncertainty set 𝑆 was constructed via distance-
based uncertainty, i.e. by considering all score vectors which are

of certain distance from the current profile [20, 21]. We adapt this

idea to multi-issue voting and are motivated by a single agent 𝑗

making a restricted LDI step on issue 𝑖 on round 𝑡 ≥ 0 from vote

profile 𝑎 = 𝑎(𝑡).
Suppose we have some distance measure for score vectors 𝑑 :

N𝑝 × N𝑝 → R. We model agent 𝑗 ’s uncertainty about the adjusted

score vector 𝑠𝑖−𝑗 for issue 𝑖 by the following uncertainty score set:

𝑆𝑖−𝑗 (𝑠;𝛿
𝑖
𝑗 ) :=

{
𝑣𝑖 ∈ N : 𝑑 (𝑣𝑖 , 𝑠𝑖−𝑗 ) ≤ 𝛿𝑖𝑗

}
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where 𝛿𝑖
𝑗
∈ {0, 1, . . . , 𝑛−1

2
} is the uncertainty parameter. That is,

given all other agents’ votes 𝑎𝑖−𝑗 , agent 𝑗 is uncertain of what the

real score is 𝑣𝑖 ∈ 𝑆𝑖−𝑗 (𝑠 ;𝛿
𝑖
𝑗
). Thenwe take 𝑆−𝑗 (𝑠 ;𝛿𝑖𝑗 ) := ×𝑝

𝑖=1
𝑆−𝑗 (𝑠 ;𝛿𝑖𝑗 ).

We drop the parameters for ease of notation.

The local dominance model specified by Meir et al. [21] allowed

for an arbitrary distance function, such as the L1 norm or the infinity

norm. Here, we fix 𝑑 (𝑣𝑖 , 𝑠𝑖−𝑗 ) = |𝑣𝑖 − 𝑠𝑖−𝑗 | as the L1-norm for all

issues 𝑖 , agents 𝑗 , and rounds 𝑡 .

We next consider 𝑗 ’s ability to offset this uncertainty set with a

replacement vote 𝑎 𝑗 . We take

𝑆−𝑗 + 𝑎 𝑗 := {𝑣 + 𝑎 𝑗 : 𝑣 ∈ 𝑆−𝑗 }
to be the uncertainty set without 𝑗 ’s vote, offset by considering

𝑗 ’s replacement vote 𝑎 𝑗 . That is, although 𝑗 is uncertain about the

value of 𝑠−𝑗 , they know that their new vote 𝑎 𝑗 must offset every

possible 𝑣 ∈ 𝑆−𝑗 by a fixed amount.

Finally, we consider how uncertainty affects the voting rule 𝑓 .

Given the vote profile 𝑎 and a replacement vote 𝑎 𝑗 , take

𝑓 𝑖 (𝑆𝑖−𝑗 + 𝑎𝑖𝑗 ) =
{
𝑓 𝑖 (𝑣𝑖 + 𝑎𝑖𝑗 ) : 𝑣

𝑖 ∈ 𝑆𝑖−𝑗
}

to be the set of possible outcomes for issue 𝑖 for any uncertain

score 𝑣𝑖 ∈ 𝑆𝑖−𝑗 . Since 𝑗 doesn’t know which 𝑣𝑖 ∈ 𝑆𝑖−𝑗 is correct, 𝑗
considers all possible outcomes. Then

𝑓 (𝑆−𝑗 + 𝑎 𝑗 ) = ×𝑝
𝑖=1

𝑓 𝑖 (𝑆𝑖−𝑗 + 𝑎𝑖𝑗 )
is the issue-by-issue cross-product of the uncertainty outcome sets.

Example 2. Suppose there are 𝑛 = 13 agents and 𝑝 = 2 binary
issues. Let the vote profile 𝑎 be defined such that the score vector
𝑠 = (5, 4) and agent 1’s vote is 𝑎1 = (0, 1). Suppose the uncertainty
parameters for agent 1 are 𝛿1

1
= 𝛿2

1
= 1. Then we have the uncertainty

score set for 𝑎, without agent 1’s vote, is:

𝑆−1 = {4, 5, 6} × {2, 3, 4}
For the first issue, we took a bandwidth of 𝛿1

1
= 1 around the score

𝑠1−1 = 𝑠1 − 𝑎1
1
= 5 − 0 = 5. For the second issue, we likewise took a

bandwidth of 𝛿2
1
= 1 around the score 𝑠2−1 = 𝑠2 − 𝑎2

1
= 4 − 1 = 3.

Next, consider the uncertainty outcomes according to 𝑓 with the
alternative vote 𝑎1 = (1, 1). Then 𝑆−1 +𝑎1 = {5, 6, 7} × {3, 4, 5}. Since
our decision threshold for each issue is 13

2
= 6.5, this yields

𝑓 (𝑆−1 + 𝑎1) = {0, 1} × {0}
That is, although the second issue is definitely approved, the first issue
may be rejected or approved depending on the score 𝑣1 ∈ 𝑆1−1 + 𝑎1

1
.

Note that in the case of a single issue with a non-binary domain,

our uncertainty model coincides with Meir et al. [21]’s definitions.

We make the following assumptions for the duration of this

work. First, we focus on restricted LDI dynamics and will, unless

stated otherwise, discuss restricted local dominance in terms of

an agent 𝑗 making an improvement step on issue 𝑖 with respect to

their uncertainty set 𝑆−𝑗 . This captures restricted BR dynamics as

a special case when 𝛿𝑖
𝑗
= 0 ∀𝑖 ≤ 𝑛, 𝑗 ∈ P. Second, we will assume

that the uncertainty parameter for each issue is consistent across

agents and for all rounds 𝑡 , although not necessarily across issues.

