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Abstract
For centuries, it has been widely believed that the influence of a

small coalition of voters is negligible in a large election. Conse-

quently, there is a large body of literature on characterizing the

asymptotic likelihood for an election to be influenced, especially

by the manipulation of a single voter, establishing an 𝑂 ( 1√
𝑛
) upper

bound and an Ω( 1

𝑛67
) lower bound for many commonly studied vot-

ing rules under the i.i.d. uniform distribution, known as Impartial
Culture (IC) in social choice, where 𝑛 is the number is voters.

In this paper, we extend previous studies in three aspects: (1) a

more general and realistic semi-random model, (2) many coalitional
influence problems, including coalitional manipulation, margin of

victory, and various vote controls and bribery, and (3) arbitrary and

variable coalition size 𝐵. Our main theorem provides asymptotically

tight bounds on the semi-random likelihood of the existence of a

size-𝐵 coalition that can successfully influence the election under a

wide range of voting rules. Applications of the main theorem and

its proof techniques resolve long-standing open questions about

the likelihood of coalitional manipulability under IC, by showing

that the likelihood is Θ
(
min

{
𝐵√
𝑛
, 1

})
for many commonly studied

voting rules.
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1 Introduction
For centuries, it has been widely believed that the influence of a

small coalition of voters is negligible in a large election. For exam-

ple, Condorcet commented in 1785, that “In single-stage elections,
where there are a great many voters, each voter’s influence is very
small” [12] (see the translation by McLean and Hewitt [45, pp.245]).

As another example, Hegel commented in The Philosophy of Right
in 1821, that “the casting of a single vote is of no significance where
there is a multitude of electors” (see the translation and comments

by Buchanan [10]).

Various types of influence were investigated in the literature. For

example, coalitional manipulation (CM for short) refers to the phe-

nomenon in which a coalition of voters have incentive to misreport

their preferences, so that the winner is more favorable to all of them.

The margin of victory (MoV for short) refers to the phenomenon in

which a coalition of voters have the power to change the winner

by voting differently, regardless of their incentives.

Accurately measuring the influence of voters is highly significant

and plays a central role in many other studies. A small influence

can be positive news or negative news, depending on the context.

For example, a small influence is desirable under various robustness
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measures, such as decisiveness [29], strategy-proofness [28, 62],

privacy [41]. On the other hand, a large influence is desirable in jus-

tifying the voting power of small groups of voters [5], and therefore

would encourage voter turnout [19, 60].

Building a realistic model to accurately measure the influence

of voters turns out to be a highly challenging mission. Clearly,

a sensible and informative measure cannot be completely based

on the worst-case analysis. Take coalitional manipulation with

a single voter for example: for many voting rules, there always

exists a situation where a voter can and has incentive to change the

election outcome by changing his/her vote, due to the celebrated

Gibbard-Satterthwaite theorem [28, 62]. Similarly, unless the voting

rule always chooses the same alternative as the winner, there exists

a situation where a single voter is highly influential, i.e., MoV = 1.

Consequently, there is a large body of literature on understand-

ing the influence of voters using average-case analysis, especially
for coaliational manipulation. Since the pioneering works by Pazner

and Wesley [53] and Peleg [54] in the 1970’s, much of the literature

has focused on characterizing the asymptotic likelihood for ran-

domly generated votes to be coalitional manipulable, as the number

of voters 𝑛 → ∞. Previous work has established an 𝑂 ( 1√
𝑛
) upper

bound for many commonly-studied voting rules by a coalition of

constantly many manipulators, under the i.i.d. uniform distribution

over all linear orders, known as the Impartial Culture (IC) in social

choice. On the other hand, the quantitative Gibbard-Satterthwaite

theorems, e.g., [25, 47], established an Ω( 1

𝑛67
) lower bound for a

single manipulator under all voting rules that are constantly far

away from dictatorships, under IC.

To the best of our knowledge, the only known matching lower

bound is theΩ( 1√
𝑛
) bound for a singlemanipulator under the plural-

ity rule [64]. Little is known for arbitrary size of the coalition, other

means of coalitional influence such as margin of victory (MoV),

vote controls, and bribery [21], and/or other statistical models for

generating votes. Specifically, IC has been widely criticized of being

unrealistic (see, e.g., [49, p. 30], [27, p. 104], and [36]), which means

that the conclusion drawn under IC may only have limited implica-

tions in practice. See Section 1.2 for more discussions. Therefore,

the following question remains largely open.

How likely a coalition of voters can influence large elections
under realistic models?

The importance of answering this question has been widely recog-

nized, as Pattanaik [52, p.187] discussed for (coalitional) manipula-

tion soon after the discovery of the Gibbard-Satterthwaite theorem:

“For, if the likelihood of such strategic voting is negligible, then one
need not be unduly worried about the existence of the possibility as
such.”
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1.1 Our Contributions
We answer the question by characterizing the likelihood for many

commonly studied voting rules and many commonly studied coali-

tional influence problems under a semi-randommodel [24] proposed

in [76], which is inspired by and resembles the smoothed analy-
sis [70] and is more general than IC.

The semi-randommodel in this paper. For any coalitional influ-
ence problem 𝑋 studied in this paper, including coalitional manip-

ulation (CM) and margin of victory (MoV), any voting rule 𝑟 , any

budget 𝐵 ≥ 0, and any profile 𝑃 , we use a binary function𝑋 (𝑟, 𝑃, 𝐵)
to indicate whether there exists a coalition of no more than 𝐵 voters

who can influence the outcome of 𝑟 (with or without incentive)

according to 𝑋 . That is, 𝑋 (𝑟, 𝑃, 𝐵) = 1 if a group of no more than 𝐵

voters are influential under 𝑃 ; otherwise 𝑋 (𝑟, 𝑃, 𝐵) = 0. For exam-

ple, CM(𝑟, 𝑃, 𝐵) = 1 if and only if there exist a coalition of no more

than 𝐵 voters who have incentive to misreport their preferences

to improve the winner. Let Π denote a set of distributions over all

rankings over the alternatives.

The max-semi-random likelihood of 𝑋 under 𝑟 with 𝑛 agents and

budget 𝐵, denoted by 𝑋max

Π (𝑟, 𝑛, 𝐵), is defined as:

𝑋max

Π (𝑟, 𝑛, 𝐵) ≜ sup ®𝜋∈Π𝑛 Pr𝑃∼®𝜋 𝑋 (𝑟, 𝑃, 𝐵) (1)

Similarly, the min-semi-random likelihood is defined as:

𝑋min

Π (𝑟, 𝑛, 𝐵) ≜ inf ®𝜋∈Π𝑛 Pr𝑃∼®𝜋 𝑋 (𝑟, 𝑃, 𝐵) (2)

In other words, 𝑋max

Π (𝑟, 𝑛, 𝐵) (respectively, 𝑋min

Π (𝑟, 𝑛, 𝐵)) upper-
bounds (respectively, lower-bounds) the average-case likelihood of

𝑋 , where the votes are generated independently (but not necessarily

identically) from worst-case distribution vectors in Π𝑛 . When a

small influence is desirable (e.g., in the context of decisiveness,

strategy-proofness, and privacy of voting), a low max-semi-random

likelihood is good news, because it implies that the influence is

small regardless of the underlying distributions ®𝜋 . On the other

hand, when a large influence is desirable (e.g., in the context of

voting power and turnout), a large min-semi-random likelihood is

good news.

The main result of this paper is the following characterization of

semi-random coalitional influence under commonly studied voting

rules.

Theorem 1. (Semi-random coalitional influence, informally
put). For many commonly studied influence problems 𝑋 including
CM and MoV, many commonly studied voting rules 𝑟 with fixed
number of alternatives𝑚 ≥ 3, and any Π from a large class, there
exists a constant 𝐶1 > 0, such that for any 𝑛 ∈ N and any 0 ≤ 𝐵 ≤
𝐶1𝑛, there exist non-negative integers 𝑑max

Δ and𝑑max

0
that are no more

than𝑚!, such that

𝑋max

Π (𝑟, 𝑛, 𝐵) is 0, exp(−Θ(𝑛)), or Θ
(
(min{𝐵 + 1,

√
𝑛})𝑑max

Δ

(
√
𝑛)𝑚!−𝑑max

0

)
The full version of Theorem 1 also includes a similar characteriza-

tion for 𝑋min

Π (𝑟, 𝑛, 𝐵). The main merit of the theorem is conceptual,

because it illustrates a separation between the 0 case, the exponen-

tial case, and the polynomial cases, for a large class of settings. The

𝐵 + 1 value in the numerator of the polynomial case is only used to

handle the 𝐵 = 0 case. For any 𝐵 ≥ 1, the numerator is effectively

poly(min{𝐵,
√
𝑛}).

Technically, the proof of Theorem 1 also characterizes the con-

dition and 𝑑max

Δ and 𝑑max

0
for each case, but they are often not

informative due to the generality of the theorem, and are therefore

omitted in the theorem statement. Nevertheless, Theorem 1 and

its proof techniques can be applied to accurately bound the semi-

random likelihood in a wide range of settings of interest, sometimes

resolving long-standing open questions. See Procedure 1 and dis-

cussions after it in Section 4 for the high-level idea. We present

three examples of such applications in this paper.

The first application (Theorem 4) states that, for many com-

monly studied influence problems 𝑋 including CM and MoV, many

commonly studied voting rules 𝑟 , such as any integer positional

scoring rule, STV, ranked pairs, Schulze, maximin, or Copeland,

a large class of Π including IC, any coalition size 𝐵 ≥ 1, and any

sufficiently large 𝑛,

𝑋max

Π (𝑟, 𝑛, 𝐵) = Θ

(
min

{
𝐵
√
𝑛
, 1

})
A straightforward application of Theorem 4 to CM under IC (Corol-

lary 1) not only closes the

(
Ω( 1

𝑛−67
),𝑂 ( 1√

𝑛
)
)
gap for these rules

with 𝐵 = 1 in previous work, but also provides asymptotically tight

bounds on the likelihood of CM for every 𝐵 ≥ 1: roughly speaking,

each additional manipulator (up to𝑂 (
√
𝑛)) increases the likelihood

of success by Θ( 1√
𝑛
) under IC.

The second application (Theorem5) establishes an𝑂
(
min

{
𝐵√
𝑛
, 1

})
upper bound on the likelihood of many types of coalitional in-

fluence, including CM and MoV, for all generalized scoring rules
(GSRs) [79], which includes all voting rules mentioned in this pa-

per. This supersedes all previous upper bounds discussed in this

paper and extends them to arbitrary 𝐵 ≥ 1 and a more general

(semi-random) model. Theorem 5 can be viewed as good news for

CM, as it states that the likelihood vanishes for any 𝐵 = 𝑜 (
√
𝑛) as

𝑛 → ∞. It also suggest that there is a large room in either designing

natural voting rules with lower likelihood of CM, or improving the

Ω( 1

𝑛−67
) lower bound for voting rules that are constantly far away

from dictatorships [47].

The third application (Theorem 6) investigates a new coali-

tional influence problem called coalitional manipulation for the loser,
denoted by CML, which requires that a coalition of voters are in-

centivized to misreport their preferences to make the loser win.

We prove that, for any integer positional scoring rules with𝑚 ≥ 3

(except veto), any Π from a large class, and any sufficiently large 𝑛

and 𝐵,

�CML

max

Π (𝑟®𝑠 , 𝑛, 𝐵) = Θ

(
min

{
𝐵
√
𝑛
, 1

}𝑚−1)
While CMLmay be of independent interest, themain purpose of this

theorem is to illustrate that the likelihood of coalitional influence

can be much smaller than Θ( 𝐵√
𝑛
) or even Ω( 1

𝑛−67
), can be non-

linear in 𝐵, and the degree of polynomial can depend on 𝑚. As

suggested by Theorem 6, for CML, each additional manipulator is

marginally more powerful when they are incentivized to make the

loser win. We are not aware of a similar result in the literature.

The settings and (asymptotically tight) bounds of Theorem 1 and

its three applications are summarized in Table 1.
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max/min 𝑋 Π Rule 𝐵 Semi-random 𝑋

Thm. 1 both

CM, MoV, &

etc. (Sec. B.2)

a large class any GSR [0,𝑂 (𝑛) ]
0, exp(−Θ(𝑛) ) , or

Θ

(
(min{𝐵 + 1,

√
𝑛})𝑑Δ

(
√
𝑛)𝑚!−𝑑0

)
Thm. 4

max

𝜋uni ∈ CH(Π)
commonly

studied GSRs

[1,∞) Θ
(
min

{
𝐵√
𝑛
, 1

})
Thm. 5 a large class any GSR [1,∞) 𝑂

(
min

{
𝐵√
𝑛
, 1

})
Thm. 6 CML 𝜋uni ∈ CH(Π) Int. Pos. Sco.

(except veto)

[𝐵∗,∞) Θ

(
min

{
𝐵√
𝑛
, 1

}𝑚−1
)

Table 1: Theorem 1 and its applications. 𝑋 is a coalitional influence problem. In this paper, Π is assumed to be strictly positive
and closed, see Section 2. “A large class” means that no additional assumption is made on Π. 𝜋uni is the uniform distribution
over all rankings. CH(Π) is the convex hull of Π. GSR represents generalized scoring rules, see Section 2. 𝐵∗ is a constant that
does not depend on 𝐵 or 𝑛. 𝑑0 and 𝑑Δ are non-negative integers that are no more than𝑚!.

Techniques. Notice that the histogram of randomly generated

votes, called a preference profile, is a Poisson multivariate variable
(PMV), formally defined as follows.

Definition 1 (Poisson multivariate variable (PMV)). Given
𝑛, 𝑞 ∈ N and a vector ®𝜋 = (𝜋1, . . . , 𝜋𝑛) of 𝑛 distributions over
{1, . . . , 𝑞}, an (𝑛, 𝑞)-PMV is denoted by ®𝑋 ®𝜋 , which represents the
histogram of 𝑛 independent random variables whose distributions are
{𝜋1, . . . , 𝜋𝑛}, respectively.

It turns out that many coalitional influence problems under

commonly-studied voting rules can be modeled as PMV-instability
problems (Definition 4), where we are given a source polyhedron
HS, a target polyhedron HT, a set of vote operations O ⊆ R𝑞 , each
of which represents a type of changes to the histogram by the influ-

encers, and a cost vector ®𝑐 for the vote operations in O. Then, given
𝑛 and 𝐵, we are interested in the semi-random likelihood for a PMV

to be unstable, in the sense that it is inHS and can be changed to

HT by performing vote operations in O under a budget constraint

𝐵. We prove the following characterization of the PMV-instability

problem.

Theorem 2. (Semi-random instability of PMV, informally
put). For any PMV-instability problem, a large class of Π, any 𝑛 ∈ N,
and any 𝐵 ≥ 0, the upper bound (respectively, lower bound) on the
PMV-instability problem falls into one of the following four cases:

0, exp(−Θ(𝑛)), phase transition at Θ(
√
𝑛), and phase transition at Θ(𝑛)

In the phase-transition-at-Θ(
√
𝑛) case, the likelihood increases to

its maximum poly
−1 (𝑛) before 𝐵 = Θ(

√
𝑛). In the phase-transition-

at-Θ(𝑛) case, the likelihood increases from exp(−Θ(𝑛)) to its max-

imum poly
−1 (𝑛) around 𝐵 = Θ(𝑛). The formal statement of Theo-

rem 2 also characterizes conditions and asymptotically tight bounds

for the four cases.

Then, Theorem 1 naturally follows after Theorem 2 (more pre-

cisely, its extension Theorem 3 to the union of finitely many PMV-

instability problems).

1.2 Related Work and Discussions
Due to the large body of literature, below we briefly discuss some

closely-related work. More detailed discussions can be found in

Appendix A.

Likelihood of coalitionalmanipulability: upper boundsw.r.t. IC.
As discussed earlier, a series of work has established an 𝑂 ( 1√

𝑛
) up-

per bound on the likelihood of single-voter manipulability under

commonly studied voting rules w.r.t. IC [4, 26, 35, 43, 48, 51, 53,

54, 57, 64–67]. The likelihood of coalitional manipulability was

also considered for a few rules with certain sizes of the coali-

tion [53, 54, 57, 67]. All these results are straightforward corol-

laries of our Theorem 5, which implies an 𝑂

(
min

(
𝐵√
𝑛
, 1

))
upper

bound for every 𝐵 ≥ 1 w.r.t. IC under a wide range of voting rules,

including (but not limited to) the ones studied in previous work.

Likelihood of coalitionalmanipulability: lower boundsw.r.t. IC.
A series of work on quantitative Gibbard-Satterthwaite theorems [18,

25, 33, 47, 80] established polynomial lower bounds on the likeli-

hood of strategic voting by a single manipulator (𝐵 = 1) w.r.t. IC.