We denote 𝛿𝑖 := 𝛿𝑖
1
= . . . = 𝛿𝑖𝑝 ∀𝑖 ∈ P. Finally, following Meir

et al. [21] and Meir [20] we limit our discussion to improvement

sequences beginning from the truthful profile 𝑎(0) = top(𝑃). This
assumption is consistent within the iterative voting literature, as

it is rather plausible that agents may prefer to give their truthful

votes when they have no information about others’ preferences

and no incentive to a priori vote otherwise [6, 22, 24].

3.1 Pivotality and Strategic Responses
Given the vote profile 𝑎, consider an agent 𝑗 changing their vote

𝑎 𝑗 on issue 𝑖 to the alternative 𝑎 𝑗 . Under BR dynamics, without

uncertainty, 𝑗 only changes their vote if they can improve the

outcome 𝑓 (𝑎) to one more favorable, according to their preference

ranking 𝑅 𝑗 . This happens under two necessary conditions. First,

𝑗 must be a pivotal voter on the 𝑖𝑡ℎ issue, meaning that they can

practically change the outcome. It is easy to verify this only happens

if 𝑠𝑖 = 𝑛−1
2

and 𝑎𝑖
𝑗
= 0 or 𝑠𝑖 = 𝑛+1

2
and 𝑎𝑖

𝑗
= 1. That is, the score for

𝑖 must be one vote away from crossing over the decision threshold

𝑛
2
and changing 𝑗 ’s vote will change 𝑖’s outcome. Otherwise, if 𝑠𝑖

is too far from
𝑛
2
, then 𝑗 won’t have any incentive to change their

vote as doing so unilaterally won’t change the outcome.

The second condition is that 𝑗 must have a preference over the

𝑖𝑡ℎ issue. That is, they must know whether they prefer 0 ≻ 1 or

1 ≻ 0. This is always the case in the multi-issue setting without

uncertainty. Generally, 𝑗 ’s preference for 𝑖 depends on the outcomes

of each other issue 𝑘 ≠ 𝑖 . Since 𝑗 always knows whether each issue

is rejected or accepted, they always have a preference for each 𝑖 .

LDI dynamics, with uncertainty, is similar to BR dynamics with

these two conditions, in that 𝑗 only changes their vote if they are

both pivotal and believe they may be able to improve the outcome

with respect to 𝑅 𝑗 . This is formalized as follows:

Definition 6. For a given vote profile 𝑎 with induced score vector
𝑠 , agent 𝑗 partitions the issues P into three sets: certain issues 𝐶 𝑗 (𝑠),
borderline issues 𝐵 𝑗 (𝑠), and uncertain issues𝑈 𝑗 (𝑠), as follows:

• 𝑗 perceives 𝑖 as certain if 𝑠𝑖 < 𝑛−1
2

− 𝛿𝑖
𝑗
or 𝑠𝑖 > 𝑛+1

2
+ 𝛿𝑖

𝑗

• 𝑗 perceives 𝑖 as uncertain if 𝑠𝑖 ∈ ( 𝑛−1
2

− 𝛿𝑖
𝑗
, 𝑛+1

2
+ 𝛿𝑖

𝑗
)

• 𝑗 perceives 𝑖 as borderline if 𝑠𝑖 ∈ {𝑛−1
2

− 𝛿𝑖
𝑗
, 𝑛+1

2
+ 𝛿𝑖

𝑗
}

Since (𝛿𝑖
𝑗
) is constant ∀𝑗 ≤ 𝑛, we will drop the subscript notation.

These definitions are characterized as follows (see Figure 1): Fix

a vote profile 𝑎. First, if 𝑗 perceives 𝑖 as certain, then ∀𝑎 𝑗 , 𝑎 𝑗 ∈ {0, 1}
we have all 𝑣𝑖 ∈ 𝑆−𝑗 +𝑎 𝑗 is above or below the decision threshold

𝑛
2
.

Therefore the outcome 𝑓 𝑖 (𝑆−𝑗 + 𝑎 𝑗 ) is either definitively rejected

{0} or accepted {1}. No agent can change 𝑖’s outcome, so no agent

is pivotal. This is the case for the second issue in Example 2.

Second, if 𝑗 perceives 𝑖 as uncertain, then 𝑛−1
2

and
𝑛+1
2

are both

in 𝑆𝑖−𝑗 + 𝑎𝑖
𝑗
. In this case, 𝑗 cannot tell whether the issue is rejected

or approved and 𝑓 𝑖 (𝑆𝑖−𝑗 + 𝑎𝑖
𝑗
) = {0, 1} ∀𝑎 𝑗 ∈ {0, 1}. Therefore, all

agents are pivotal for uncertain issues.

Finally, suppose 𝑗 perceives 𝑖 as borderline. Given 𝑗 ’s current vote

𝑎 𝑗 , the outcome 𝑓 𝑖 (𝑣𝑖 ) is either rejected or approved ∀𝑣𝑖 ∈ 𝑆𝑖−𝑗 +𝑎
𝑖
𝑗
,

as though the issue were certain. If 𝑗 were to improve their vote

𝑎𝑖
𝑗
for the issue, changing it to 𝑎𝑖

𝑗
= 0 if 𝑠𝑖 = 𝑛+1

2
+ 𝛿𝑖 or 𝑎𝑖

𝑗
= 1 if

𝑠𝑖 = 𝑛−1
2

−𝛿𝑖 , then the outcome would become uncertain. Note that

𝑗 must be voting such that 𝑎𝑖
𝑗
= 𝑓 𝑖 (𝑎) in this case. Otherwise the

agent will not have an incentive to change their vote. Therefore,
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only some agents are pivotal for borderline issues. This is the case

for the first issue in Example 2.