Many of these results applied to any voting rule, and are therefore

more general than the CM part of Theorem 4 and Corollary 1. On

the other hand, Theorem 4 is stronger and more general in some

other aspects: it works for every 𝐵 ≥ 1, more coalitional influence

problems, and a more general and realistic (semi-random) model,

and it provides asymptotically tight bounds. Its application to CM

w.r.t. IC in Corollary 1 establishes an Ω( 1√
𝑛
) matching bound for

many commonly studied rules, among which this matching lower

bound was only known for the plurality rule [64].

Likelihood of coalitional manipulability: other distributions.
Results under i.i.d. distributions [46, 54, 58, 75, 79] demonstrated a

phase transition from powerless to powerful atΘ(
√
𝑛)manipulators.

There is a large body of literature on the likelihood of CM under

the Impartial Anonymous Culture (IAC), which assumes that each

histogram happens equally likely and resembles the flat Dirichlet

distribution, by theoretical analysis [22, 23, 32, 37–39, 61, 68, 74] and

by computer simulations [31, 40, 56]. Both IAC and IC are mainly of

theoretical interest and “are poor proxies of political electorates” [50].

Other coalitional influence problems. All results in this paper

also work for MoV, which measures the stability of elections and

provides an upper bound on CM. Some previous proofs of upper

bounds on CM were done for MoV [64, 79]. The phase transition

behavior for CM also happens for MoV [46, 75]. Previous work

has also investigated expected MoV [55] and MoV for tournament



LSA’22, May 9–10, 2022, Online Lirong Xia, RPI

rules [9]. The likelihood of MoV = 1 has been used to measure the

decisiveness of voting, sometimes called voting power, which plays

an important role in the paradox of voting [19] and in power indices

in cooperative game theory. For two alternatives under the plurality

rule, the voting power is equivalent to the likelihood of ties [30]. In

general, MoV = 1 and the election being tied are different events,

as shown in Example 6 and 7 in Appendix H.

Beyond CM and MoV, there is a large body of work on the com-

putational complexity of other types of coalition influence problems,

such as constructive/destructive control (making a designated al-

ternative win/lose) by adding/deleting votes, and bribery (different

changes in votes have different costs). See [21] for a recent survey

and see Appendix B.2 for their definitions. Little was known about

their likelihood of success, except [75], which does not provide an

accurate characterization as discussed in Appendix A. The full ver-

sions of our results in the Appendix provide the first asymptotically

tight bounds for these coalitional influence problems.

Semi-random analysis and smoothed analysis. Semi-random

analysis [7, 8] refers to the analysis under amodel where the process

of generating instances has adversarial components and random

components. For example, in the smoothed complexity analysis [70],

the input to an algorithm is obtained from an adversarially chosen

“ground truth” plus a (small) random perturbation. This can be

viewed as the adversary directly choosing a distribution over data

(from a set of distributions). See [24] for a recent survey of various

semi-random models and complexity results under them. In this

paper, we adopt the semi-random model proposed in [76]. See

Section 2 for more discussions on its generality and limitations.

Technical novelty.While this paper takes a similar “polyhedral”

approach adopted in previouswork on semi-random social choice [76–

78], the main technical tool of this paper (Theorem 2) is a significant

and non-trivial extension of the main technical theorems in pre-

vious work, especially [77, Theorem 1], which can be viewed as

a special case of our Theorem 2 with HS = HT and 𝐵 = 0. The

hardest part is the polynomial lower bounds, whose HS = HT and

𝐵 = 0 case was proved in [77, Theorem 1] by explicitly enumerating

sufficiently many target integer vectors for the PMV. However, due

to the generality of the PMV-instability problem, we do not see

an easy way to perform a similar enumeration. To address this

technical challenge, we take a different approach by first pretend-

ing that the PMV can take non-integer values, then enumerating

(possibly non-integral) vectors that are far away from each other

by exploring two directions: the direction that represents no bud-

get (i.e., 𝐵 = 0) and the direction that represents infinite budget

(i.e., 𝐵 = ∞), and finally proving that for each such (possibly non-

integral) vector, there exists a nearby integer target vector for the

PMV. See Section C.3 for the intuitions and a proof sketch, and

Appendix E.2 for the full proof. We believe that our Theorem 2

is a useful and general tool for studying likelihood of coalitional

influence, as exemplified by its applications to prove Theorem 1,

Theorems 4–6, and Corollary 1.

2 Preliminaries
For any 𝑞 ∈ N, let [𝑞] = {1, . . . , 𝑞}. Let A = [𝑚] denote a set of
𝑚 ≥ 3 alternatives. Let L(A) denote the set of all linear orders

overA. Let 𝑛 ∈ N denote the number of agents (voters). Each agent

uses a linear order 𝑅 ∈ L(A) to represent his or her preferences,
called a vote, where 𝑎 ≻𝑅 𝑏 or {𝑎} ≻𝑅 {𝑏} means that the agent

prefers alternative 𝑎 to alternative 𝑏. The vector of 𝑛 agents’ votes,

denoted by 𝑃 , is called a (preference) profile, sometimes called an

𝑛-profile. The set of 𝑛-profiles for all 𝑛 ∈ N is denoted by L(A)∗ =⋃∞
𝑛=1 L(A)𝑛 . A fractional profile is a profile 𝑃 coupled with a

possibly non-integer and/or negative weight vector ®𝜔𝑃 = (𝜔𝑅 : 𝑅 ∈
𝑃) ∈ R𝑛 for the votes in 𝑃 . Sometimes the weight vector is omitted

when it is clear from the context.

For any (fractional) profile 𝑃 , let Hist(𝑃) ∈ R𝑚!

≥0 denote the

anonymized profile of 𝑃 , also called the histogram of 𝑃 , which

contains the total weight of every linear order in L(A) according
to 𝑃 . An irresolute voting rule 𝑟 : L(A)∗ → (2A \ {∅}) maps a

profile to a non-empty set of winners in A. A resolute voting rule
𝑟 is a special irresolute voting rule that always chooses a single

alternative as the (unique) winner. Often a resolute rule is obtained

from an irresolute rule by applying a tie-breaking mechanism, e.g.,

lexicographic tie-breaking, which chooses the co-winner with the

smallest index as the unique winner.

Integer positional scoring rules. An (integer) positional scoring
rule 𝑟 ®𝑠 is characterized by an integer scoring vector ®𝑠 = (𝑠1, . . . , 𝑠𝑚) ∈
Z𝑚 with 𝑠1 ≥ 𝑠2 ≥ · · · ≥ 𝑠𝑚 and 𝑠1 > 𝑠𝑚 . For any alternative 𝑎

and any linear order 𝑅 ∈ L(A), we let ®𝑠 (𝑅, 𝑎) = 𝑠𝑖 , where 𝑖 is the
rank of 𝑎 in 𝑅. Commonly studied integer positional scoring rules

include plurality, which uses the scoring vector (1, 0, . . . , 0), Borda,
which uses the scoring vector (𝑚 − 1,𝑚 − 2, . . . , 0), and veto, which
uses the scoring vector (1, . . . , 1, 0).

Generalized scoring rules (GSRs). All voting rules studied in

this paper are generalized scoring rules (GSRs) [79]. We recall the

definition of GSRs based on separating hyperplanes [46, 81] as

follows.

Definition 2. A generalized scoring rule (GSR) 𝑟 is defined by
(1) a set of 𝐾 ≥ 1 hyperplanes ®𝐻 = ( ®ℎ1, . . . , ®ℎ𝐾 ) ∈ (R𝑚!)𝐾 and (2)
a function 𝑔 : {+,−, 0}𝐾 → A. For any profile 𝑃 , we let 𝑟 (𝑃) =

𝑔(Sign ®𝐻 (Hist(𝑃))), where Sign ®𝐻 ( ®𝑥) = (Sign( ®ℎ1 · ®𝑥), . . . , Sign( ®ℎ𝐾 ·
®𝑥)) represents the signs of ®ℎ1 · ®𝑥, . . . , ®ℎ𝐾 · ®𝑥 . When ®𝐻 ∈ (Z𝑚!)𝐾 , 𝑟 is
called an integer GSR (int-GSR).

Example 1 (Borda as a GSR). Let 𝑚 = 3. Borda with lexico-
graphic tie-breaking is a GSR with 𝐾 = 𝑚 and ®𝐻 = {®ℎ1, ®ℎ2, ®ℎ3}
defined as follows.

𝑥123 𝑥132 𝑥213 𝑥231 𝑥312 𝑥321
®ℎ1 = ( 1, 2, −1, −2, 1, −1 )
®ℎ2 = ( 2, 1, 1, −1, −1, −2 )
®ℎ3 = ( 1, −1, 2, 1, −2, −1 )

Let ®𝑥 = (𝑥123, 𝑥132, 𝑥213, 𝑥231, 𝑥312, 𝑥321) denote the histogram of a
profile, where 𝑥123 represents the number of [1 ≻ 2 ≻ 3] votes. It
follows that ®ℎ1 · ®𝑥 is the Borda score of alternative 1 minus the Borda
score of 2 in the profile; ®ℎ2 · ®𝑥 is the Borda score of alternative 1minus
the Borda score of 3 in the profile; and ®ℎ3 · ®𝑥 is the Borda score of
alternative 2 minus the Borda score of 3 in the profile. The 𝑔 function
chooses the winner based on Sign ®𝐻 (Hist(𝑃)) and the tie-breaking
mechanism.
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Coalitional influence problems. Let 𝑟 be a resolute rule, 𝑃 be

a preference profile, and 𝐵 ≥ 0 be a budget. Coalitional manipu-
lation (CM) is defined by a binary function CM(𝑟, 𝑃, 𝐵) such that

CM(𝑟, 𝑃, 𝐵) = 1 if and only there exists 𝑃 ′ ⊆ 𝑃 with |𝑃 ′ | ≤ 𝐵 and

𝑃∗ with |𝑃∗ | = |𝑃 ′ |, such that for all 𝑅 ∈ 𝑃 ′, 𝑟 (𝑃 − 𝑃 ′ + 𝑃∗) ≻𝑅 𝑟 (𝑃).
The margin of victory (MoV) is a function MoV(𝑟, 𝑃, 𝐵) such that

MoV(𝑟, 𝑃, 𝐵) = 1 if and only if no more than 𝐵 voters can coali-

tionally change the winner (regardless of their preferences and

incentives).

See Appendix B.1 for definitions of some other commonly stud-

ied voting rules (which are GSRs), i.e., ranked pairs, Schulze, max-

imin, Copeland, and STV, and Appendix B.2 for the definitions of

some other commonly-studied coalitional manipulation problems,

i.e., constructive/destructive control by adding/deleting votes and

bribery. Many results in this paper apply to these rules and coali-

tional influence problems, as stated in their full versions in the

Appendix.

Semi-random likelihood of coalitional influence. As discussed
in the Introduction, given a coalitional influence problem 𝑋 , a set Π
of distributions over L(A), a voting rule 𝑟 , a number of voters 𝑛 ∈
N, and a budget constraint 𝐵 ≥ 0, the max-semi-random likelihood
of 𝑋 (max-semi-random 𝑋 for short), denoted by 𝑋max

Π (𝑟, 𝑛, 𝐵), is
defined in Equation (1). Similarly, the min-semi-random likelihood
of 𝑋 (min-semi-random 𝑋 for short), denoted by 𝑋min

Π (𝑟, 𝑛, 𝐵), is
defined in Equation (2).

Assumptions on𝚷. Throughout the paper, we make the following

two assumptions on Π: (1) strict positiveness, which means that

there exists a constant 𝜖 > 0 such that the probabilities over all

rankings in all 𝜋 ∈ Π are larger than 𝜖 , and (2) closedness, which
means that Π is a closed set in the Euclidean space.

Clearly, IC corresponds to Π = {𝜋uni}, where 𝜋uni is the uniform
distribution over L(A). Let us take a look at another example of

Π and its corresponding semi-random likelihood.

Example 2 (Semi-random CM under Borda). Let 𝑋 = CM

and 𝑟 = Borda with lexicographic tie-breaking. Let A = {1, 2, 3}
and Π = {𝜋1, 𝜋2}, where 𝜋1 and 𝜋2 are distributions in Table 2.

123 132 231 321 213 312

𝜋1 1/4 1/4 1/4 1/12 1/12 1/12
𝜋2 1/12 1/12 1/12 1/4 1/4 1/4

Table 2: Π in Example 2.

When 𝑛 = 2 and 𝐵 = 1, we have

C̃M

max

Π (Borda, 2, 1) = sup ®𝜋∈{𝜋1,𝜋2 }𝑛 Pr𝑃∼®𝜋 CM(Borda, 𝑃)

That is, the adversary has four choices of ®𝜋 , i.e., {(𝜋1, 𝜋1), (𝜋1, 𝜋2),
(𝜋2, 𝜋1), (𝜋2, 𝜋2)}. Each ®𝜋 leads to a distribution over the set of all
profiles of two agents, i.e., L(A)2. As we will see later in Example 5,
for every sufficiently large 𝑛, C̃M

max

Π (Borda, 𝑛, 1) = Θ( 1√
𝑛
).

Generality and limitations of the semi-random model. There
are two major limitations of the semi-random model studied in this

paper: the independence of noises among agents’ preferences, and

the strict positiveness of Π. While results on general models are

always desirable, these limitations may not be as strong as they

appear in the social choice context, due to the following reasons.

• First, the independence of agents’ noises is a common assump-

tion in classical models for human’s preferences and behaviors,

such as random utility models [71] and discrete choice models [72].
Notice that in our semi-random model, the adversary is allowed to

choose any combination of distributions in Π for the agents, which

means that the agents’ “de-noised” preferences can be arbitrarily

correlated.

• Second, straightforward relaxations of strict positiveness of

Π easily leads to trivial and negative results. For example, if we

allow some probabilities to be 0, then Π may contain “deterministic”

distributions that have 100% probability on some rankings, and in

such cases the semi-random analysis degenerates to the worst-case

analysis.

After all, we believe that the semi-random model studied in this

paper, which extends IC, is a step forward towards a more realistic

measure of voters’ influence. How to incorporate dependent noises

among agents and how to relax the strict positiveness of Π (e.g.,

by allowing the lower bound on probabilities in Π to depend on

𝑛, such as
1

𝑛 ) are important and challenging directions for future

research.

3 Main Result: Semi-Random Coalitional
Influence

Theorem 1. Let 𝑟 denote any int-GSR with fixed𝑚 ≥ 3. For any
closed and strictly positive Π and any 𝑋 ∈ {CM,MoV}, there exists
a constant 𝐶1 > 0, such that for any 𝑛 ∈ N and any 𝐵 ≥ 0 with
𝐵 ≤ 𝐶1𝑛, there exist {𝑑max

0
, 𝑑max

Δ , 𝑑min

0
, 𝑑min

Δ } ⊆ [𝑚!] such that

𝑋max

Π (𝑟, 𝑛, 𝐵) is 0, exp(−Θ(𝑛)), or Θ
(
min{𝐵 + 1,

√
𝑛}𝑑max

Δ

(
√
𝑛)𝑚!−𝑑max

0

)
, and

𝑋min

Π (𝑟, 𝑛, 𝐵) is 0, exp(−Θ(𝑛)), or Θ
(
min{𝐵 + 1,

√
𝑛}𝑑min

Δ

(
√
𝑛)𝑚!−𝑑min

0

)

As explained in the Introduction, the main merit of Theorem 1

is conceptual, as it illustrates a separation between 0, exponen-

tial, and polynomial cases of different degrees. The most inter-

esting part is the asymptotically tight polynomial lower bounds,

because little was known about them even under CM, IC, and 𝐵 = 1,

as discussed in Section 1.2. The theorem works for many other

commonly-studied coalitional influence problem such as those de-

fined in Appendix B.2, as indicated in the full version of the theorem

in Appendix C.2.

Overview of the proof of Theorem 1. The proof proceeds in
three steps. In Step 1 (Section 3.1), we model commonly-studied

coalitional influence problems, including CM andMoV, under GSRs

as unions of multiple PMV-instability problems (and the union is

formally defined as PMV-multi-instability problems in Definition 6).

Then in Step 2 (Section C.3), we characterize the semi-random like-

lihood of the PMV-instability problem in Theorem 2. In Step 3, we

first extend Theorem 2 to solve the PMV-multi-instability problem

in Theorem 3, and then apply it to the PMV-multi-instability prob-

lems defined in Step 1 to prove Theorem 1. The full proof can be

found in Appendix C.2.
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−𝑥123 − 2𝑥132 + 𝑥213 + 2𝑥231 − 𝑥312 + 𝑥321 ≤ 0

−2𝑥123 − 𝑥132 − 𝑥213 + 𝑥231 + 𝑥312 + 2𝑥321 ≤ 0

−®𝑥 ≤ 0

 1 wins before

manipulation

𝑥123 + 2𝑥132 − (𝑥213 − 𝑜1) − 2(𝑥231 + 𝑜1 + 𝑜2) + 𝑥312 − (𝑥321 − 𝑜2) ≤ −1
−𝑥123 + 𝑥132 − 2(𝑥213 − 𝑜1) − (𝑥231 + 𝑜1 + 𝑜2) + 2𝑥312 + (𝑥321 − 𝑜2) ≤ 0

−𝑜1 ≤ 0, −𝑜2 ≤ 0, −(𝑥213 − 𝑜1) ≤ 0, −(𝑥321 − 𝑜2) ≤ 0, 𝑜1 + 𝑜2 ≤ 𝐵

 2 wins after

manipulation

Figure 1: The linear system forU1→2

𝑛,𝐵
in Example 3.

3.1 Step 1: Modeling
We start with an example of modeling CM as systems of linear

inequalities, which motivates the study of the more general PMV-
instability problem (Definition 4) and its extension PMV-multi-instability
problem (Definition 6).

Example 3. LetA = {1, 2, 3} and let 𝑟 be Borda with lexicographic
tie-breaking. Let U1→2

𝑛,𝐵
denote the histograms of all 𝑛-profiles that

satisfy the following conditions: (1) the winner before manipulation
is 1, (2) a coalition of no more than 𝐵 manipulators are motivated
to change the winner to 2 by casting different votes. Notice that only
the [2 ≻ 1 ≻ 3] voters and the [3 ≻ 2 ≻ 1] voters have incentive to
misreport their preferences (both to [2 ≻ 3 ≻ 1]). Let 𝑜1 (respectively,
𝑜2) denote the number of voters who change their votes from [2 ≻
1 ≻ 3] (respectively, [3 ≻ 2 ≻ 1]) to [2 ≻ 3 ≻ 1].

Then, the histogram ®𝑥 of an 𝑛-profiles is in U1→2

𝑛,𝐵
if and only

if there exists an integer vector ®𝑜 = (𝑜1, 𝑜2) such that ( ®𝑥, ®𝑜 ) is a
feasible solution to the linear program illustrated in Figure 1, where
the objective is omitted because only the feasibility matters.

In Example 3, the effect of eachmanipulator can bemodeled by its

changes to the histogram, and themanipulators aim atmanipulating

vectors in a source polyhedron, which represents 1 being the winner,
into a target polyhedron, which represents 2 being the winner,

under the budget constraint 𝐵. This motivates us to define the

PMV-instability setting as follows.

Definition 3 (PMV-instability setting). In a PMV-instability

setting S ≜ ⟨HS,HT,O, ®𝑐 ⟩,
• HS and HT are polyhedra in R𝑞 for some 𝑞 ∈ N, the subscript

S and T represent “source” and “target”, respectively. For 𝑌 ∈ {S, T },
let H𝑌 ≜

{
®𝑥 ∈ R𝑞 : A𝑌 × (®𝑥)⊤ ≤ (b𝑌 )⊤

}
, where A𝑌 is an integer

matrix of 𝑞 columns;
• O ⊆ R𝑞 is a finite set of vote operations [75], and let O denote

the |O | × 𝑞 matrix whose rows are the vectors in O;
• ®𝑐 ∈ R |O |≥0 is the cost vector for the vote operations in O.

W.l.o.g., in this paper we assume ®𝑐 > ®0 and the minimum cost of a

single operation is 1, i.e., min𝑖≤𝑞 [®𝑐 ]𝑖 = 1. Given a PMV-instability

setting S, 𝑛 ∈ N, and a budget 𝐵 ≥ 0, we let U𝑛,𝐵 denote the

set of non-negative size-𝑛 integer vectors that represent unstable

histograms w.r.t. vote operations in O and budget 𝐵. That is,

U𝑛,𝐵 ≜


®𝑥 ∈ HS ∩ Z

𝑞

≥0︸           ︷︷           ︸
®𝑥 is in HS

: ®𝑥 · ®1 = 𝑛︸   ︷︷   ︸
𝑛-profile

and ∃ ®𝑜 ∈ Z |O |≥0︸    ︷︷    ︸
vote operations

s.t.

®𝑐 · ®𝑜 ≤ 𝐵︸    ︷︷    ︸
budget constraint

and ®𝑥 + ®𝑜 × O ∈ HT︸              ︷︷              ︸
manipulated to be in HT


Example 4. In the setting of Example 3, 𝑞 =𝑚! = 6. U1→2

𝑛,𝐵
is the

set of unstable histograms of the PMV-instability setting where HS
(respective, HT) is the polyhedron that represents 1 (respectively, 2)
being the winner, O = {(0, 0,−1, 1, 0, 0), (0, 0, 0, 1, 0,−1)} (the indices

to rankings are the same as in Example 1), O =

[
0, 0, -1, 1, 0, 0
0, 0, 0, 1, 0, -1

]
,

®𝑐 = (1, 1).

We are interested in solving the PMV-instability problem defined

as follows.

Definition 4 (PMV-instability problem). Given a PMV-instability
setting S = ⟨HS,HT,O, ®𝑐 ⟩, a set Π of distributions over [𝑞], 𝑛 ∈ N,
and 𝐵 ≥ 0, we are asked to bound

max-semi-random instability: sup ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
, and

min-semi-random instability: inf ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
That is, the max-semi-random instability (respectively, min-semi-

random instability) is the upper bound (respectively, lower bound)

on the probability for the PMV to be unstable, when the underlying

probabilities ®𝜋 are adversarially chosen from Π𝑛 .
Notice that Example 3 only captures the coalitional manipula-

tion situations where alternative 1 is manipulated to alternative 2.

Similarly, we can defineU1→3

𝑛,𝐵
,U2→1

𝑛,𝐵
,U2→3

𝑛,𝐵
,U3→1

𝑛,𝐵
, andU3→2

𝑛,𝐵
.

LetM denote the set of the six PMV-instability settings, and let

UM
𝑛,𝐵

= U1→2

𝑛,𝐵 ∪U1→3

𝑛,𝐵
∪U2→1

𝑛,𝐵 ∪U2→3

𝑛,𝐵
∪U3→1

𝑛,𝐵
∪U3→2

𝑛,𝐵

Then, we have

C̃M

max

Π (Borda, 𝑛, 𝐵) = sup ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ UM

𝑛,𝐵

)
, and

C̃M

min

Π (Borda, 𝑛, 𝐵) = inf ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ UM

𝑛,𝐵

)
This motivates us to define the PMV-multi-instability setting.

Definition 5 (PMV-multi-instability setting). A PMV-multi-

instability setting, denoted by M = {S𝑖 : 𝑖 ≤ 𝐼 }, is a set of 𝐼 ∈ N



How Likely A Coalition of Voters Can Influence A Large Election? LSA’22, May 9–10, 2022, Online

PMV-instability settings, where S𝑖 = ⟨H 𝑖
S,H

𝑖
T,O

𝑖 , ®𝑐 𝑖 ⟩, whose unsta-
ble histograms are denoted by U𝑖

𝑛,𝐵
. Let UM

𝑛,𝐵
=

⋃
𝑖≤𝐼 U𝑖

𝑛,𝐵
.

It turns out that many coalitional influence problems, such as

CM under Borda discussed above, can be modeled by PMV-multi-

instability settings, as shown in the following lemma.

Lemma 1 (Coalitional Influence as PMV-multi-instability).
For any 𝑋 ∈ {CM,MoV} and any GSR 𝑟 , there exist a PMV multi-
instability setting M = {S𝑖 : 𝑖 ≤ 𝐼 } such that for every 𝑛-profile 𝑃
and every 𝐵 ≥ 0, 𝑋 (𝑟, 𝑃, 𝐵) = 1 if and only if Hist(𝑃) ∈ UM

𝑛,𝐵
.

The full statement of the lemma (which covers other coalitional

influence problems) and its proof can be found in Appendix D.1. In

light of Lemma 1, the (max- or min-) semi-random likelihood of

commonly studied coalitional influence problems can be reduced

to the following problem.

Definition 6 (The PMV-multi-instability problem). Given
a PMV-multi-instability setting M = {S𝑖 : 𝑖 ≤ 𝐼 }, a set Π of distri-
butions over [𝑞], 𝑛 ∈ N, and 𝐵 ≥ 0, we are asked to bound

max-semi-random multi-instability: sup ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ UM

𝑛,𝐵

)
min-semi-random multi-instability: inf ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ UM

𝑛,𝐵

)
Like PMV-instability problems, themax-(respectively, min-) semi-

random multi-instability represents the upper bound (respectively,

lower bound) on the likelihood for the PMV to be unstable w.r.t. any

S𝑖 in M, when the underlying probabilities ®𝜋 is adversarially cho-

sen from Π𝑛 .

3.2 Sketch of Step 2
To present the theorem, we introduce some notation, whose intu-

ition is presented in Appendix C.3.

Notation. For any budget 𝐵 ≥ 0, we letH𝐵 denote the relaxation of

U𝑛,𝐵 by removing the size constraint and the integrality constraints

on ®𝑥 and on ®𝑜 . Recall that ®𝑜 still needs to be non-negative. That is,

H𝐵 ≜
{
®𝑥 ∈ HS : ∃®𝑜 ∈ R |O |≥0 s.t. ®𝑐 · ®𝑜 ≤ 𝐵 and ®𝑥 + ®𝑜 × O ∈ HT

}
For example, Figure 2 (a) illustrates H𝐵 in the shaded area. H𝐵 is a

polyhedron because it is the intersection ofHS and the Minkowski

addition of HT and the following polyhedron Q𝐵 :

Q𝐵 ≜
{
−®𝑜 × O : ®𝑜 ∈ R |O |≥0 and ®𝑐 · ®𝑜 ≤ 𝐵

}
Specifically, with infinite budget (𝐵 = ∞), we have

H∞ =

{
®𝑥 ∈ HS : ∃®𝑜 ∈ R |O |≥0 s.t. ®𝑥 + ®𝑜 × O ∈ HT

}
= HS∩(HT+Q∞)

For every 𝐵 ≥ 0, we define C𝐵 to be the polyhedron that consists of

all (possibly non-integer) vectors inHS,≤0 that can be manipulated

to be in HT,≤0 by using (possibly non-integer) operations ®𝑜 under
budget constraint 𝐵. That is,

C𝐵 ≜
{
®𝑥 ∈ HS,≤0 : ∃®𝑜 ∈ R |O |≥0 s.t. ®𝑐 · ®𝑜 ≤ 𝐵 and ®𝑥 + ®𝑜 × O ∈ HT,≤0

}
It is not hard to verify that C𝐵 = HS,≤0 ∩ (HT,≤0 + Q𝐵) and C𝐵
can be viewed as a “pseudo-conic” approximation toH𝐵 , as C𝐵 is

defined based on the characteristic cones ofHS andHT, though C𝐵

itself may not be a cone. Specifically, C0 and C∞ will play a central

role in Theorems 2 and 3. It is not hard to verify that

C0 ≜ HS,≤0 ∩HT,≤0, and

C∞ ≜
{
®𝑥 ∈ HS,≤0 : ∃®𝑜 ∈ R |O |≥0 s.t. ®𝑥 + ®𝑜 × O ∈ HT,≤0

}
Figure 2 (b) illustrates C0 (which is a line) and C∞ (which is the

same as HS,≤0). Both C0 and C∞ are polyhedral cones, because

the intersection Minkowski addition of two polyhedral cones is a

polyhedral cone. Notice that when 𝐵 ∉ {0,∞}, C𝐵 may not be a

cone.

For any set Π∗ ⊆ R𝑞 , let 𝐵Π∗ ∈ R to be the minimum budget 𝐵

such that the intersection of Π∗
and C𝐵 is non-empty. If no such 𝐵

exists (i.e., Π∗ ∩ C∞ = ∅), then we let 𝐵Π∗ ≜ ∞. Formally,

𝐵Π∗ ≜ inf{𝐵∗ ≥ 0 : Π∗ ∩ C𝐵 ≠ ∅}
Figure 2 (b) illustrates𝐵

CH(Π) and C𝐵CH(Π) in the shaded area, where

Π = {𝜋1, 𝜋2} and CH(Π) is the convex hull of Π, which is the line

segment between 𝜋1 and 𝜋2 in this case.

For any set Π∗ ⊆ R𝑞 , we define 𝐵−Π∗ ∈ R to be the minimum

budget 𝐵 such that Π∗
is completely contained in C𝐵 . If no such 𝐵

exists, then we let 𝐵−Π∗ ≜ ∞. Formally,

𝐵−Π∗ ≜ inf{𝐵 ≥ 0 : Π∗ ⊆ C𝐵}
Next, we define notation and conditions used in the statement of

the theorem. Given a PMV-instability setting, Π, 𝐵, and 𝑛, define

𝑑0 = dim(C0), 𝑑∞ = dim(C∞), and 𝑑Δ = 𝑑∞ − 𝑑0,
where dim(C0) is the dimension of C0, which is the dimension of the

minimal affine space that contains C0. We also define the following

five conditions:

𝜅1 𝜅2 𝜅3

U𝑛,𝐵 = ∅ CH(Π) ∩ C∞ = ∅ CH(Π) ∩ C0 = ∅
𝜅4 𝜅5

CH(Π) ⊆ C∞ CH(Π) ⊆ C0
Recall that CH(Π) is the convex hull of Π. Because C0 ⊆ C∞,

𝑑Δ ≥ 0. Also notice that 𝜅2 implies 𝜅3, or equivalently, ¬𝜅3 implies

¬𝜅2. Similarly, 𝜅4 implies 𝜅5, or equivalently, ¬𝜅5 implies ¬𝜅4.
Theorem 2. (Max-Semi-Random PMV-instability, 𝐵 = 𝑂 (𝑛)).
Given any 𝑞 ∈ N, any closed and strictly positive Π over [𝑞], and any
PMV-instability setting S = ⟨HS,HT,O, ®𝑐 ⟩, any 𝐶2 > 0 and 𝐶3 > 0

with 𝐶2 < 𝐵CH(Π) < 𝐶3, any 𝑛 ∈ N, and any 𝐵 ≥ 0,

sup ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
=

Name Likelihood Condition

0 case 0 𝜅1
exp case exp(−Θ(𝑛)) ¬𝜅1 ∧ 𝜅2

PT-Θ(
√
𝑛) Θ

(
min{𝐵 + 1,

√
𝑛}𝑑Δ

(
√
𝑛)𝑞−𝑑0

)
¬𝜅1 ∧ ¬𝜅3

PT-Θ(𝑛)
exp(−Θ(𝑛)) if 𝐵 ≤ 𝐶2𝑛
Θ

(
( 1√
𝑛
)𝑞−𝑑∞

)
if 𝐵 ≥ 𝐶3𝑛

otherwise, i.e.,
¬𝜅1 ∧ ¬𝜅2 ∧ 𝜅3

The full version of the theorem in Appendix C.3 also characterizes

the min part. The 𝐵 + 1 in both sup and inf are introduced to handle

the 𝐵 < 1 case. For every 𝐵 ≥ 1, we have Θ(𝐵 + 1) = Θ(𝐵). The
proof can be found in Appendix E.2.
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4 Applications
In this section, we present three applications of Theorem 1 (or more

precisely, the first and second steps of its proof) that lead to concise

and informative characterizations.

The overall approach. In light of the three steps of the proof of

Theorem 1, we propose the following two-step Procedure 1 for

characterizing a specific semi-random 𝑋 for a specific voting rule

𝑟 , which correspond to Step 1 and 3 above, respectively.

Procedure 1: Characterizing semi-random coalitional in-

fluence 𝑋 under voting rule 𝑟

Step (i): Model 𝑋 under 𝑟 as a PMV-multi-instability setting M
as done in Step 1 above.

Step (ii): Characterize the conditions and degree of polynomial

for M by applying Theorem 2 or 3 (in Appendix C.4).

Step (i) is often easy, and for Theorems 4 and 5 below, the model-

ing is the same as in the proof of Lemma 1. The hardness of Step 2

is highly problem-dependent, and we see two potential difficulties

in Step (ii): first, it is sometimes not easy to verify for which 𝑛, 𝐵,

and PMV-instability problem, the 0 case of Theorem 2 does not

happen; second, sometimes 𝑑0, and 𝑑Δ can be hard to characterize.

The first application is a matching lower bound for many com-

monly studied GSRs, whose definitions can be found in Appen-

dix B.1. Recall that 𝜋uni is the uniform distribution over L(A).
Theorem 4. Let 𝑟 be an integer positional scoring rule, STV, ranked
pairs, Schulze, maximin, or Copeland with lexicographic tie-breaking
for any fixed 𝑚 ≥ 3. For any closed and strictly positive Π with
𝜋uni ∈ CH(Π), any 𝑋 ∈ {CM,MoV}, there exists 𝑁 > 0 such that
for any 𝑛 > 𝑁 and any 𝐵 ≥ 1,

𝑋max

Π (𝑟, 𝑛, 𝐵) = Θ
(
min

{
𝐵√
𝑛
, 1

})
The full statement of Theorem 4 (including other coalitional

influence problems such as the ones defined in Appendix B.2) and

its full proof can be found in Appendix G.1. The next example shows

an application of Theorem 4 to Borda.

Example 5. In the setting of Example 2, notice that 𝜋uni = 1

2
(𝜋1 +

𝜋2), which means that 𝜋uni ∈ CH(Π). It follows from Theorem 4 that

for all sufficiently large 𝑛, C̃M
max

Π (Borda, 𝑛, 1) = Θ
(

1√
𝑛

)
.