Whereas for BR dynamics, agent 𝑗 always has a preference over

issue 𝑖 , this may not be the case for LDI dynamics, as demonstrated

by the following example.

Example 3. Fix 𝑛 = 13, 𝑝 = 2, and the truthful vote profile 𝑎 such
that 𝑠 = (6, 6). Let agent 1 have ranking

𝑅1 : (1, 0) ≻1 (1, 1) ≻1 (0, 1) ≻1 (0, 0)
which is O-legal for the order O = {1, 2}. For the first issue, agent 1
always prefers 1 ≻ 0, so they will always maintain their truthful vote.
Even though agent 1 is pivotal on the second issue, the alternative
vote 𝑎1 = (1, 1) does not (𝑆−1)-beat 𝑎1 because the agent is uncertain
about the first issue.

In this example, Agent 1 does not have a restricted LDI step be-

cause their preference for the second issue depends on the outcome

of the first issue, which is uncertain. This leads to the conclusion

that in order for an agent 𝑗 to have a restricted LDI step on issue

𝑖 , all other issues 𝑘 ≠ 𝑖 must either be (1) certain or borderline, or

(2) must not affect 𝑗 ’s preference for 𝑖 . These two conditions are

formalized as necessary conditions for LDI steps as follows:

Lemma 1. Let 𝑎 be a vote profile and 𝑠 be its induced score vector.
Consider the alternative vote 𝑎 𝑗 for agent 𝑗 that differs from 𝑎 𝑗 on
issue 𝑖 . Then 𝑗 has a restricted LDI step from 𝑎 𝑗 to 𝑎 𝑗 only if the
following two conditions hold:

(1) Agent 𝑗 is pivotal on issue 𝑖 . Formally, 𝑖 ∈ 𝑈 (𝑠), or 𝑠𝑖 = 𝑛−1
2

−𝛿𝑖
and 𝑎𝑖

𝑗
= 0, or 𝑠𝑖 = 𝑛+1

2
+ 𝛿𝑖 and 𝑎𝑖

𝑗
= 1

(2) Agent 𝑗 has a preference over the outcome of issue 𝑖 . Formally,
𝑗 ’s preference for issue 𝑖 is conditionally independent of every
𝑘 ∈ 𝑈 (𝑠) given the outcomes {𝑓 ℎ (𝑎) : ℎ ∈ 𝐵(𝑠) ∪𝐶 (𝑠)}

The proof can be found in Appendix A.

4 Convergence Results
In this section, we discuss sufficient conditions for convergence

and non-convergence for restricted BR and LDI dynamics.

4.1 Non-convergence for general preferences
Unlike iterative plurality in the single-choice setting [22], we notice

in Example 5 in Appendix A that BR dynamics may fail to converge.

Likewise, when we add uncertainty into our model, we note

that uncertainty by itself is not a sufficient condition to guarantee

convergence, as demonstrated by the following example.

Example 4. Suppose there are 𝑛 = 13 agents and 𝑝 = 2 binary
issues, with 𝛿1 = 1 and 𝛿2 = 2. We define four types of agents by their
preference rankings as follows:

(Type 1) Three agents have rankings: (0, 1) ≻ (1, 1) ≻ (1, 0) ≻ (0, 0)
(Type 2) Five agents have rankings: (0, 0) ≻ (0, 1) ≻ (1, 1) ≻ (1, 0)
(Type 3) Four agents have rankings: (1, 0) ≻ (1, 1) ≻ (0, 0) ≻ (0, 1)
(Type 4) One agent has ranking: (1, 1) ≻ (1, 0) ≻ (0, 1) ≻ (0, 0)

Figure 2 (right) demonstrates a cycle induced by LDI dynamics
across 16 vote profiles. Four of these vote profiles are depicted explicitly
by a matrix whose rows represent the vote for every agent of each type.
For example, in the truthful profile, every Type 1 agent is voting for

(0, 1), while in the upper-right profile, every Type 1 agent is voting for
(1, 1). A directed edge denotes which type of agent has an improvement
step per round; all agents of that type take their improvement step (in
any order). Therefore, between every ‘1’ transition, there are two vote
profiles implicitly stated in the figure; between every ‘2’ transition,
there are four vote profiles implicitly stated.

Consider, for example, Type 1 agents from the truthful profile. By
Lemma 1, every Type 1 agent has an LDI step from (0, 1) to (1, 1)
as long as 𝑠2 = 4 = 𝑛−1

2
− 𝛿2 is borderline, and 𝑠1 ∈ [5, 8] =

[𝑛−1
2

− 𝛿, 𝑛+1
2

+ 𝛿] is borderline or uncertain. In the meantime, while
𝑠1 ∈ (5, 8), no other type of agent has an LDI step. This is because issue
1 is uncertain and each other agent’s preferences for issue 2 depends
on the outcome for issue 1. The other LDI steps follow from similar
reasoning, yielding the cycle shown in the figure. Finally, the figure
represents all possible LDI sequences from the truthful vote profile.
Neither Type 3 nor 4 agents change their votes as their rankings are
fully separable.

This example demonstrates that the uncertainty parameters af-

fect the issues independently. Since agents only change their vote

for one issue at a time, each agent only needs to know whether

other issues are uncertain or not, but not their scores specifically.

4.2 O-legal preferences
Note that in our last example, each ranking depicted was O-legal
for different orders O. That is, 𝑅1 and 𝑅3 were O-legal for the order

{2, 1}, while 𝑅2 was O-legal for the order {1, 2}. In the following

theorem, we show that by restricting agents’ preferences to O-legal

profiles, restricted LDI dynamics do converge.