Theorem 4 leads to the following corollary on IC, where Π =

{𝜋uni}.

Corrollary 1. Let 𝑟 be an integer positional scoring rule, STV,
ranked pairs, Schulze, maximin, or Copeland with lexicographic tie-
breaking for fixed𝑚 ≥ 3. For any𝑋 ∈ {CM,MoV}, there exists𝑁 > 0

such that for any 𝑛 > 𝑁 and any 𝐵 ≥ 1, Pr𝑃∼(𝜋uni )𝑛 (𝑋 (𝑟, 𝑃, 𝐵)) =
Θ

(
min

{
𝐵√
𝑛
, 1

})
.

The second application is an upper bound for all GSRs and all

closed and strictly positive Π.

Theorem 5. Let 𝑟 denote any GSR with fixed𝑚 ≥ 3. For any closed
and strictly positive Π, any 𝑋 ∈ {CM,MoV}, any 𝑛, and any 𝐵 ≥ 1,

𝑋max

Π (𝑟, 𝑛, 𝐵) = 𝑂
(
min

{
𝐵√
𝑛
, 1

})
The full proof can be found in Appendix G.2. Theorem 5 immedi-

ately extends all previous 𝑂

(
1√
𝑛

)
upper bound on CM for a single

manipulator (𝐵 = 1) discussed in Section 1.2 to any coalition size

𝐵 ≥ 1, because all rules studied in these works are GSRs.

The third application studies a new notion of coalitional manip-

ulation that aims at making the loser win under integer positional

scoring rules. For any positional scoring rule, the loser is the alter-

native with the minimum total score.

Definition 7. Given any integer positional scoring rule 𝑟®𝑠 with
lexicographic tie-breaking, for any profile 𝑃 and any 𝐵 ≥ 0, we define
CML(𝑟®𝑠 , 𝑃, 𝐵) = 1 if and only if a coalition of no more than 𝐵 voters
have incentive to misreport their preferences to make the loser under
𝑃 win.

Clearly, under veto, no coalition of voters have incentive to misre-

port their preferences to make the loser win, i.e., CML(veto, 𝑃, 𝐵) =
0 for all 𝑃 and 𝐵.

Theorem 6. Let 𝑟®𝑠 be an integer positional scoring rule with lexico-
graphic tie-breaking for fixed𝑚 ≥ 3 that is different from veto. For
any closed and strictly positive Π with 𝜋uni ∈ CH(Π), there exists
𝑁 > 0 and 𝐵∗ > 0 such that for any 𝑛 > 𝑁 and any 𝐵 ≥ 𝐵∗,�CML

max

Π (𝑟®𝑠 , 𝑛, 𝐵) = Θ

(
min

{
𝐵√
𝑛
, 1

}𝑚−1)
The proof can be found in Appendix G.3.

5 Summary and Future Work
We extend previous studies on average-case likelihood of coalitional

manipulation in elections in three aspects: (1) a more general and

realistic semi-random model, (2) many other coalitional influence

problems, and (3) arbitrary coalition size, by taking a polyhedral

approach and developing and applying the PMV-(multi)-instability

theorems (Theorem 2 and 3). While we do not think that results

in this paper are the final answers to the question in Introduction,

we do believe that they are a non-trivial step forward, because

they address long-standing open questions and expand the scope

of previous work to more general and realistic settings.

Moving forward, we see three natural directions for future work.

More realistic models: as discussed in Section 2, the semi-random

model in this paper assumes independent noises across agents and

a strictly positive Π. A natural question is how to relax these con-

straints to build a more realistic, and still tractable, model. Stronger
theorems: as discussed after Theorem 2, characterizing the con-

stants in the bounds is a natural open question. Additionally, as

discussed in the Introduction, Theorem 5 poses a challenge to de-

signing natural rules with lower likelihood of coalitional influence,

or improving the Ω( 1

𝑛−67
) lower bound (and extending it to 𝐵 ≥ 2).

More applications: how to develop informative characterizations

in the spirit of Theorem 1, as done in Section 4, for other rules,

other coalition influence problems, or other applications such as

matching, resource allocation, fair division, judgement aggregation,

are important and challenging tasks.
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A Related Work with More Details

Likelihood of coalitional manipulability: upper bounds under IC. Pattanaik [51] proposed to study the likelihood of strategic voting

by single manipulator and conjectured that the likelihood is smaller in larger elections. Pazner and Wesley [53] proved that the likelihood of

single-voter manipulability goes to 0 as 𝑛 → ∞ under plurality. They also noted that the results can be extended to any coalition of 𝑛𝛼

manipulators, where 0 ≤ 𝛼 < 1/2. Peleg [54] proved that the likelihood of single-voter manipulability under any representable voting system,

which includes positional scoring rules, goes to 0 under any positive i.i.d. distributions. Peleg also considered coalitional manipulation

problem, by noticing in footnote 2 that the result still hods for any coalition of 𝑜 (
√
𝑛) voters. Nitzan [48] demonstrated that the likelihood

decreases when 𝑛 is large under Borda, plurality, and range voting. Fristrup and Keiding [26] proved an 𝑂

(
1√
𝑛

)
rate of convergence for

single-voter manipulability under plurality. Kim and Roush [35] proved that maixmin (a.k.a., Simpson’s method) can be manipulated by a

coalition of unlimited number of voters almost surely as 𝑛 → ∞. Slinko [64, 65, 66] proved an 𝑂

(
1√
𝑛

)
upper bound for a single manipulator

under plurality with runoff, representable voting system, all voting rules based on the unweighted majority graphs, and Bucklin. Baharad and

Neeman [4] proved an 𝑂

(
1√
𝑛

)
upper bound for a single manipulator under positional scoring rule, top cycle, and Copeland, when voters’

preferences has small local correlations, which is more general than IC. Slinko [67] investigated the likelihood of coalitional manipulation by

up to 𝐶𝑛𝛼 manipulator for any fixed 0 ≤ 𝑎 < 1/2, and proved an 𝑂 (( 1𝑛 )
0.5−𝛼 ) upper bound for any positional scoring rule with strictly

decreasing scores. Maus et al. [43] characterized the least manipulable rule by a single manipulator among tops-only, anonymous, and

surjective choice rules, to be the unanimity rules with status quo. Pritchard and Wilson [57] showed that, the likelihood for a coalition of

𝑣
√
𝑛 manipulators to succeed under a positional scoring rule is a function of 𝑣 , and provided an algorithm based on integer linear program to

compute the minimum coalition size.

Likelihood of coalitional manipulability: lower bounds under IC. Slinko [64] proved an Ω( 1√
𝑛
) lower bound under plurality for

a single manipulator. A quantitative Gibbard-Satterthwaite theorem was proved for𝑚 = 3 by Friedgut et al. [25], and was subsequently

developed in [18, 33, 80], and the general case was proved by Mossel and Racz [47], which implies that any voting rule that is constantly

away from any dictatorships, the likelihood of single-voter manipulability under IC is Ω
(

1

𝑛67𝑚166

)
, i.e., Ω( 1

𝑛67
) for any fixed𝑚.

Likelihood of coalitional manipulability: simulations. Beyond theoretical work, there is also a large literature on comparing the

empirical coalitional manipulability of commonly-studied voting rules, mostly by computer simulations [1–3, 11, 31, 34, 56, 69]. These works

confirm that the likelihood for a large election to be manipulable by a single manipulator is low.

Likelihood of coalitional manipulability under other distributions. As discussed above, the convergence-to-0 result for representable

voting system in [54] works for any i.i.d. distributions, and the 𝑂 (1/
√
𝑛) upper bound for positional scoring rule, top cycle, and Copeland by

Baharad and Neeman [4] works for distributions with small local correlations. Procaccia and Rosenschein [58] proved that for weighted

voters whose preferences are generated independently, positional scoring rules cannot be manipulated by 𝑜 (
√
𝑛) manipulators almost surely

as 𝑛 → ∞. Xia and Conitzer [79] proved that for a large of class of voting rules and i.i.d. distributions that satisfy certain conditions, a

coalition of 𝑂 (𝑛𝛼 ) manipulators is powerless when 𝛼 < 1

2
, as the likelihood for them to succeed is 𝑂 (𝑛𝛼−0.5) ; and they are powerful

when 𝛼 > 1

2
, as the likelihood is lower bounded by 1 − exp(−Ω(𝑛)) in such case. Mossel et al. [46] illustrates a smooth transition from

powerlessness to powerfulness for a coalition of 𝑐
√
𝑛 manipulators with variable 𝑐 . Xia [75] proved that for a large class of influence problems

including coalitional manipulation, under i.i.d. distributions, with probability that goes to 1 the number of voters needed is 0, Θ(
√
𝑛), Θ(𝑛),

or impossible. The paper does not characterize the likelihood for each case. Durand et al. [20] used Condorcification to decrease coalitional

manipulable profiles, reduces coalitional manipulability under every probability distribution.

There is a large literature on the likelihood of coalitional manipulability under the Impartial Anonymous Culture (IAC), which assumes that

each histogram happens equally likely and resembles the flat Dirichlet distribution, based on theoretical analysis [22, 23, 32, 37–39, 61, 68, 74]

and computer simulations [31, 40, 56]. Both IAC and IC are mainly of theoretical interest and “are poor proxies of political electorates” [50].

Other coalitional influence problems. The margin of victory (MoV) of a profile is the smallest coalition of voters who can change the

winner by casting different votes (regardless of their preferences). MoV measures the stability of elections and provides an upper bound on

CM and some previous proofs of upper bounds on CM are done for MoV, such as [64, 79]. Pritchard and Slinko [55] proved that for any

positional scoring rule, the expected margin of victory under IC is Θ(
√
𝑛) and characterized the voting rules with maximum expected MoV

under IC. Results in [46, 75] discussed above also apply to MoV. Brill et al. [9] studies the distribution of MoV for some tournament rules,

under a probability distribution on tournament graphs, where the direction of each edge is drawn independently and uniformly.

The likelihood of MoV = 1 has been used to measure the decisiveness of voting, sometimes called voting power, which plays an important

role in the paradox of voting [19] and in definitions of power indices in cooperative game theory. For two alternatives under the plurality

rule, the voting power is equivalent to the likelihood of ties [30] (see, e.g., [77] for a semi-random analysis on the likelihood of ties and

references therein). In general, the two problems are different, for example as shown in Example 6 and 7.

Beyond CM and MoV, there is a large body of work on the computational complexity of other types of coalition influence problems that

based on vote operations, such as constructive/destructive control (making a designated alternative win/lose) by adding/deleting votes, and
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bribery (different changes in votes have different costs and a total budget is given). See [21] for a recent survey. Little work has been done to

analyze their likelihood of success, except [75], which as discussed above, does not provide an accurate characterization.

B Extra Preliminaries
B.1 Other commonly studied voting rules

Weighted Majority Graphs. For any (fractional) profile 𝑃 and any pair of alternatives 𝑎, 𝑏, let 𝑃 [𝑎 ≻ 𝑏] denote the total weight of votes in
𝑃 where 𝑎 is preferred to 𝑏. Let WMG(𝑃) denote the weighted majority graph of 𝑃 , whose vertices are A and whose weight on edge 𝑎 → 𝑏

is𝑤𝑃 (𝑎, 𝑏) = 𝑃 [𝑎 ≻ 𝑏] − 𝑃 [𝑏 ≻ 𝑎]. Sometimes a distribution 𝜋 over L(A) is viewed as a fractional profile, where for each 𝑅 ∈ L(A) the
weight on 𝑅 is 𝜋 (𝑅). In this case we let WMG(𝜋) denote the weighted majority graph of the fractional profile represented by 𝜋 .

A voting rule is said to be weighted-majority-graph-based (WMG-based) if its winners only depend on the WMG of the input profile. In

this paper we consider the following commonly studied WMG-based rules.

• Copeland. The Copeland rule is parameterized by a number 0 ≤ 𝛼 ≤ 1, and is therefore denoted by Copeland𝛼 , or Cd𝛼 for short. For

any fractional profile 𝑃 , an alternative 𝑎 gets 1 point for each other alternative it beats in their head-to-head competition, and gets 𝛼

points for each tie. Copeland𝛼 chooses all alternatives with the highest total score as the winners.

• Maximin. For each alternative 𝑎, its min-score is defined to be min𝑏∈A 𝑤𝑃 (𝑎, 𝑏). Maximin, denoted by MM, chooses all alternatives

with the max min-score as the winners.

• Ranked pairs. Given a profile 𝑃 , an alternative 𝑎 is a winner under ranked pairs (denoted by RP) if there exists a way to fix edges in

WMG(𝑃) one by one in a non-increasing order w.r.t. their weights (and sometimes break ties), unless it creates a cycle with previously

fixed edges, so that after all edges are considered, 𝑎 has no incoming edge. Ties between edges are broken lexicographically. For

example, if 1 → 2 and 2 → 3 have the same weight, then 1 → 2 is chosen first. If 1 → 2 and 1 → 3 have the same weight, then 1 → 2

is chosen first.

• Schulze. For any directed path in the WMG, its strength is defined to be the minimum weight on any single edge along the path.

For any pair of alternatives 𝑎, 𝑏, let 𝑠 [𝑎, 𝑏] be the highest weight among all paths from 𝑎 to 𝑏. Then, we write 𝑎 ⪰ 𝑏 if and only if

𝑠 [𝑎, 𝑏] ≥ 𝑠 [𝑏, 𝑎], and [63] proved that the strict version of this binary relation, denoted by ≻, is transitive. The Schulze rule, denoted
by Sch, chooses all alternatives 𝑎 such that for all other alternatives 𝑏, we have 𝑎 ⪰ 𝑏.

STV with lexicographic tie-breaking mechanism. The (single-winner) STV with lexicographic tie-breaking chooses winners in𝑚 − 1

rounds. In each round, the loser of plurality under lexicographic tie-breaking is removed from the election. We note that this rule is different

from first computing STV winners under parallel universe tie-breaking [14] and then breaking ties among the co-winners.

Plurality with runoff. The plurality with runoff rule with lexicographic tie-breaking, denoted by Pro, chooses the winner in two rounds. In

the first round, the two alternatives with highest plurality scores are chosen (ties are broken lexicographically), and all other alternatives are

removed. In the second round, the majority rule with lexicographic tie-breaking is applied to choose the winner.

Proposition 1. Any representable voting system with lexicographic tie-breaking is a GSR.

Proof. The proof is similar to the proof that shows positional scoring rules with lexicographic tie-breaking are GSRs illustrated in

Example 1. Formally, we define the following score difference vector that is similar to the score difference vector defined for positional

scoring rules [76].

Definition 8 (Score difference vector for representable voting system). For any scoring function 𝑠 : L(A) × A → R≥0 and any
pair of different alternatives 𝑎, 𝑏, let Score𝑠

𝑎,𝑏
denote the𝑚!-dimensional vector indexed by rankings in L(A): for any 𝑅 ∈ L(A), the 𝑅-element

of Score𝑠
𝑎,𝑏

is 𝑠 (𝑅, 𝑎) − 𝑠 (𝑅,𝑏).

Let 𝐾 =
(𝑚
2

)
and the hyperplanes are score difference vectors {Score𝑠

𝑎,𝑏
: 𝑎 ∈ A, 𝑏 ∈ A, 𝑎 ≠ 𝑏}. For any profile 𝑃 , Sign ®𝐻 (Hist(𝑃)) contains

information about the comparisons of total scores of all pairs of alternatives, from which 𝑔 chooses a winner and applies the tie-breaking

mechanism when needed. □

B.2 Other commonly studied coalitional influence problems
In the constructive control by adding votes (CCAV) (respectively, destructive control by adding votes (DCAV)) problem, we are given a

distinguished alternative 𝑑 , and we let CCAV𝑑 (𝑟, 𝑃, 𝐵) = 1 (respectively, DCAV𝑑 (𝑟, 𝑃, 𝐵) = 1), if there exists a preference profile 𝑃∗ with
|𝑃∗ | ≤ 𝐵 such that 𝑟 (𝑃 + 𝑃∗) = {𝑑} (respectively, 𝑟 (𝑃 + 𝑃∗) ≠ {𝑑}).

In the constructive control by deleting votes (CCDV) (respectively, destructive control by deleting votes (DCDV)) problem, we are given a

distinguished alternative 𝑑 , and we let CCDV𝑑 (𝑟, 𝑃, 𝐵) = 1 (respectively, DCDV𝑑 (𝑟, 𝑃, 𝐵) = 1), if there exists 𝑃 ′ ⊆ 𝑃 with |𝑃 ′ | ≤ 𝐵 such that

𝑟 (𝑃 − 𝑃∗) = {𝑑} (respectively, 𝑟 (𝑃 − 𝑃∗) ≠ {𝑑}).
For convenience, we let Control denote the control problems introduced above, and let e-Control denote their effective variants,

formally defined as follows.
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Definition 9 (Effective control problems). Define

e-Control = {e-CCAV, e-CCDV, e-DCAV, e-DCDV} and

Control = {CCAV,CCDV,DCAV,DCDV}

C Materials for Section 3
C.1 Constructive/Destructive Generalized Bribery with Anonymous Prices
In this section, we define two large classes of bribery problems that include some commonly studied control problems as special cases.