Theorem 1. Suppose 𝑛 ≥ 3 odd agents have O-legal preferences
abiding by order ˜O = {𝑜1, . . . , 𝑜𝑝 }. Let there be 𝑝 ≥ 2 issues with
uncertainty parameter 𝛿 ≥ 0. Then, under restricted LDI dynamics,
every improvement sequence converges.

Proof. Suppose for contradiction there is a cycle among the

vote profiles C = {𝑎(𝑡1), . . . , 𝑎(𝑡𝑇 )} from round 𝑡1 to 𝑡𝑇 , where

𝑎(𝑡𝑇 + 1) = 𝑎(1). Let 𝑜 be the highest order issue whose score

changed in C according to
˜O. Let 𝑡∗ ∈ {𝑡1, . . . , 𝑡𝑇−1} be the first

round that some agent 𝑗 changed their vote for issue 𝑜 in the cycle.

Likewise, let 𝑡∗∗ ∈ {𝑡2, . . . , 𝑡𝑇 } be the last round that 𝑗 changed their
vote for issue 𝑜 in the cycle. Then on round 𝑡∗∗, 𝑗 ’s preference for
𝑜 , conditioned on the scores for all other issues, must be different

than that on round 𝑡∗. However, since 𝑜 is the highest order issue in

˜O whose score changed in C, the score for any issue before 𝑜 in
˜O

mustn’t have changed. Moreover, since 𝑗 ’s preferences are O-legal,

the scores for issues after 𝑜 in
˜O do not affect 𝑗 ’s preference for

𝑜 . We therefore conclude that 𝑗 ’s preference for 𝑜 did not change

between round 𝑡∗ and 𝑡∗∗, which is a contradiction. □

As a corollary, we note that the prior result holds for separable

preferences as well.

Corollary 1. Suppose 𝑛 ≥ 3 odd agents have separable prefer-
ences over 𝑝 ≥ 2 issues with uncertainty parameter 𝛿 ≥ 0. Then, under
restricted LDI dynamics, every improvement sequence converges.
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Figure 1: Uncertainty characterization of scores 𝑠𝑖 given 𝛿𝑖

Figure 2: Example of cycles under restricted LDI dynamics
without (left) and with (right) uncertainty.

4.3 Dynamic Uncertainty
Suppose an agent 𝑗 is considering its improvement step on an issue

𝑖 from some vote profile 𝑎. Like Example 4, consider a different

issue 𝑘 ≠ 𝑖 with a different uncertainty parameter 𝛿𝑖 ≠ 𝛿𝑘 such that

𝑓 𝑘 (𝑎) is certain. Suppose agent 𝑗 ’s preferences for issue 𝑖 depend
on those for 𝑘 . We know that either 𝑠𝑘 < 𝑛−1

2
−𝛿𝑘 or 𝑠𝑘 > 𝑛+1

2
+𝛿𝑘 .

If we were to increase 𝛿𝑘 sufficiently large, then 𝑓 𝑘 would no longer

be certain and agent 𝑗 may no longer have a preference over issue 𝑖 .

Thus, increasing the uncertainty parameter for other issues, other

than the one an agent is looking at, eliminates LDI steps.

On the other hand, suppose an agent 𝑗 is considering its im-

provement step on issue 𝑖 for some vote profile 𝑎, but that 𝑓 𝑖 (𝑎)
is uncertain. If we were to decrease 𝛿𝑖 sufficiently small, then 𝑓 𝑖

would gain certainty and agent 𝑗 would no longer have an incentive

to change their vote 𝑎𝑖
𝑗
. Thus, decreasing the uncertainty parameter

for the issue an agent is looking at eliminates LDI steps.

We consider an extension of LDI dynamics with dynamic uncer-
tainty, in which the issue an agent is currently deciding on has less

uncertainty than any other issue. We show in the following claim

that this eliminates cycles.

Theorem 2. Let there be 𝑛 ≥ 3 odd agents, 𝑝 ≥ 2 issues, an
uncertainty parameter 𝛿𝑐 ≥ 1 for the current issue and 𝛿𝑜 > 𝛿𝑐

for other issues. Let the scheduler 𝜙 be defined such that an agent
only considers an issue if it’s borderline with respect to 𝛿𝑐 . Then any
sequence of LDI moves is finite.

Proof. By Lemma 1, an agent 𝑗 has an LDI step on issue 𝑖 only

if, for all other issues 𝑘 that affect 𝑗 ’s preference of 𝑖 , 𝑘 is either

borderline or certain. This means that 𝑠𝑖 ∈ [𝑛−1
2

− 𝛿𝑐 , 𝑛+1
2

+ 𝛿𝑐 ]
while either 𝑠𝑘 ≤ 𝑛−1

2
−𝛿𝑜 or 𝑠𝑘 ≥ 𝑛+1

2
+𝛿𝑜 for every such 𝑘 . These

ranges do not overlap. If there is only one such 𝑖 for a truthful vote

profile 𝑎, then agent 𝑗 may update their vote for that issue. This

issue can only change a finite number of times and the issue’s score

will stay in the [𝑛−1
2

− 𝛿𝑐 , 𝑛+1
2

+ 𝛿𝑐 ] region.
However, consider the case where there are two issues 𝑖1 and

𝑖2 whose scores are in [𝑛−1
2

− 𝛿𝑐 , 𝑛+1
2

+ 𝛿𝑐 ], according to truthful

vote profile 𝑎, and suppose 𝑗 is looking to change issue 𝑖1. Then

𝑖2 is an other issue with respect to 𝑗 and is considered uncertain.

If 𝑗 ’s preference for 𝑖1 depends on 𝑖2, conditioned on the tertiary

outcomes, then 𝑗 does not have a preference for 𝑖1 and does not

have an LDI step.

Similar reasoning holds for more than two issues whose scores

are in [𝑛−1
2

−𝛿𝑐 , 𝑛+1
2

+𝛿𝑐 ]. If these issues are no dependent on each

other, then agents can update these scores like the single-issue case

only a finite number of times. □

5 Non-atomic Model
We show that cycles are an exception rather than the norm, and their

existence hinges on the presence of “borderline profiles" – states

in which some voters perceive an issue as certain while others do

not due to their own vote. Since borderline profiles become more

rare as the number of voters increase, we can think of them as an

artifact of the model, rather than an actual barrier to convergence.

We therefore turn to study a nonatomic model of voting from the

literature (which can be thought of as the limit case of a large

population), showing a very general convergence result.

5.1 Model Definition
We follow the basic definitions from [20], using our existing nota-

tion where possible.

Basic notations We do not have a finite set of voters. Rather, a

preference profile 𝑄 ∈ Δ(L(𝐷)) is a distribution over preferences,

specifying the fraction of voters 𝑄 (𝑅) with each preference order

𝑅 ∈ L(𝐷). Since a single voter has negligible influence, we only
consider moves by subsets of voters whose size is a multiple of 𝜖

(for some arbitrarily small 𝜖). All voters in each set have the same

preference and move simultaneously (although in an uncoordinated

manner; see Appendix IV of [20]). We denote by 𝐽 the collection

of these 1/𝜖 sets. Since all voters in set 𝑗 ∈ 𝐽 are indistinguishable

we refer to “voter 𝑗” which is an arbitrary voter in the set 𝑗 . Also

𝑅 𝑗 ∈ L(𝐷) is the preference of an arbitrary voter in the set, and 𝑎 𝑗
is the vote of an arbitrary voter in the set in profile 𝑎.

Winner determination For a given vote profile 𝑎 we define

the score vector 𝑠 induced by the vote profile. In particular 𝑠𝑖 (𝑎) :=
|{ 𝑗 : 𝑎𝑖

𝑗
= 1}|𝜖 ∈ [0, 1]. Winner determination is exactly as in the
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atomic model (we assume |𝐽 | is odd so there are no ties). S = R𝑏+
denotes the set of all possible score vectors.

Distance-based uncertainty Following [20, 21] we assume

voters derive their beliefs using a distance-based strict uncertainty

model. That is, for we suppose agent have a fixed uncertainty 𝛿𝑖 ∈
[0, 𝑛

2
] over each issue 𝑖 . Then let 𝑆 (𝑠, 𝛿) ⊆ S be the uncertainty set

of score vectors that are an distance at most 𝛿 from 𝑠 . Formally,

𝑆 (𝑠, 𝛿) = {𝑆1 (𝑠, 𝛿1), . . . , 𝑆𝑝 (𝑠, 𝛿𝑝 )} where:
𝑆𝑖 (𝑠, 𝛿𝑖 ) = {𝑣 : |𝑣 − 𝑠𝑖 | ≤ 𝛿𝑖 }.

Note that in sharp contrast to the atomic model, the uncertainty

set
˜𝑆𝑖 does not depend on the playing voter(s), as all voters agree

on the possible states.
1

Given a vote profile 𝑎 and associated score vector 𝑠 = 𝑠 (𝑎), we
partition the issues P into two sets: uncertain issues𝑈 (𝑠) := {𝑖 ∈
P : 𝑠𝑖 ∈ ( 𝑛−1

2
− 𝛿𝑖 , 𝑛+1

2
+ 𝛿𝑖 )} and certain issues 𝐶 (𝑠) := {𝑖 ∈ P :

𝑠𝑖 < 𝑛−1
2

− 𝛿𝑖 or 𝑠𝑖 > 𝑛+1
2

+ 𝛿𝑖 }.
Here we have another difference from the atomic model that

simplifies matters, namely that there are no borderline profiles.

Uncertain issues have their uncertainty sets intersecting with the

decision threshold
𝑛
2
, so agents cannot tell whether their outcome is

rejected or approved. Certain issues, rather, have their uncertainty

sets distinct from the decision threshold, so agents can determine

their outcome.

Local dominance An agent of type 𝑗 ∈ 𝐽 has a restricted local

dominance improvement step from vote 𝑎 𝑗 to 𝑎 𝑗 on issue 𝑖 if 𝑎 𝑗
𝑆-dominates 𝑎 𝑗 (see Definition 5).

The response function 𝑔 𝑗 is also as in the atomic model, except

that its domain (all possible profiles) is now D | 𝐽 |
rather than D𝑛

.

The definition of equilibrium does not change.

5.2 Convergence Result
This first lemma characterizes local dominance steps.

Lemma 2. Suppose an agent 𝑗 makes a LDI step from 𝑎 𝑗 to 𝑎 𝑗
from the vote profile 𝑎. Then (1) the votes 𝑎 𝑗 and 𝑎 𝑗 only differ by
a single issue 𝑖 ; (2) issue 𝑖 ∈ 𝑈 (𝑎); (3) agent 𝑗 has a preference over
the 𝑖𝑡ℎ issue, meaning that 𝑗 ’s preference for issue 𝑖 is conditionally
independent of the scores of uncertain issues 𝑠𝑘 for 𝑘 ∈ 𝑈 (𝑎) given
the known outcomes of certain issues {𝑓 𝑘 (𝑠) : 𝑘 ∈ 𝐶 (𝑎)}.

Proof. Part 1 is by definition of a restricted LDI step. For Part 2,

agent 𝑗 can only make an improvement on issue 𝑖 if it is uncertain.

Otherwise 𝑗 cannot change the outcome of the issue if its score is

too far from the decision threshold.