Definition 10. A constructive generalized bribery with anonymous prices problem is denoted by CB𝑑,®𝑐 (𝑟, 𝑃, 𝐵), where 𝑟 is a voting rule,
𝑃 is a profile, 𝑎 is a distinguished alternative, ®𝑐 > ®0 is a strictly positive cost vector, where each component is indexed by a pair (𝑅, 𝑅′) ∈
(L(A) ∪ {∅}) × (L(A) ∪ {∅}) that represents the price for the briber to convert an 𝑅 vote to an 𝑅′ vote, and 𝐵 ≥ 0 is the total budget. We are
asked whether the briber can make 𝑎 win by changing the votes in the profile under the budget constraint 𝐵—if so then we let CB𝑑,®𝑐 (𝑟, 𝑃, 𝐵) = 1,
otherwise we let CB𝑑,®𝑐 (𝑟, 𝑃, 𝐵) = 0.

Destructive bribery with anonymous price problem, denoted by DB𝑑,®𝑐 (𝑟, 𝑃, 𝐵), is defined similarly, and the only difference is that the goal of
the briber is to make 𝑎 not the winner.

Specifically, when 𝑅 = ∅, performing an (𝑅, 𝑅′) bribery is effectively the same as adding an 𝑅′ vote to 𝑃 ; and if 𝑅′ = ∅, performing an

(𝑅, 𝑅′) bribery is effectively the same as removing an 𝑅 vote from 𝑃 . Moreover, we allow the price of an (𝑅, 𝑅′) operation to be∞, which

means that this operation is not allowed in the problem.

For each constructive/destructive control/bribery problem, we also study its “effective” variant, which requires that the influencers’ goal is

not achieved in the original profile. We will add “e-” to the name to denote this variant. For example, e-CB𝑑,®𝑐 (𝑟, 𝑃, 𝐵) = 1 if 𝑟 (𝑃) ≠ {𝑎} and 𝑎
can be made the winner under budget 𝐵.

Proposition 2. CCAV𝑑 and CCDV𝑑 are special cases of CB𝑑,®𝑐 . e-CCAV𝑑 and e-CCDV𝑑 are special cases of e-CB𝑑,®𝑐 . DCAV𝑑 and DCDV𝑑
are special cases of DB𝑑,®𝑐 . e-DCAV𝑑 and e-DCDV𝑑 are special cases of e-DB𝑑,®𝑐 .

Proof. It is not hard to verify that CCAV𝑑 (respectively, DCAV𝑑 ) is equivalent to CB𝑑,®𝑐 (respectively, DB𝑑,®𝑐 ), where for any (𝑅, 𝑅′) ∈

(L(A) ∪ {∅}) × (L(A) ∪ {∅}), the (𝑅, 𝑅′) component of ®𝑐 , denoted by [®𝑐 ] (𝑅,𝑅′ ) , is

{
1 if 𝑅 = ∅
0 otherwise

.

CCDV𝑑 (respectively, DCDV𝑑 ) is equivalent to CB𝑑,®𝑐 (respectively, DB𝑑,®𝑐 ), where for any (𝑅, 𝑅′) ∈ (L(A) ∪ {∅}) × (L(A) ∪ {∅}),

[®𝑐 ] (𝑅,𝑅′ ) =

{
1 if 𝑅′ = ∅
0 otherwise

The proofs for e-variants are similar. □

C.2 Full Version of Theorem 1 and Its Proof
Theorem 1. (Semi-Random Coalitional Influence, Full Version). Let 𝑟 denote any GSR with fixed𝑚 ≥ 3. For any closed and strictly
positive Π, any coalitional influence problem 𝑋 ∈ {CM,MoV,CB𝑑,®𝑐 (𝑟, 𝑃, 𝐵),DB𝑑,®𝑐 (𝑟, 𝑃, 𝐵)}, there exists a constant𝐶1 > 0 so that for any 𝑛 ∈ N
and any 𝐵 ≥ 0 with 𝐵 ≤ 𝐶1𝑛, there exists {𝑑max

0
, 𝑑min

0
, 𝑑max

Δ , 𝑑min

Δ } ⊆ [𝑚!] such that

𝑋max

Π (𝑟, 𝑛, 𝐵) is 0, exp(−Θ(𝑛)), or Θ
(
min{𝐵 + 1,

√
𝑛}𝑑max

Δ

(
√
𝑛)𝑚!−𝑑max

0

)
, and

𝑋min

Π (𝑟, 𝑛, 𝐵) is 0, exp(−Θ(𝑛)), or Θ
(
min{𝐵 + 1,

√
𝑛}𝑑min

Δ

(
√
𝑛)𝑚!−𝑑min

0

)
Proof. We continue with Step 2 and 3.

C.3 Step 2 of The Proof: The PMV-Instability Theorem
Let us start with some high-level intuitions for solving the PMV-instability problem (Definition 4) to motivate the statement and proof of

Theorem 2.

Intuition. If U𝑛,𝐵 = ∅, then the (max- or min-) semi-random instability is 0, and we will refer to this as the 0 case. Suppose the 0 case does
not hold, i.e., U𝑛,𝐵 ≠ ∅, then we will adopt an approximation of Pr( ®𝑋 ®𝜋 ∈ U𝑛,𝐵) based on the following two approximations.
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• First, let us pretend that all integrality constraints in the linear system (like the one in Example 3) are relaxed. That is, let us pretend

that ®𝑋 ®𝜋 can take non-integer values, and the vote operation vector ®𝑜 can be fractional (but still need to be non-negative). For simplicity,

assume that ®𝑐 = ®1. Then, the possible changes to the histogram as the result of a unit of budget is characterized by CH(O), where
CH(·) represents the convex hull. It follows that U𝑛,𝐵 can be approximated by a polyhedron H𝐵 , which is the intersection of HS

and the Minkowski addition of HT and

⋃
0≤𝑏≤𝐵 −𝑏 · CH(O). See Figure 2 (a) for an illustration of H𝐵 in the shaded area, where

O = {®𝑜1, ®𝑜2}. Notice thatH𝐵 is in the −CH(O) direction ofHT.

• Second, let us pretend that ®𝑋 ®𝜋 is distributed as a (𝑞−1)-dimensional Gaussian distributionN®𝜋 (whose mean is

∑𝑛
𝑗=1 𝜋 𝑗 ∈ 𝑛 ·CH(Π)) in

the hyperplane {®𝑥 : ®𝑥 · ®1 = 𝑛}. This approximation is justified by various multi-variable central limit theorems, e.g., [6, 16, 17, 59, 73].

With these approximations, we adopt the following approximation of Pr( ®𝑋 ®𝜋 ∈ U𝑛,𝐵):

Pr( ®𝑋 ®𝜋 ∈ U𝑛,𝐵) ≈ Pr(N®𝜋 ∈ H𝐵) (3)

ℋ𝑺

𝑥$

𝑥%

𝓗𝑻

𝑜⃗$

𝑜⃗%

-B𝑜⃗$

ℋ𝑩

-B𝑜⃗%

CH(Π)

𝑥'

𝑥(

ℋ𝑺,,𝟎 = C.
𝜋'

𝜋( 𝓗𝑻,,𝟎
𝐵34(5)

C6C789(:)
𝑜⃗'

𝑜⃗(

(a) H𝐵 . (b) 𝐵
CH(Π) and C𝐵

CH(Π) .

Figure 2: Illustrations of some notation.

Now, let us take a look at the max-semi-random PMV instability in light of the approximation in (3). Because the probability mass of N®𝜋
is mostly centered around an 𝑂 (

√
𝑛) neighborhood of its mean, to maximize Pr(N®𝜋 ∈ H𝐵), the adversary aims at choosing ®𝜋 so that the

“volume” of the intersection of an 𝑂 (
√
𝑛) neighborhood of

∑𝑛
𝑗=1 𝜋 𝑗 andH𝐵 is as large as possible.

When 𝐵 = 𝑂 (
√
𝑛), it turns out that H𝐵 is close to HS,≤0 ∩HT,≤0, where for any polyhedron H ≜ {®𝑥 : A × (®𝑥)⊤ ≤ (b)⊤}, H≤0 ≜ {®𝑥 :

A × (®𝑥)⊤ ≤
(
®0
)⊤

} denotes its characteristic cone, also known as the recess cone. Therefore, if CH(Π) ∩ HS,≤0 ∩HT,≤0 = ∅, then the mean

of ®𝑋 ®𝜋 is Θ(𝑛) away fromHS,≤0 ∩HT,≤0, which implies that the likelihood is (exponentially) small due to straightforward applications of

Hoeffding’s inequality. We call this case the exponential case.
When 𝐵 = 𝑂 (

√
𝑛) and CH(Π) ∩ HS,≤0 ∩HT,≤0 ≠ ∅, the adversary can choose ®𝜋 ∈ Π𝑛 so that the mean of ®𝑋 ®𝜋 is either in HS,≤0 ∩HT,≤0

or is 𝑂 (1) away, which means that the likelihood is large. In this case, there is a phase transition at 𝑩 = 𝚯(
√
𝒏), as it will be shown that

the likelihood reaches its (asymptotic) max at 𝐵 = Θ(
√
𝑛).

When 𝐵 = Θ(𝑛), again, the adversary aims at choosing ®𝜋 ∈ Π𝑛 so that the mean of ®𝑋 ®𝜋 is close to H𝐵 . Let 𝐵CH(Π) denote the smallest

budget so that a “pseudo-conic” approximation toH𝐵
CH(Π) , denoted by C𝐵 and is formally defined below in (4), touches CH(Π), which is the

convex hull of Π. See Figure 2 (b) for an illustration of 𝐵
CH(Π) and C𝐵

CH(Π) (the shaded area). It is then expected that when 𝐵 < 𝐵
CH(Π) · 𝑛,

the max-semin-random instability whould be small, and when 𝐵 > 𝐵
CH(Π) · 𝑛, the max-semin-random instability whould be large. In other

words, the semi-random stability has a phase transition at 𝑩 = 𝚯(𝒏).
Nevertheless, characterizing the conditions and likelihood for each case is still challenging, as the approximation above is only meant to

provide a qualitative intuition. Existing multi-variate central limit theorems are often too coarse due to an Ω( 1√
𝑛
) error, as discussed in [77].
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Notation. Let us define some notation to formalize the intuitions discussed above. For any budget 𝐵 ≥ 0, we let H𝐵 denote the relaxation of

U𝑛,𝐵 by removing the size constraint and the integrality constraints on ®𝑥 and on ®𝑜 . Recall that ®𝑜 still needs to be non-negative. That is,

H𝐵 ≜
{
®𝑥 ∈ HS : ∃®𝑜 ∈ R |O |≥0 s.t. ®𝑐 · ®𝑜 ≤ 𝐵 and ®𝑥 + ®𝑜 × O ∈ HT

}
For example, Figure 2 (a) illustrates H𝐵 in the shaded area. H𝐵 is a polyhedron because it is the intersection of HS and the Minkowski

addition of HT and the following polyhedron Q𝐵 :

Q𝐵 ≜
{
−®𝑜 × O : ®𝑜 ∈ R |O |≥0 and ®𝑐 · ®𝑜 ≤ 𝐵

}
Specifically, with infinite budget (𝐵 = ∞), we have

H∞ =

{
®𝑥 ∈ HS : ∃®𝑜 ∈ R |O |≥0 s.t. ®𝑥 + ®𝑜 × O ∈ HT

}
= HS ∩ (HT + Q∞)

For every 𝐵 ≥ 0, we define C𝐵 to be the polyhedron that consists of all (possibly non-integer) vectors inHS,≤0 that can be manipulated to be

inHT,≤0 by using (possibly non-integer) operations ®𝑜 under budget constraint 𝐵. That is,

C𝐵 ≜
{
®𝑥 ∈ HS,≤0 : ∃®𝑜 ∈ R |O |≥0 s.t. ®𝑐 · ®𝑜 ≤ 𝐵 and ®𝑥 + ®𝑜 × O ∈ HT,≤0

}
(4)

It is not hard to verify that C𝐵 = HS,≤0 ∩ (HT,≤0 + Q𝐵) and C𝐵 can be viewed as a “pseudo-conic” approximation toH𝐵 , as C𝐵 is defined

based on the characteristic cones of HS and HT, though C𝐵 itself may not be a cone. Specifically, C0 and C∞ will play a central role in

Theorems 2 and 3. It is not hard to verify that

C0 ≜ HS,≤0 ∩HT,≤0, and

C∞ ≜
{
®𝑥 ∈ HS,≤0 : ∃®𝑜 ∈ R |O |≥0 s.t. ®𝑥 + ®𝑜 × O ∈ HT,≤0

}
= HS,≤0 ∩

(
HT,≤0 + Q∞

)
(5)

Figure 2 (b) illustrates C0 (which is a line) and C∞ (which is the same asHS,≤0). Both C0 and C∞ are polyhedral cones, because the intersection

Minkowski addition of two polyhedral cones is a polyhedral cone. Notice that when 𝐵 ∉ {0,∞}, C𝐵 may not be a cone.

For any set Π∗ ⊆ R𝑞 , let 𝐵Π∗ ∈ R to be the minimum budget 𝐵 such that the intersection of Π∗
and C𝐵 is non-empty. If no such 𝐵 exists

(i.e., Π∗ ∩ C∞ = ∅), then we let 𝐵Π∗ ≜ ∞. Formally,

𝐵Π∗ ≜ inf{𝐵∗ ≥ 0 : Π∗ ∩ C𝐵 ≠ ∅} (6)

Figure 2 (b) illustrates 𝐵
CH(Π) and C𝐵

CH(Π) in the shaded area, where Π = {𝜋1, 𝜋2} and CH(Π) is the convex hull of Π, which is the line

segment between 𝜋1 and 𝜋2 in this case.

For any set Π∗ ⊆ R𝑞 , we define 𝐵−Π∗ ∈ R to be the minimum budget 𝐵 such that Π∗
is completely contained in C𝐵 . If no such 𝐵 exists,

then we let 𝐵−Π∗ ≜ ∞. Formally,

𝐵−Π∗ ≜ inf{𝐵 ≥ 0 : Π∗ ⊆ C𝐵} (7)

For example, 𝐵−
CH(Π) = ∞ in Figure 2 (b), because no matter how large 𝐵 is, C𝐵 ⊆ HS,≤0, andHS,≤0 does not contain all vectors in CH(Π).

Next, we define notation and conditions used in the statement of the theorem.

Definition 11. Given a PMV-instability setting, Π, 𝐵, and 𝑛, define

𝑑0 = dim(C0), 𝑑∞ = dim(C∞), and 𝑑Δ = 𝑑∞ − 𝑑0,
where dim(C0) is the dimension of C0, which is the dimension of the minimal affine space that contains C0. We also define the following five
conditions:

𝜅1 𝜅2 𝜅3 𝜅4 𝜅5

U𝑛,𝐵 = ∅ CH(Π) ∩ C∞ = ∅ CH(Π) ∩ C0 = ∅ CH(Π) ⊆ C∞ CH(Π) ⊆ C0

Recall that CH(Π) is the convex hull of Π. Because C0 ⊆ C∞, 𝑑Δ ≥ 0. Also notice that 𝜅2 implies 𝜅3, or equivalently, ¬𝜅3 implies ¬𝜅2.
Similarly, 𝜅4 implies 𝜅5, or equivalently, ¬𝜅5 implies ¬𝜅4.

Theorem 2 (Semi-Random PMV-Instability). Given any 𝑞 ∈ N, any closed and strictly positive Π over [𝑞], and any PMV-instability
setting S = ⟨HS,HT,O, ®𝑐 ⟩, any 𝐶2 > 0 and 𝐶3 > 0 with 𝐶2 < 𝐵CH(Π) < 𝐶3, any 𝑛 ∈ N, and any 𝐵 ≥ 0,

Name Likelihood Condition

sup ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
=



0 case 0 𝜅1
exp case exp(−Θ(𝑛)) ¬𝜅1 ∧ 𝜅2

PT-Θ(
√
𝑛) Θ

(
min{𝐵 + 1,

√
𝑛}𝑑Δ

(
√
𝑛)𝑞−𝑑0

)
¬𝜅1 ∧ ¬𝜅3

PT-Θ(𝑛)
exp(−Θ(𝑛)) if 𝐵 ≤ 𝐶2𝑛
Θ

(
( 1√
𝑛
)𝑞−𝑑∞

)
if 𝐵 ≥ 𝐶3𝑛

otherwise, i.e.,
¬𝜅1 ∧ ¬𝜅2 ∧ 𝜅3
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For any 𝐶−
2
< 𝐵−CH(Π) < 𝐶

−
3
, any 𝑛 ∈ N, and any 𝐵 ≥ 0,

Name Likelihood Condition

inf ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
=



0 case 0 𝜅1
exp case exp(−Θ(𝑛)) ¬𝜅1 ∧ 𝜅4

PT-Θ(
√
𝑛) Θ

(
min{𝐵 + 1,

√
𝑛}𝑑Δ

(
√
𝑛)𝑞−𝑑0

)
¬𝜅1 ∧ ¬𝜅5

PT-Θ(𝑛)
exp(−Θ(𝑛)) if 𝐵 ≤ 𝐶−

2
𝑛

Θ
(
( 1√
𝑛
)𝑞−𝑑∞

)
if 𝐵 ≥ 𝐶−

3
𝑛

otherwise, i.e.,
¬𝜅1 ∧ ¬𝜅4 ∧ 𝜅5

The 𝐵 + 1 in both sup and inf are introduced to handle the 𝐵 < 1 case. For every 𝐵 ≥ 1, we have Θ(𝐵 + 1) = Θ(𝐵).