Part 3 also follows from the definition of restricted local domi-

nance. If agent 𝑗 ’s preference for issue 𝑖 depends on some uncertain

issue 𝑘 ∈ 𝑈 (𝑎), given the certain issues’ outcomes, and 𝑗 does not

know the outcome for that issue, then 𝑗 cannot tell whether they

prefer to approve or reject 𝑖 . □

Our next result states that voters always converge in the non-

atomic model.

Theorem 3. Any sequence of LDI steps converges from any initial
vote profile.
1
The same distinction occurs between the atomic and nonatomic model in Plural-

ity [20], and simplifies convergence proofs in that domain as well.

Proof. Suppose towards a contradiction there is a cycle among

the vote profiles C = {𝑎(𝑡1), . . . , 𝑎(𝑡𝑇 )} from round 𝑡1 to 𝑡𝑇 , where

𝑎(𝑡𝑇 + 1) = 𝑎(𝑡1). By Lemma 2.2 the set of uncertain issues 𝑈 (𝑎)
is constant for all profiles 𝑎 ∈ C in the cycle. For some agent

𝑗 ∈ 𝐽 , let 𝑡∗ be the first round that they change their vote in the

cycle, and denote the singular issue they change 𝑖 (by Lemma 2.1).

Let 𝑡∗∗ > 𝑡∗ be the last round 𝑗 changes their vote on issue 𝑖 ,

back to their original vote in 𝑎𝑖
𝑗
(0). By Lemma 2.3, on each round

𝑡 ∈ {𝑡∗, 𝑡∗∗} 𝑗 ’s preference for 𝑖 must be conditionally independent

of the score of each issue 𝑘 ∈ 𝑈 (𝑎(𝑡)), given the certain issues’ out-

comes {𝑓 𝑘 (𝑠 (𝑡)) : 𝑘 ∈ 𝐶 (𝑎(𝑡))}. Since the certain issues’ outcomes

don’t change due to LDI dynamics and since 𝑗 ’s preference for 𝑖 does

not matter on the scores of each issue 𝑘 ∈ 𝑈 (𝑎),∀𝑎 ∈ C, we con-
clude that 𝑗 ’s preference for 𝑖 is the same in each round 𝑡 ∈ {𝑡∗, 𝑡∗∗}.
This contradicts our assertion that 𝑗 made an improvement step on

round 𝑡∗∗, so such a cycle C does not exist. □

Note that the proof also provides us with a bound on the total

number of moves that each voter makes: After a voter moves (say,

changes her vote on some issue 𝑖), she will not change her vote on

𝑖 until some other issue becomes certain. Once an issue becomes

certain this is irreversible, so the total number of steps by a single

voter is at most 𝑝2.

6 Experiments
We generate election data with 𝑛 ∈ {7, 11, 15, 19} agents, 𝑝 ∈
{2, 3, 4, 5} issues, andwe vary the uncertainty parameter𝛿 ∈ {0, 1, 2, 3}
which is constant for all agents and issues. For each of these com-

binations, we generate 10, 000 (truthful) preference profiles where

agents’ rankings are uniformly and independently sampled at ran-

dom – i.e., preferences are sampled from the impartial culture (IC)
distribution. We simulate LDI dynamics from the truthful vote

profile 𝑎(0) = top(𝑃) for preference profile 𝑃 using a uniformly

random scheduler 𝜙 . That is, for each vote profile 𝑎(𝑡), 𝜙 selects

𝑎(𝑡 + 1) uniformly at random from the set of valid LDI steps across

all agents and issues. If there are no such valid LDI steps, we say

the LDI sequence has converged in 𝑡 iterations. Otherwise, we take

𝑡 = 10, 000 iterations as a stopping condition, in which we say the

sequence has cycled. We use ‘𝑑’ to denote 𝛿 in the following figures.

First, we ask how frequently cycles occur. With uncertainty

(𝛿 > 0) the answer is almost never, with less than 5 samples cycling

for any parameter combination. Figure 3 demonstrates the number

of samples that cycle in the setting without uncertainty (𝛿 = 0).

For 𝑝 ∈ {2, 3} issues, the number of cycles first decreases then

increases as 𝑛 increases, whereas for 𝑝 ≥ 4 issues, the number

of cycles strictly increases as 𝑛 increases. This demonstrates that

uncertainty can greatly diminish the likelihood of cycles, despite

them still existing in the worst case.

Second, we identify both the percentage of truthful vote profiles

that are not themselves in equilibrium, and how many steps it

takes for LDI dynamics to converge, conditioned on profiles whose

dynamics do not cycle. Figure 4 demonstrates that the percentage

of profiles with LDI dynamics is inversely proportional to
𝛿√
𝑛
. That

is, a truthful profile is more likely to be in equilibrium if the amount

of uncertainty agents have over the issues’ score vector is large

relative to the number of agents. On the other hand, if the number
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Figure 3: Number of profiles that cycle as 𝑛 increases; 𝛿 = 0

Figure 4: Percentage of profiles with dynamics as 𝛿√
𝑛

in-
creases; 𝑝 ∈ {2, 5}

Figure 5: Log average number steps to converge as 𝛿√
𝑛
in-

creases; 𝑝 ∈ {2, 5}; 95% CI (too small to see)

of agents is relatively large, then some agent is more likely to have

an improvement step. Figure 5 demonstrates a similar pattern about

the length of LDI sequences: an LDI sequence will converge much

quicker if 𝛿 is relatively larger compared to 𝑛.

Intuitively, recall that the range of uncertain scores is propor-

tional to 𝛿 and not related to𝑛. Also, many preference rankings have

dependencies among their issues, especially as 𝑝 increases. When

𝛿√
𝑛
is high, more issues are likely to be uncertain, so fewer agents

will be decisive about their preference at all and have 𝑆-dominant

steps. On the other hand, without uncertainty, we note that the

percentage of profiles with dynamics increases with the number of

issues. Likewise, the length of LDI sequences is significantly higher

than among profiles with uncertainty.

Finally, we study how LDI dynamics affects the quality of the

equilibrium winning alternative (i.e., 𝑓 (𝑎(𝑇 )) if 𝑎(𝑇 ) is an equilib-

rium) relative to the truthful winning alternative. For every profile

that did not cycle, we found the Borda welfare of the truthful and

Figure 6: Average percent change in welfare as 𝛿√
𝑛
increases;

𝑝 ∈ {2, 5}; 95% CI (too small to see)

equilibrium winning vote profiles and recorded the percentage

change. The Borda utility for a single agent with ranking 𝑅 for an

outcome 𝑎 is 2
𝑝
minus the index of 𝑎’s position in 𝑅; the Borda

welfare for a vote profile is the sum total utilities across all agents.

Figure 6 plots the average percent change in Borda welfare among

profiles that did not cycle, as
𝛿√
𝑛
increases. We immediately notice

that all averages are positive, indicating that equilibrium winning

alternatives have a higher social welfare on average than the truth-

ful winning alternative. Furthermore, we note a similar trend to the

proportion of profiles with dynamics and length of LDI sequences.

That is, average change in welfare generally is correlated with 𝑛

and inversely correlated with 𝛿 .

7 Conclusion
In this workwe introduced iterative voting formultiple-issue binary-

outcome elections. We synthesized this binary multi-issue iterative

voting model with Meir et al.’s local dominance theory [21]. We

demonstrated that under general agent preferences, restricted local

dominance improvement dynamics may fail to converge, with or

without uncertainty. On the other hand, if we restrict agents to

only have O-legal preferences, then our model converges. In addi-

tion, we introduce dynamic uncertainty and non-atomic models as

sufficient conditions for convergence.

Finally, we empirically demonstrate that cycles are prevalent for

BR dynamics without uncertainty, but that uncertainty eliminates

almost all cycles. When LDI dynamics do converge, the outcome

they yield is on average a better-quality solution that the truthful

winning alternative. We find that the likelihood an agent has an im-

provement step from the truthful profile, the length of LDI sequence,

and the improvement in welfare of the equilibrium solution over

the truthful winning alternative are all inversely correlated with

𝛿√
𝑛
for uncertainty parameter 𝛿 and 𝑛 agents. Further study will be

necessary to determine the cause or degree of this correlation.
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A Supplementary Material
Example 5. Fix 𝑝 = 2 issues without uncertainty (𝛿1 = 𝛿2 = 0)

and consider 𝑛 = 3 agents with preferences:

𝑅1 : (0, 1) ≻1 (1, 1) ≻1 (1, 0) ≻1 (0, 0)
𝑅2 : (0, 0) ≻2 (0, 1) ≻2 (1, 1) ≻2 (1, 0)
𝑅3 : (1, 0) ≻3 (1, 1) ≻3 (0, 0) ≻3 (0, 1)

Figure 2 (left) demonstrates a cycle induced by BR dynamics across four
vote profiles. Each vote profile 𝑎, represented by a matrix containing
votes as row-vectors, is paired with its induced score vector 𝑠 and
outcome 𝑓 . Each directed edge is labelled with the agent that makes
the BR step. For example, agent 1 improves their truthful vote (0, 1) to
(1, 1), thus changing the score vector to (2, 1) and outcome to (1, 0).

The figure represents all possible BR sequences from the truthful
vote profile. Notice that agent 3 never changes their vote since their
ranking is fully separable.

Lemma 1. Let 𝑎 be a vote profile and consider its induced score
vector 𝑠 . Consider the alternative vote 𝑎 𝑗 for agent 𝑗 that differs from
𝑎 𝑗 only on issue 𝑖 . Then 𝑗 has a restricted LDI step from 𝑎 𝑗 to 𝑎 𝑗 only
if the following conditions hold:

(1) 𝑖 ∈ 𝑈 (𝑠), OR 𝑠𝑖 = 𝑛−1
2

− 𝛿𝑖 and 𝑎𝑖
𝑗
= 0, OR 𝑠𝑖 = 𝑛+1

2
+ 𝛿𝑖 and

𝑎𝑖
𝑗
= 1

(2) Agent 𝑗 ’s preference for issue 𝑖 is conditionally independent of
every 𝑘 ∈ 𝑈 (𝑠) given the outcomes {𝑓 ℎ (𝑎) : ℎ ∈ 𝐵(𝑠) ∪𝐶 (𝑠)}.

Proof. We prove the lemma by demonstrating that if either of

these statements do not hold, then 𝑗 does not have the stated LDI

step.

Suppose first that statement 1 fails. Then exclusively either (a)

𝑖 ∈ 𝐶 (𝑠), (b) 𝑠𝑖 = 𝑛−1
2

−𝛿𝑖 and 𝑎𝑖
𝑗
= 1, or (c) 𝑠𝑖 = 𝑛+1

2
+𝛿𝑖 and 𝑎𝑖

𝑗
= 0.

Suppose case (a) and 𝑠𝑖 < 𝑛
2
− 𝛿𝑖 or 𝑠𝑖 > 𝑛

2
+ 𝛿𝑖 . Then regardless of

𝑎𝑖
𝑗
= 1−𝑎𝑖

𝑗
∈ {0, 1}, we have ∀𝑣𝑖 ∈ 𝑆𝑖−𝑗 +𝑎

𝑖
𝑗
, either 𝑣𝑖 < 𝑛

2
or 𝑣𝑖 > 𝑛

2
.