The four cases. Following the intuition presented at

the beginning of this subsection, we call the first case

of sup and inf in Theorem 2 the 0 case, the second
case the exponential case, the third case the phase
transition at Θ(

√
𝑛) case (PT-Θ(

√
𝑛) for short), and

the last case, which contains two subcases, the phase
transition atΘ(𝑛) case (PT-Θ(𝑛) for short). Notice that
in each of the inf part, the likelihood is the same as its

counterpart for the sup case, but the conditions and

the threshold for the PT-Θ(𝑛) case are different.
Figure 3 illustrates the (max- and min-) semi-random

instability as a function of 𝐵 for exp case, PT-Θ(
√
𝑛)

case, and PT-Θ(𝑛) case (for both sup and inf). Figure 4
(a) illustrates condition 𝜅2 = [CH(Π) ∩ C∞ = ∅] for
the exp case of sup. Figure 4 (b) illustrates condition

¬𝜅3 = [CH(Π) ∩ C0 ≠ ∅] for the PT-Θ(
√
𝑛) case

of sup. Figure 2 (b) illustrates condition ¬𝜅2 ∧ 𝜅3 =

[CH(Π) ∩ C∞ ≠ ∅] ∧ [CH(Π) ∩ C0 = ∅] for the
PT-Θ(𝑛) case of sup.

Likelihood

B

exp(-Θ(𝑛))

Θ %
&

'()*

Θ( 𝑛) Θ(𝑛)0

exp case

PT-Θ(𝑛) case

PT-Θ( 𝑛) case

Θ (+,%))-

& '().

Figure 3: Illustration of Theorem 2. The x-axis is in log scale.
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(a) The exp case of sup. (b) The PT-Θ(
√
𝑛) case of sup.

Figure 4: Illustration of the exp case and phase-transition-at-Θ(
√
𝑛) case of sup.

Limitations and usefulness of Theorem 2. Theorem 2 has two major limitations. First, we were not able to characterize max-semi-random

likelihood around 𝐵
CH(Π) · 𝑛 (respectively, min-semi-random instability around 𝐵−

CH(Π) · 𝑛). Second, the constants in asymptotic bounds

may be exponentially large in𝑚.
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Despite these limitations, we believe that Theorem 2 provides a general and useful tool for studying PMV-instability problems, because it

converts the complicated PMV-instability problems, which involve reasoning about the likelihood of discrete events (about the PMV) that

cannot be easily bounded by standard techniques, to deterministic geometric problems about CH(Π), C0, C∞, 𝑑0, and 𝑑∞. It provides an

almost complete characterization of the PMV-instability problem, which can be easily applied to resolve long-standing open questions, e.g.,

in Corollary 1. Practically, dim0 and dimΔ can still be hard to characterize, but at least Theorem 2 provides a useful guideline about what to

look for. See Section 4 for some examples.

Proof sketch of Theorem 2. At a high level, the proof follows after the intuitions presented in the beginning of this subsection. The hardest

part is the proof of the (asymptotically tight) polynomial bounds in the PT-Θ(
√
𝑛) case. Take sup and 𝐵 = 𝑂 (

√
𝑛) for example. To prove

the polynomial upper bound, our proof can be viewed as upper-bounding the “volume” of the intersection of an 𝑂 (
√
𝑛) neighborhood of∑𝑛

𝑗=1 𝜋 𝑗 and H𝐵 . We prove that, in 𝑑0 dimensions, the volume is large, and each such dimension contributes a multiplicative 𝑂 (1) factor to

the likelihood; in 𝑑Δ dimensions, the volume is 𝑂 (𝐵), and each such dimension contributes a multiplicative 𝑂

(
𝐵+1√
𝑛

)
factor to the likelihood;

and in the remaining 𝑞 − 𝑑∞ dimensions, the volume is 𝑂 (1), and each such dimension contributes a multiplicative 𝑂 ( 1√
𝑛
) factor to the

likelihood. Putting all together, this proves the desired upper bound

𝑂 (1)𝑑0 ×𝑂
(
𝐵 + 1

√
𝑛

)𝑑Δ
×𝑂

(
1

√
𝑛

)𝑞−𝑑∞
= 𝑂

(
(𝐵 + 1)𝑑Δ
(
√
𝑛)𝑞−𝑑0

)
To prove the polynomial lower bound, we first pretend that the PMV can take non-integer values, then enumerate (possibly non-integral)

vectors that are far away from each other by exploring two directions. The first direction is the convex hull of C0, which is a (𝑑0 − 1)-
dimensional space that represents no budget (𝐵 = 0), and each such dimension contributes an Ω(

√
𝑛) multiplicative factor to the total number

of desirable vectors. The second direction is the convex hull of C∞, which is a 𝑑Δ-dimensional space that represents infinite budget (𝐵 = ∞),

and each such dimension contributes an Ω(𝐵 + 1) multiplicative factor to the total number of desirable vectors. Then, we prove that for each

such (possibly non-integral) vector, there exists a nearby integer vector, and apply the pointwise concentration bound [77, Lemma 1] to

prove the desired lower bound. The full proof can be found in Appendix E.2.

C.4 Step 3 of The Proof: Prove and Apply the PMV-Multi-Instability Theorem
In this subsection, we first extend Theorem 2 to solve the PMV-multi-instability problem (Definition 6) in Theorem 3, then apply it to prove

Theorem 1. For every 𝑖 ≤ 𝐼 , we use superscript 𝑖 to denote the notation defined for S𝑖 . For example, 𝑑𝑖
0
, and 𝑑𝑖Δ denote 𝑑0 and 𝑑Δ for S𝑖 . To

present the result, it is convenient to define the following graph.

Definition 12 (Activation graph for PMV-multi-instability). Given a PMV multi-instability settingM = {S𝑖 : 𝑖 ≤ 𝐼 }, 𝑛, and 𝐵, we
define a weighted undirected bipartite graph, called activation graph and is denoted by A𝑛,𝐵 , as follows.

• Vertices. There are two sides of vertices: CH(Π) and {S1, . . . ,S𝐼 }.
• Edges and weights. For any 𝜋 ∈ CH(Π) and any S𝑖 ∈ M, the weight on the edge between 𝜋 and S𝑖 , denoted by𝑤𝑛,𝐵 (𝜋,S𝑖 ), is defined
as follows: for every PMV-instability setting S, define

𝑤𝑛,𝐵 (𝜋,S) ≜


−∞ if U𝑛,𝐵 = ∅
− 2𝑛
log𝑛

if U𝑛,𝐵 ≠ ∅ and 𝜋 ∉ C0
𝑑0 + 𝑑Δ ·min

{
2 log(𝐵+1)

log𝑛
, 1

}
otherwise

(8)

Notice that while the conditions in (8) depend on 𝜋 , the values of𝑤𝑛,𝐵 (𝜋,S) do not depend on 𝜋 , and they are chosen so that (
√
𝑛)𝑤𝑛,𝐵

corresponds to the values in the exponential cases and polynomial cases of Theorem 2. Specifically, the − 2𝑛
log𝑛

value in the second case is

chosen so that (
√
𝑛)−

2𝑛
log𝑛 = exp(−𝑛), which corresponds to the exponential cases.

Given the PMV multi-instability setting M = {S𝑖 : 𝑖 ≤ 𝐼 }, 𝐵, and 𝑛, let 𝑤max denote the maximum weigh on edges in A𝑛,𝐵 and let

(𝜋max, 𝑖max) denote an arbitrary edge with the max weight. That is,

𝑤max ≜ max𝜋∈CH(Π),𝑖≤𝐼
{
𝑤𝑛,𝐵 (𝜋,S𝑖 )

}
and (𝜋max, 𝑖max) ≜ argmax𝜋∈CH(Π),𝑖≤𝐼 𝑤𝑛,𝐵 (𝜋,S𝑖 )

Let𝑤min denote the weight of the minimax weighted edge in A𝑛,𝐵 , denoted by (𝜋min, 𝑖min), where min is taken over all 𝜋 ∈ CH(Π) and
max is taken over all edges connected to 𝜋 . That is,

𝑤min ≜ min𝜋∈CH(Π) max𝑖≤𝐼
{
𝑤𝑛,𝐵 (𝜋,S𝑖 )

}
, 𝜋min ≜ argmin𝜋∈CH(Π) max𝑖≤𝐼 𝑤𝑛,𝐵 (𝜋,S𝑖 ),

and 𝑖min ≜ argmax𝑖≤𝐼 𝑤𝑛,𝐵 (𝜋min,S𝑖 )
Notice that 𝑖max and 𝑖min are both in [𝑞] and𝑤max,𝑤min, 𝑖max, and 𝑖min depend on 𝐵 and 𝑛, which are clear from the context.
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Theorem 3 (Semi-Random PMV-multi-instability, 𝑩 = 𝑶 (𝒏)). Given any 𝑞 ∈ N, any closed and strictly positive Π over [𝑞], and any
PMV multi-instability setting M = {S𝑖 : 𝑖 ≤ 𝐼 }, there exists a constant 𝐶1 > 0 so that for any 𝑛 ∈ N and any 𝐵 ≥ 0 with 𝐵 ≤ 𝐶1𝑛,

sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ UM

𝑛,𝐵

)
=


0 if𝑤max = −∞
exp(−Θ(𝑛)) if𝑤max = − 2𝑛

log𝑛

Θ
((

1√
𝑛

)𝑞−𝑤max

)
otherwise

inf

®𝜋∈Π𝑛
Pr

(
®𝑋 ®𝜋 ∈ UM

𝑛,𝐵

)
=


0 if𝑤min = −∞
exp(−Θ(𝑛)) if𝑤min = − 2𝑛

log𝑛

Θ
((

1√
𝑛

)𝑞−𝑤min

)
otherwise

The proof can be found in Appendix F.1. Notice that in Theorem 3, when𝑤max > 0 and𝑤min > 0, we have(
1

√
𝑛

)𝑞−𝑤max

=
min{𝐵 + 1,

√
𝑛}𝑑

𝑖max

Δ

(
√
𝑛)𝑞−𝑑

𝑖max

0

and

(
1

√
𝑛

)𝑞−𝑤min

=
min{𝐵 + 1,

√
𝑛}𝑑

𝑖
min

Δ

(
√
𝑛)𝑞−𝑑

𝑖
min

0

(9)

Recall from Lemma 1 that any coalitional influence problem 𝑋 ∈ {CM,MoV} under any GSR 𝑟 can be represented by a PMV-multi-instability

problem. Therefore, Theorem 1 follows immediately after Theorem 3 and (9). □

D Materials for Section 3.1
D.1 Full Version of Lemma 1 and Its Proof
Lemma1. (Coalitional Influence as PMV-multi-instability, Full Version). For any coalitional influence problem𝑋 ∈ {CM,MoV,CB𝑑,®𝑐 ,DB𝑑,®𝑐 , e-CB𝑑,®𝑐 , e-DB𝑑,®𝑐 }
and any GSR 𝑟 , there exist a set M = {S𝑖 : 𝑖 ≤ 𝐼 } of 𝐼 PMV-instability settings such that for every 𝑛-profile 𝑃 and every 𝐵 ≥ 0, 𝑋 (𝑟, 𝑃, 𝐵) = 1 if
and only if Hist(𝑃) ∈ UM

𝑛,𝐵
.

Proof. We first recall some formal notation about GSR. For any real number 𝑥 , let Sign(𝑥) ∈ {+,−, 0} denote the sign of 𝑥 . Given a

set of 𝐾 hyperplanes in the 𝑞-dimensional Euclidean space, denoted by ®𝐻 = ( ®ℎ1, . . . , ®ℎ𝐾 ), for any ®𝑥 ∈ R𝑞 , we let Sign ®𝐻 ( ®𝑥) = (Sign( ®𝑥 ·
®ℎ1), . . . , Sign( ®𝑥 · ®ℎ𝐾 )). In other words, for any 𝑘 ≤ 𝐾 , the 𝑘-th component of Sign ®𝐻 ( ®𝑥) equals to 0, if ®𝑝 lies in hyperplane

®ℎ𝑘 ; and it equals to

+ (respectively, −) if ®𝑝 lies in the positive (respectively, negative) side of
®ℎ𝑘 . Each element in {+,−, 0}𝐾 is called a signature.

Definition 13 (Feasible signatures). Given integer ®𝐻 with 𝐾 = | ®𝐻 |, let S𝐾 = {+,−, 0}𝐾 . A signature ®𝑡 ∈ S𝐾 is feasible, if there exists
®𝑥 ∈ R𝑚! such that Sign ®𝐻 ( ®𝑥) = ®𝑡 . Let S ®𝐻 ⊆ S𝐾 denote the set of all feasible signatures.

The domain of any GISR 𝑟 can be naturally extended to R𝑚!
and to S ®𝐻 . Specifically, for any ®𝑡 ∈ S ®𝐻 we let 𝑟 (®𝑡) = 𝑔(®𝑡). It suffices to define

𝑔 on the feasible signatures, i.e., S ®𝐻 .
See [78, Section D.2] for the GSR representations of some commonly-studied voting rules, especially the rules defined in Appendix B.1.

Next, given ®𝐻 and a feasible signature ®𝑡 , we recall from [78, Section D.4] the definition of H ®𝐻,®𝑡
that represents profiles whose signatures

are ®𝑡 .

Definition 14 (H
®𝑯,®𝒕 (H®𝒕 in short)). For any ®𝐻 = ( ®ℎ1, . . . , ®ℎ𝐾 ) ∈ (R𝑑 )𝐾 and any ®𝑡 ∈ S ®𝐻 , we let A

®𝑡 =


A®𝑡
+

A®𝑡
−

A®𝑡
0

 , where
• A®𝑡

+ consists of a row −®ℎ𝑖 for each 𝑖 ≤ 𝐾 with 𝑡𝑖 = +.
• A®𝑡

− consists of a row ®ℎ𝑖 for each 𝑖 ≤ 𝐾 with 𝑡𝑖 = −.
• A®𝑡

0
consists of two rows −®ℎ𝑖 and ®ℎ𝑖 for each 𝑖 ≤ 𝐾 with 𝑡𝑖 = 0.

Let b®𝑡 = [ −®1︸︷︷︸
for A®𝑡

+

, −®1︸︷︷︸
for A®𝑡

−

, ®0︸︷︷︸
for A®𝑡

0

]. The corresponding polyhedron is denoted byH ®𝐻,®𝑡 , or H ®𝑡 in short when ®𝐻 is clear from the context.

Then, we formally define some vote operations that will be used in the proof.

Definition 15. We define four vote operations as follows.

• Vote change: O± = {Hist(𝑅2) − Hist(𝑅1) : 𝑅1, 𝑅2 ∈ L(A)}.
• Motivated vote change: for any pair of different alternatives 𝑎, 𝑏, let

O𝑎→𝑏± = {Hist(𝑅𝑏 ) − Hist(𝑅𝑎) : 𝑅𝑏 , 𝑅𝑎 ∈ L(A) and 𝑏 ≻𝑅𝑎 𝑎}
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• Generalized vote change: for any pair of different alternatives 𝑎, 𝑏, let

O∗± = {Hist(𝑅1),Hist(𝑅2),Hist(𝑅2) − Hist(𝑅1) : 𝑅1, 𝑅2 ∈ L(A)}

We are now ready to define the PMV-instability settings whose union models the coalitional influence problems described in the statement

of the proposition.