Since all scores are on one side of the decision threshold, agent 𝑗

cannot change 𝑖’s outcome so they will not have an incentive to

change their vote. Suppose case (b). Then ∀𝑣𝑖 ∈ 𝑆𝑖−𝑗 + 𝑎 𝑗 we have

𝑣𝑖 < 𝑛
2
and 𝑗 cannot change 𝑖’s outcome by decreasing their vote.

Suppose case (c). Then ∀𝑣𝑖 ∈ 𝑆𝑖−𝑗 + 𝑎 𝑗 we have 𝑣
𝑖 > 𝑛

2
and 𝑗 cannot

change 𝑖’s outcome by increasing their vote.

Now suppose that statement 2 fails and statement 1 succeeds (i.e.,

changing 𝑗 ’s vote from 𝑎𝑖
𝑗
to 𝑎𝑖

𝑗
can change 𝑖’s outcome for some

𝑣𝑖 ∈ 𝑆𝑖−𝑗 ; specifically, for 𝑣
𝑖 = 𝑛−1

2
). We show that 𝑎 𝑗 does not (𝑆−𝑗 )-

dominate 𝑎 𝑗 . This happens if ∃𝑣,𝑤 ∈ 𝑆−𝑗 such that 𝑓 (𝑣 + 𝑎 𝑗 ) ≻𝑗

𝑓 (𝑣 +𝑎 𝑗 ) and 𝑓 (𝑤 +𝑎 𝑗 ) ≻𝑗 𝑓 (𝑤 +𝑎 𝑗 ). We will now construct these

score vectors.

Without statement 2, then there exists a maximal subset of issues

Q ⊆ 𝑈 (𝑠)\{𝑖} such that agent 𝑗 ’s preference for issue 𝑖 depends

on the joint outcomes of {𝑓 𝑘 : 𝑘 ∈ Q}, conditioned on the known

outcomes of {𝑓 ℎ : ℎ ∈ 𝐵(𝑠) ∪ 𝐶 (𝑠)}. However, 𝑗 ’s preference

for 𝑖 is conditionally independent of 𝑔 ∈ 𝑈 (𝑠)\(Q ∪ {𝑖}). Then
there exists two outcomes 𝑜1, 𝑜2 where (1, 𝑜−𝑖

1
) ≻𝑗 (0, 𝑜−𝑖

1
) and

(0, 𝑜−𝑖
2
) ≻𝑗 (1, 𝑜−𝑖

2
), such that 𝑜𝑘

1
= 𝑜𝑘

2
= 𝑓 𝑘 (𝑎) for 𝑘 ∉ Q and 𝑜1, 𝑜2

differ for some issues in Q. We then define 𝑣 and𝑤 as follows:

https://doi.org/10.1145/1329125.1329175
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(1) Set 𝑣𝑖 = 𝑤𝑖 = 𝑛−1
2

(2) For ℎ ∈ P\(Q ∪ {𝑖}) set 𝑣ℎ = 𝑤ℎ = 𝑠𝑘

(3) For 𝑘 ∈ Q and 𝑎𝑘
𝑗
= 𝑎𝑘

𝑗
= 0, set 𝑣𝑘 = 𝑛+1

2
if 𝑜𝑘

1
= 1 and

𝑣𝑘 = 𝑛−1
2

otherwise. Likewise, set 𝑤𝑘 = 𝑛+1
2

if 𝑜𝑘
2
= 1 and

𝑤𝑘 = 𝑛−1
2

otherwise.

(4) For 𝑘 ∈ Q and 𝑎𝑘
𝑗
= 𝑎𝑘

𝑗
= 1, set 𝑣𝑘 = 𝑛−1

2
if 𝑜𝑘

1
= 1 and

𝑣𝑘 = 𝑛−3
2

otherwise. Likewise, set 𝑤𝑘 = 𝑛−1
2

if 𝑜𝑘
2
= 1 and

𝑤𝑘 = 𝑛−3
2

otherwise.

Statement 2 suggests that 𝑗 knows the outcomes for issues ℎ ∈
𝐵(𝑠) ∪𝐶 (𝑠), and 𝑗 ’s preference for 𝑖 is conditionally independent of

issues 𝑔 ∈ 𝑈 (𝑠)\(Q ∪ {𝑖}). Since every issue 𝑘 ∈ 𝑈 (𝑠) is uncertain,
we know that

𝑛−1
2
, 𝑛+1

2
∈ 𝑆𝑘 . Then setting 𝑣𝑘 and𝑤𝑘

as defined in

statements 3 and 4 will ensure that 𝑓 𝑘 (𝑣𝑘 +𝑎𝑘
𝑗
) = 𝑓 𝑘 (𝑣𝑘 +𝑎𝑘

𝑗
) = 𝑜𝑘

1

and 𝑓 𝑘 (𝑤𝑘 + 𝑎𝑘
𝑗
) = 𝑓 𝑘 (𝑤𝑘 + 𝑎𝑘

𝑗
) = 𝑜𝑘

2
. Finally, statement 1 ensures

that 𝑗 has an incentive to vote according to their preference for

issue 𝑖 conditioned on all other outcomes. Since 𝑗 ’s preference for

𝑖 differs depending on whether the score vector is 𝑣 or𝑤 , per the

other statements, we have 𝑓 (𝑣 +𝑎 𝑗 ) ≻𝑗 𝑓 (𝑣 +𝑎 𝑗 ) and 𝑓 (𝑤 +𝑎 𝑗 ) ≻𝑗

𝑓 (𝑤 +𝑎 𝑗 ) as desired. Therefore we conclude that 𝑎 𝑗 does not (𝑆−𝑗 )-
dominate 𝑎 𝑗 , so 𝑗 does not have the stated LDI step. □
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