• 𝑿 = CM. For every pair of different alternatives 𝑎, 𝑏, and every pair of feasible signatures ®𝑡𝑎, ®𝑡𝑏 such that 𝑟 (®𝑡𝑎) = {𝑎} and 𝑟 (®𝑡𝑏 ) = {𝑏},
M contains

⟨H ®𝑡𝑎 ,H ®𝑡𝑏 ,O𝑎→𝑏± , ®1 ⟩
• 𝑿 = MoV. For every pair of different alternatives 𝑎, 𝑏, and every pair of feasible signatures ®𝑡𝑎, ®𝑡𝑏 such that 𝑟 (®𝑡𝑎) = {𝑎} and 𝑟 (®𝑡𝑏 ) = {𝑏},
M contains

⟨H ®𝑡𝑎 ,H ®𝑡𝑏 ,O±, ®1 ⟩
• 𝑿 = CB𝒅,®𝒄 . For every every pair of feasible signatures ®𝑡, ®𝑡𝑎 such that 𝑟 (®𝑡𝑎) = {𝑎} ,M contains

⟨H ®𝑡 ,H ®𝑡𝑎 ,O∗±, ®𝑐 ⟩
• 𝑿 = DB𝒅,®𝒄 . For every alternative 𝑏 ≠ 𝑎, and every pair of feasible signatures ®𝑡, ®𝑡𝑏 such that 𝑟 (®𝑡𝑏 ) = {𝑏}, M contains

⟨H ®𝑡 ,H ®𝑡𝑏 ,O∗±, ®𝑐 ⟩
• 𝑿 = e-CB𝒅,®𝒄 . For every every pair of feasible signatures ®𝑡, ®𝑡𝑎 such that 𝑟 (®𝑡) ≠ {𝑎} and 𝑟 (®𝑡𝑎) = {𝑎} , M contains

⟨H ®𝑡 ,H ®𝑡𝑎 ,O∗±, ®𝑐 ⟩
• 𝑿 = e-DB𝒅,®𝒄 . For every alternative 𝑏 ≠ 𝑎, and every pair of feasible signatures ®𝑡𝑎, ®𝑡𝑏 such that 𝑟 (®𝑡𝑎) = {𝑎} and 𝑟 (®𝑡𝑏 ) = {𝑏}, M
contains

⟨H ®𝑡𝑎 ,H ®𝑡𝑏 ,O∗±, ®𝑐 ⟩
□

E Materials for Section C.3
E.1 Properties of 𝐵Π∗ and 𝐵−

Π∗

Claim 1. For any convex and compact set Π∗, if 𝐵Π∗ ≠ ∞ then Π∗ ∩ C𝐵Π∗ ≠ ∅.

Proof. Let {𝐵 𝑗 : 𝑗 ∈ N} denote a sequence that converges to 𝐵Π∗ , such that for all 𝑗 ∈ N, Π∗ ∩ C𝐵 𝑗
≠ ∅. For any 𝑗 ∈ N, let ®𝑦 𝑗 ∈ Π∗ ∩ C𝐵 𝑗

denote an arbitrary vector. Because Π∗
is compact, a subsequence of {®𝑦 𝑗 : 𝑗 ∈ N}, denoted by {®𝑦 𝑗𝑖 : 𝑖 ∈ N} converges to a vector ®𝑦∗ ∈ Π∗

.

Notice that ®𝑦 𝑗𝑖 is in Π∗
,HS,≤0, and both are closed sets. Therefore, ®𝑦∗ ∈ Π∗ ∩HS,≤0.

Next, we prove that ®𝑦∗ ∈ C𝐵Π∗ . For every 𝑖 ∈ N, let ®𝑜 𝑗𝑖 ∈ R
|O |
≥0 denote the operation vector such that ®𝑐 · ®𝑜 𝑗𝑖 ≤ 𝐵 𝑗𝑖 and ®𝑦 𝑗𝑖 + ®𝑜 𝑗𝑖 ×O ∈ HT,≤0.

Let ®𝑥 𝑗𝑖 = ®𝑦 𝑗𝑖 + ®𝑜 𝑗𝑖 ×O. Because ®𝑜 𝑗𝑖 ’s are bounded (®𝑐 · ®𝑜 𝑗𝑖 ≤ 𝐵1), there exists a subsequence { 𝑗 ′
1
: 𝑖 ∈ N} of { 𝑗1 : 𝑖 ∈ N} such that ®𝑜 𝑗 ′

𝑖
converges

to a vector ®𝑜∗. It is not hard to verify that ®𝑐 · ®𝑜∗ ≤ 𝐵Π∗ and {®𝑥 𝑗 ′
𝑖
= ®𝑦 𝑗 ′

𝑖
+ ®𝑜 𝑗 ′

𝑖
× O : 𝑖 ∈ N} converges to ®𝑦∗ + ®𝑜∗ × O. Because for all 𝑖 ∈ N,

®𝑥 𝑗 ′
𝑖
∈ HT,≤0 andHT,≤0 is closed, we have ®𝑦∗ + ®𝑜∗ ×O ∈ HT,≤0 as well. This proves that ®𝑦∗ ∈ C𝐵Π∗ , which completes the proof of Claim 1. □

Claim 2. For any bounded set Π∗, if Π∗ ⊆ C∞ then 𝐵−Π∗ ≠ ∞.

Proof. It suffices to prove that there exists 𝐵∗ ≥ 0 so that Π∗ ⊆ C𝐵∗ . Because Π∗
is bounded, let 𝑄 denote any cube that contains

Π∗
. Because 𝑄 is a polytope and C∞ is a polyhedral cone, 𝑄 ∩ C∞ is a polytope that contains Π∗

. Let the V-representation of 𝑄 ∩ C∞ be

CH({®𝑥1, . . . , ®𝑥𝑘 }) for some 𝑘 ∈ N. For every 𝑗 ≤ 𝑘 , because ®𝑥 + 𝑗 ∈ C∞, there exists 𝐵 𝑗 ≥ 0 such that ®𝑥 𝑗 ∈ C𝐵 𝑗
. Let 𝐵∗ = max{𝐵1, . . . , 𝐵𝑘 }. It

follows that Π∗ ⊆ 𝑄 ∩ C∞ ⊆ C𝐵∗ , which proves Claim 2. □

E.2 Proof of Theorem 2
Theorem 2. (Semi-Random Likelihood of PMV-Instability Problem). Given any 𝑞 ∈ N, any closed and strictly positive Π over [𝑞], and
any PMV-instability setting ⟨HS,HT,O, ®𝑐 ⟩, any 𝐶2 > 0 and 𝐶3 > 0 with 𝐶2 < 𝐵CH(Π) < 𝐶3, any 𝑛 ∈ N, and any 𝐵 ≥ 0,

Name Likelihood Condition

sup ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
=



0 case 0 𝜅1
exp case exp(−Θ(𝑛)) ¬𝜅1 ∧ 𝜅2

PT-Θ(
√
𝑛) Θ

(
min{𝐵 + 1,

√
𝑛}𝑑Δ

(
√
𝑛)𝑞−𝑑0

)
¬𝜅1 ∧ ¬𝜅3

PT-Θ(𝑛)
exp(−Θ(𝑛)) if 𝐵 ≤ 𝐶2𝑛
Θ

(
( 1√
𝑛
)𝑞−𝑑∞

)
if 𝐵 ≥ 𝐶3𝑛

otherwise, i.e.,
¬𝜅1 ∧ ¬𝜅2 ∧ 𝜅3
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For any 𝐶−
2
< 𝐵−CH(Π) < 𝐶

−
3
, any 𝑛 ∈ N, and any 𝐵 ≥ 0,

Name Likelihood Condition

inf ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
=



0 case 0 𝜅1
exp case exp(−Θ(𝑛)) ¬𝜅1 ∧ 𝜅4

PT-Θ(
√
𝑛) Θ

(
min{𝐵 + 1,

√
𝑛}𝑑Δ

(
√
𝑛)𝑞−𝑑0

)
¬𝜅1 ∧ ¬𝜅5

PT-Θ(𝑛)
exp(−Θ(𝑛)) if 𝐵 ≤ 𝐶−

2
𝑛

Θ
(
( 1√
𝑛
)𝑞−𝑑∞

)
if 𝐵 ≥ 𝐶−

3
𝑛

otherwise, i.e.,
¬𝜅1 ∧ ¬𝜅4 ∧ 𝜅5

Proof. We first prove the sup part of the theorem, then leverage the techniques to prove the inf part.

Proof for the sup part. For convenience, hyperlinks (in red) to the proofs of four cases are provided as follows.

sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
=



0 case 0 𝜅1

exponential case exp(−Θ(𝑛)) 𝜅2

¬𝜅1PT-Θ(𝑛)-sup
exp(−Θ(𝑛)) 𝐵 ≤ 𝐶2𝑛 ¬𝜅2 ∧ 𝜅3

Θ

(
( 1

√
𝑛
)𝑞−𝑑∞

)
𝐵 ≥ 𝐶3𝑛 ¬𝜅2 ∧ 𝜅3

PT-Θ(
√
𝑛)-sup Θ

(
min{𝐵,

√
𝑛}𝑑Δ

(
√
𝑛)𝑞−𝑑0

)
¬𝜅3

Proof for the 0 case of sup is straightforward, becauseU𝑛,𝐵 = ∅ states that the PMV-instability problem does not have a size-𝑛 non-negative

integer solution. In the rest of the proof for sup, it suffices prove the exponential case and the polynomial case for all 𝑛 that are larger than a

constant 𝑁 . This is because for any 𝑛 such that the 0 case does not hold (which means thatU𝑛,𝐵 ≠ ∅), and for every ®𝜋 ∈ Π𝑛 ,

Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
∈ [𝜖𝑛, 1]

Therefore, for every 𝑛 below a constant 𝑁 , we have

sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
∈ [𝜖𝑁 , 1],

Proof for the exponential case of sup. Because CH(Π) ∩ C∞ = ∅, CH(Π) is convex and compact, and C∞ is convex, due to the strict

hyperplane separation theorem, for every ®𝜋 ∈ Π𝑛 ,
∑𝑛
𝑖=1 𝜋𝑖 is Ω(𝑛) away from any vector in C∞, which means that

∑𝑛
𝑖=1 𝜋𝑖 is Ω(𝑛) away

from any vector in H∞, because C∞ is the characteristic cone ofH∞ as proved in the following claim.

Claim 3. The characteristic cone ofH∞ is C∞.

Proof. We prove two general observations about characteristic cones. For each 𝑖 ∈ {1, 2}, let H 𝑖
denote a polyhedron whose V-

representation is V𝑖 + H 𝑖
≤0, whereV𝑖 is a convex polytope andH 𝑖

≤0 is the characteristic cone of H
𝑖
.

Observation 1. The characteristic cone ofH1 + H2
isH1

≤0 + H2

≤0. This is because

H1 + H2 = (V1 + V2) + (H1

≤0 + H2

≤0)
Here H1

≤0 + H2

≤0 is indeed a finitely generated cone, because suppose for 𝑖 ∈ {1, 2}, H 𝑖
≤0 is the convex cone generated from B𝑖 , then

it is not hard to verify thatH1

≤0 + H2

≤0 is a cone generated by B1 ∪ B2.

Observation 2. If H1 ∩H2 ≠ ∅, then its characteristic cone is H1

≤0 ∩H2

≤0. This is proved by the H-representations ofH1
andH2

.

Suppose for each 𝑖 ∈ {1, 2},H 𝑖 = {®𝑥 : A𝑖 × (®𝑥)⊤ ≤ (b𝑖 )⊤}, which means thatH 𝑖
≤0 =

{
®𝑥 : A𝑖 × (®𝑥)⊤ ≤

(
®0
)⊤}

. Then, we have

H1 ∩H2 =

{
®𝑥 :

[
A1

A2

]
× (®𝑥)⊤ ≤ (b1, b2)⊤

}
,

whose characteristic cone is

{
®𝑥 :

[
A1

A2

]
× (®𝑥)⊤ ≤

(
®0
)⊤}

= H1

≤0 ∩H2

≤0.

Recall that H∞ = HS ∩ (HT + Q∞). By Observation 1, the characteristic cone of HT + Q∞ is HT,≤0 + Q∞. Then, by Observation 2, the

characteristic cone ofH∞ isHS,≤0 ∩
(
HT,≤0 + Q∞

)
, which is C∞ (due to (5)). □
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Then, the upper bound in the exponential case of sup follows after a straightforward application of Hoeffding’s inequality and the union

bound (applied to all 𝑞 dimension). More precisely, recall that ®𝜋 is strictly positive, then Hoeffding’s inequality implies that for every 𝑖 ∈ [𝑞],
the probability for the 𝑖th dimension of ®𝑋 ®𝜋 to be more than Ω(𝑛) away from the 𝑖th dimension of

∑
𝑗=1 𝜋 𝑗 is exponentially small. Therefore,

according to the union bound, the probability for the 𝐿∞ distance between ®𝑋 ®𝜋 and

∑
𝑗=1 𝜋 𝑗 to be Ω(𝑛) is exponentially small, which implies

that the probability for ®𝑋 ®𝜋 to be in U𝑛,𝐵 is exponentially small. The lower bound in the exponential case is straightforward, because for any

®𝜋 ∈ Π𝑛 (recall that all distributions in ®𝜋 are strictly positive) and any ®𝑥 ∈ U𝑛,𝐵 , Pr( ®𝑋 ®𝜋 = ®𝑥) = exp(−Θ(𝑛)).

Proof for the phase transition at 𝚯(
√
𝒏) case of sup (PT-𝚯(

√
𝒏)-sup for short). The proof proceeds in the following three steps:

• Prove the polynomial upper bound for 𝐵 ≤
√
𝑛, i.e., 𝑂

(
(𝐵 + 1)𝑑Δ
(
√
𝑛)𝑞−𝑑0

)
.

• Prove the polynomial upper bound for 𝐵 >
√
𝑛, i.e., 𝑂

(
( 1√
𝑛
)𝑞−𝑑∞

)
.

• Prove the asymptotically matching polynomial lower bound, i.e., Ω

(
min{𝐵 + 1,

√
𝑛}𝑑Δ

(
√
𝑛)𝑞−𝑑0

)
We first introduce some notation and assumptions that will be used in the proofs. Let A0 =

[
AS

AT

]
and let A∞ denote an integer matrix that

characterizes C∞. That is,

C∞ =

{
®𝑥 ∈ R𝑞 : A∞ × (®𝑥)⊤ ≤

(
®0
)⊤}

The existence of such A∞ is due to [13, Proposition 3.12], which states that any polyhedron that has a rational H-representation has a

rational V-representation, and vice versa. More precisely, because HT,≤0 has a rational H-representation, it has a rational V-representation,
denoted by Cone({®𝑥1, . . . , ®𝑥𝑘 }), where {®𝑥1, . . . , ®𝑥𝑘 } ⊆ Q𝑞 . Then, we have

HT,≤0 + Q∞ = Cone({®𝑥1, . . . , ®𝑥𝑘 } ∪ O),

which means that HT,≤0 + Q∞ can be represented by a set of linear inequalities with rational coefficients, due to [13, Proposition 3.12].

Consequently,HS,≤0 ∩ (HT,≤0 + Q∞) can be represented by a set of linear inequalities with rational coefficients, by combining the linear

inequalities for HS,≤0 and the linear inequalities forHT,≤0 + Q∞.

Let A=
0
and A=

∞ denote the implicit equalities of A0 and A∞, respectively. We have Rank(A=
0
) = 𝑞 − 𝑑0 and Rank(A=

∞) = 𝑞 − 𝑑∞ ([13,

Theorem 3.17]). Next, we show that, without loss of generality, in the rest of the proof for PT-Θ(
√
𝑛)-sup, we can assume that ®1 cannot be

represented as a linear combination of rows in A=
0
or a linear combination of rows in A=

∞. Formally,

Assumption 1. Rank
( [

A=
0

®1

] )
= 𝑞 − 𝑑0 + 1.

Assumption 2. Rank
( [

A=
∞
®1

] )
= 𝑞 − 𝑑∞ + 1.

To see that we can assume Assumption 1, suppose for the sake of contradiction that Assumption 1 does not hold, which means that ®1 is a
linear combination of rows in A=

0
. Then, for every ®𝑥 ∈ C0 = HS,≤0 ∩HT,≤0, we have ®𝑥 · 1 = 0. Therefore, CH(Π) ∩ C0 = ∅, which contradicts

¬𝜅3. Similarly, if Assumption 2 does not hold, then we have CH(Π) ∩ C∞ = ∅, which again contradicts ¬𝜅3, because C0 ⊆ C∞.

Proof for the polynomial upper bound of PT-𝚯(
√
𝒏)-sup, 𝑩 ≤

√
𝒏.

Overview of proof. The proof proceeds in three steps. In Step 1, we use A=
0
and A=

∞ to define a partition of [𝑞] into three sets 𝐼0+, 𝐼0− , and
𝐼1, which contain 𝑞 − 𝑑0 + 1, 𝑑∞ − 𝑑0, and 𝑑∞ − 1 numbers, respectively. For convenience, we rename the coordinates so that

1, . . . , 𝑞 − 𝑑∞ + 1︸               ︷︷               ︸
𝐼0+

, 𝑞 − 𝑑∞ + 2, . . . , 𝑞 − 𝑑0 + 1︸                           ︷︷                           ︸
𝐼0−

, 𝑞 − 𝑑0 + 2, . . . , 𝑞︸              ︷︷              ︸
𝐼1

Let 𝐼1+ = 𝐼0− ∪ 𝐼1 and let 𝐼0 = 𝐼0+ ∪ 𝐼0− . Step 2 proves two properties of the partition. LetH𝐵,𝑛 = {®𝑥 ∈ H𝐵 : ®𝑥 · ®1 = 𝑛} denote the subset of
H𝐵 that consists of all size-𝑛 vectors. First, in Step 2.1, we prove that given the 𝐼1+ coordinates of vectors in H𝐵,𝑛 , each of its remaining

coordinates (in 𝐼0+) can take no more than𝑂 (1) integer values. Second, in Step 2.2, we prove that given the 𝐼1 coordinates of vectors inH𝐵,𝑛 ,

each of its remaining coordinates (in 𝐼0) can take no more than 𝑂 (𝐵) integer values.
In light of Step 2.1 and Step 2.2, we can enumerate integer vectors ®𝑦 in H𝐵,𝑛 as follows: first, we fix the 𝐼1 coordinates of ®𝑦; second, each

of the 𝑑Δ = 𝑑∞ −𝑑0 coordinates in 𝐼0− takes no more than𝑂 (𝐵) integer values; and finally, each of the 𝑞 −𝑑∞ + 1 coordinates in 𝐼0+ takes no

more than 𝑂 (1) integer values. Then in Step 3, we leverage this enumeration method with the Bayesian network representation and the

point-wise anti-concentration bound in [77] to prove the upper bound.
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Step 1 of poly upper bound: Define the partition [𝒒] = 𝑰0+ ∪ 𝑰0− ∪ 𝑰1. Let P0 and P∞ denote the affine hulls of C0 and C∞, respectively

(which are the same as the linear spaces generated by C0 and C∞, because both contains ®0). It follows from [13, Theorem 3.17] that

P0 =

{
®𝑥 ∈ R𝑞 : A=

0
× (®𝑥)⊤ =

(
®0
)⊤}

and P∞ =

{
®𝑥 ∈ R𝑞 : A=

∞ × (®𝑥)⊤ =

(
®0
)⊤}

(10)

That is, P0 (respectively, P∞) consists of vectors that satisfies of the implicit equalities of A0 (respectively, A∞).

Let A∗ =

[
A=
∞

A=
0

]
. We will define a partition of [𝑞] as 𝐼0+ ∪ 𝐼0− ∪ 𝐼1, where |𝐼0+ | = 𝑞 − 𝑑∞ + 1, |𝐼0− | = 𝑑Δ, and |𝐼1 | = 𝑑0 − 1, and the

partition satisfies the following two conditions.

• Condition 1. The 𝐼0+ columns of

[
A=
∞
®1

]
are linearly independent.

• Condition 2. The 𝐼0+ ∪ 𝐼0− columns of

[
A=
0

®1

]
are linearly independent.

We first define two sets 𝐼 ′
0+ and 𝐼 ′

0− as follows.

Define 𝑰 ′0+. Recall that Rank(A
=
∞) = 𝑞 − 𝑑∞. Therefore, A=

∞ contains a set of 𝑞 − 𝑑∞ linearly independent column vectors, whose indices are

denoted by 𝐼 ′
0+ ⊆ [𝑞]. W.l.o.g. let 𝐼 ′

0+ = {1, . . . , 𝑞 − 𝑑∞}—if this is not the case, then we shift the 𝐼 ′
0+ columns in A=

∞ to be the first 𝑞 − 𝑑∞
columns and rename the coordinates.

Define 𝑰 ′0− . Notice that the 𝐼
′
0+ columns of A∗ are linearly independent (because their A=

∞ parts are already linearly independent). Because

C0 ⊆ C∞, we have P0 ⊆ P∞, which means that{
®𝑥 ∈ R𝑞 : A∗ × (®𝑥)⊤ =

(
®0
)⊤}

= P∞ ∩ P0 = P0

This means that Rank(A∗) = Rank(A=
0
) = 𝑞 − 𝑑0. Consequently, there exist a set of 𝑞 − 𝑑0 − (𝑞 − 𝑑∞) = 𝑑∞ − 𝑑0 = 𝑑Δ columns of A∗, whose

indices are denoted by 𝐼 ′
0− ⊆ ([𝑞] \ 𝐼 ′

0+), such the 𝐼 ′
0+ ∪ 𝐼

′
0− columns of A∗ are linearly independent. W.l.o.g., let 𝐼 ′

0− = {𝑞 −𝑑∞ + 1, . . . , 𝑞 −𝑑0}.

Notice that the 𝐼 ′
0+ columns of

[
A=
∞
®1

]
are linearly independent (because their A=

∞ parts are already linearly independent). Let 𝐽 denote

the indices to columns of

[
A=
∞
®1

]
that are linearly independent with the 𝐼 ′

0+ columns. That is,

𝐽 =

{
𝑖+ ∈ ([𝑞] \ 𝐼 ′

0+) : the 𝐼
′
0+ ∪ {𝑖+} columns of

[
A=
∞
®1

]
are linearly independent

}
(11)

By definition, we have 𝐽 ≠ ∅, because according to Assumption 2,

Rank

( [
A=
∞
®1

] )
= Rank

(
A=
∞

)
+ 1 = 𝑞 − 𝑑∞ + 1 > 𝑞 − 𝑑∞ = |𝐼 ′

0+ |

Next, we define two specific columns: 𝑖+ ∈ 𝐽 and 𝑖− in the following two cases ( 𝑖+ = 𝑖− in case 2), prove that the 𝐼 ′
0+ ∪ 𝐼

′
0− ∪ {𝑖−} columns of[

A∗
®1

]
are linearly independent (in Claim 4), and then use them to define 𝐼0+, 𝐼0− and 𝐼1.

• Case 1: 𝑱 ∩ 𝑰 ′0− ≠ ∅. Let 𝑖+ denote an arbitrary number in 𝐽 ∩ 𝐼 ′
0− and let 𝑖− ∈ ([𝑞] \ (𝐼 ′

0+ ∪ 𝐼 ′
0−)) denote an arbitrary number such

that the 𝐼 ′
0+ ∪ 𝐼 ′

0− ∪ {𝑖−} columns of

[
A∗
®1

]
are linearly independent. The existence of such 𝑖− is guaranteed by the following two

observations. First, according to the definitions of 𝐼 ′
0+ and 𝐼 ′

0− , the 𝐼
′
0+ ∪ 𝐼 ′

0− columns of

[
A∗
®1

]
are linearly independent. Second,

according to Assumption 1,

Rank

( [
A∗
®1

] )
≥ Rank

( [
A=
0

®1

] )
= Rank

(
A=
0

)
+ 1 = 𝑞 − 𝑑0 + 1 > 𝑞 − 𝑑0 = |𝐼 ′

0+ ∪ 𝐼 ′
0− |

• Case 2: 𝑱 ∩ 𝑰 ′0− = ∅. Choose any 𝑖+ ∈ 𝐽 ⊆ 𝐼1 and let 𝑖− = 𝑖+. We now prove that the 𝐼 ′
0+ ∪ 𝐼 ′

0− ∪ {𝑖−} columns of

[
A∗
®1

]
are linearly

independent. Suppose for the sake of contradiction this is not true, which means that column 𝑖− of

[
A∗
®1

]
can be written as an affine

combination of the 𝐼 ′
0+ ∪ 𝐼 ′

0− columns of

[
A∗
®1

]
=


A∞
A0

®1

 . This mean that column 𝑖− of

[
A=
∞
®1

]
can be written as the same affine
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combination of the 𝐼 ′
0+ ∪ 𝐼

′
0− columns of

[
A=
∞
®1

]
. Recall that 𝐽 ∩ 𝐼 ′

0− = ∅, which means that in matrix

[
A=
∞
®1

]
, each column in 𝐼 ′

0− is

an affine combination of the 𝐼 ′
0+ columns of

[
A=
∞
®1

]
. Therefore, in

[
A=
∞
®1

]
, column 𝑖− is linearly dependent with the 𝐼 ′

0+ columns.

This contradicts the definition of 𝑖− , which is the same as 𝑖+ ∈ 𝐽 .
Notice that in both cases, the following claim holds.

Claim 4. The 𝐼 ′
0+ ∪ 𝐼 ′

0− ∪ {𝑖−} columns of
[
A∗
®1

]
are linearly independent.

Define 𝑰0+, 𝑰0− , and 𝑰1. Given 𝐼 ′
0+, 𝐼

′
0− , 𝑖+, and 𝑖− defined above, we are now ready to define 𝐼0+, 𝐼0− , and 𝐼1 as follows. Let

𝐼0+ = 𝐼 ′
0+ ∪ {𝑖+}, 𝐼0− = 𝐼 ′

0− ∪ {𝑖−} \ {𝑖+}, and 𝐼1 = [𝑞] \ (𝐼0+ ∪ 𝐼0−)

By definition, we have |𝐼0+ | = 𝑞 − 𝑑∞ + 1, |𝐼0+ | = 𝑑0 − 𝑑∞, and |𝐼1 | = 𝑑0 − 1. For convenience, we rename the coordinates so that

𝐼0+ = {1, . . . , 𝑞 − 𝑑∞ + 1}, 𝐼0− = {𝑞 − 𝑑∞ + 2, . . . , 𝑞 − 𝑑0 + 1} and 𝐼1 = {𝑞 − 𝑑0 + 2, . . . , 𝑞}

Verify Condition 1. Because 𝑖+ ∈ 𝐽 , the 𝐼0+ = 𝐼 ′
0+ ∪ {𝑖+} columns of

[
A=
∞
®1

]
are linearly independent (due to the definition of 𝐽 in (11)),

which means that Condition 1 is satisfied.

Verify Condition 2. Recall that when defining 𝑖− , we proved that the 𝐼0+∪ 𝐼0− = 𝐼 ′
0+∪ 𝐼

′
0− ∪ {𝑖} columns of

[
A∗
®1

]
are linearly independent.

Because Rank

( [
A=
∞

A=
0

] )
= Rank(A∗) = Rank(A=

0
) = 𝑞 − 𝑑0, each row in A=

∞ can be written as an affine combination of rows in A=
0
.

Therefore, if some linear combination of the 𝐼0+ ∪ 𝐼0− = 𝐼 ′
0+ ∪ 𝐼 ′

0− ∪ {𝑖} columns of

[
A=
0

®1

]
equals to ®0, then the same linear combination of

the 𝐼0+ ∪ 𝐼0− = 𝐼 ′
0+ ∪ 𝐼 ′

0− ∪ {𝑖} columns of

[
A∗
®1

]
equals to ®0 as well, which is a contradiction to Claim 4. This verifies Condition 2.

In the remainder of the proof, we let

𝐼0 = 𝐼0+ ∪ 𝐼0− and 𝐼1+ = 𝐼1 ∪ 𝐼0−
This leads to two partitions of [𝑞], i.e., [𝑞] = 𝐼0 ∪ 𝐼1 = 𝐼0+ ∪ 𝐼1+, which will be used in the next step.

Step 2 of poly upper bound: Bound the width of coordinates in 𝑰0+ and 𝑰0. For any polyhedronH ⊆ R𝑞 , any 𝐼 ⊆ [𝑞], any ®𝑦𝐼 ∈ R𝐼 ,
and any 𝑖 ∈ ([𝑞] \ 𝐼 ), let width𝑖 (H , ®𝑦𝐼 ) denote the difference between the maximum value of the 𝑖-th component of vectors in H whose

𝐼 -components are ®𝑦𝐼 and the minimum value of the 𝑖-th component of vectors inH whose 𝐼 -components are ®𝑦𝐼 . Formally,

width𝑖 (H , ®𝑦𝐼 ) = max®𝑥∈H:[ ®𝑥 ]𝐼= ®𝑦𝐼 [®𝑥]𝑖 −min®𝑥∈H:[ ®𝑥 ]𝐼= ®𝑦𝐼 [®𝑥]𝑖

Recall thatH𝐵,𝑛 = {®𝑥 ∈ H𝐵 : ®𝑥 · ®1 = 𝑛}. In Step 2.1 and Step 2.2, we bound width𝑖 (H𝐵,𝑛, ®𝑦𝐼 ) for 𝐼 = 𝐼1+ = 𝐼0− ∪ 𝐼1 and 𝐼 = 𝐼1, respectively.

Step 2.1 of poly upper bound: Bound the width of coordinates in 𝑰0+. In this step, we prove that there exists a constant 𝐶∗
such that

for any 𝐵, any 𝑛, any ®𝑦𝐼1+ ∈ R𝐼1+ , and any 𝑖 ∈ 𝐼0+,
width𝑖 (H𝐵,𝑛, ®𝑦𝐼1+ ) ≤ 𝐶

∗

Notice that H𝐵,𝑛 ⊆ H∞,𝑛 = {®𝑥 ∈ H∞ : ®𝑥 · ®1 = 𝑛}. Therefore, it suffices to prove the following stronger inequality.

width𝑖 (H∞,𝑛, ®𝑦𝐼1+ ) ≤ 𝐶
∗

(12)

According to the V-representation of H∞, for any ®𝑦 = ( ®𝑦𝐼0+, ®𝑦𝐼1+ ) ∈ H∞,𝑛 ⊆ H∞, we can write ®𝑦 = ®𝑣 + ®𝑥 , where ®𝑣 = (®𝑣𝐼0+ , ®𝑣𝐼1+ ) is in a convex

polytope and ®𝑥 = ( ®𝑥𝐼0+ , ®𝑥𝐼1+ ) is in the characteristic cone of H∞. Let 𝑛′ = ®𝑥 · 1. Next, we use Gauss-Jordan elimination to define a matrix D∞

based on

[
A=
∞
®1

]
, such that

®𝑥𝐼0+ = ( ®𝑥𝐼1+ , 𝑛
′) × D∞ (13)

By Claim 3, we have ®𝑥 ∈ C∞ ⊆ P∞. Recall from Condition 1 that the first 𝑞 − 𝑑∞ + 1 columns (i.e., the 𝐼0+ columns) of

[
A=
∞
®1

]
are linearly independent, and recall from Assumption 2 that Rank

( [
A=
∞
®1

] )
= 𝑞 − 𝑑∞ + 1. Therefore, Gauss-Jordan elimination on
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A=
∞
®1

]
× (®𝑥)⊤ =

(
®0, 𝑛′

)⊤
leads to a 𝑑∞ × (𝑞 − 𝑑∞ + 1) matrix D∞ such that[

A=
∞
®1

]
× (®𝑥)⊤ =

(
®0, 𝑛′

)⊤
if and only if ®𝑥𝐼0+ = ( ®𝑥𝐼1+ , 𝑛

′) × D∞,

which proves (13).

Let 𝐶max denote the maximum 𝐿∞ norm of vectors inV , which means that |®𝑣 |∞ ≤ 𝐶max. Then,��𝑛 − 𝑛′�� = ���®𝑦 · ®1 − ®𝑥 · ®1
��� = |®𝑣 · ®1| ≤ 𝑞𝐶max

Let 𝐶 denote the maximum absolute value of entries in D∞ and let 𝐶∗ = 𝐶max + 2𝑞𝐶max𝐶 . We prove that ®𝑦𝐼0+ is in a 𝐶∗
neighborhood of

( ®𝑦𝐼1+ , 𝑛) × D∞ in 𝐿∞ as follows.

| ®𝑦𝐼0+ − (®𝑦𝐼1+ , 𝑛) × D∞ |∞ = |®𝑣𝐼0+ + ®𝑥𝐼0+ − (®𝑣𝐼1+ + ®𝑥𝐼1+ , 𝑛) × D∞ |∞
=|®𝑣𝐼0+ + (®𝑥𝐼1+ , 𝑛

′) × D∞ − (®𝑣𝐼1+ + ®𝑥𝐼1+ , 𝑛) × D∞ |∞ by (13)

=|®𝑣𝐼0+ − (®𝑣𝐼1+ , 𝑛 − 𝑛
′) × D∞ |∞

≤𝐶max + 2𝑞𝐶max𝐶 = 𝐶∗

This proves (12) and completes Step 2.1.

Step 2.2 of poly upper bound: Bound the width of coordinates in 𝑰0. In this step, we prove that there exists a constant 𝐶∗
such that for

any 𝐵 ≥ 0, any 𝑛, any ®𝑦𝐼1 ∈ R𝐼1 , and any 𝑖 ∈ 𝐼0,
width𝑖 (H𝐵,𝑛, ®𝑦𝐼1 ) ≤ 𝐶

∗ (𝐵 + 1) (14)

We first prove that for any ®𝑥 ∈ H𝐵 , there exists ®𝑥 ′ ∈ C0 that is 𝑂 (𝐵 + 1) away from ®𝑥 in 𝐿∞.

Claim 5. There exists 𝐶 such that for any ®𝑥 ∈ H𝐵 , there exists ®𝑥 ′ ∈ C0 such that | ®𝑥 − ®𝑥 ′ |∞ ≤ 𝐶 (𝐵 + 1).

Proof. The proof is done by analyzing the following two linear programs, denoted by LP
𝐵
H and LP

𝐵
Cone

whose variables are ®𝑥 and ®𝑜 .

LP
𝐵
H LP

𝐵
Cone

max 0

s.t. AS × (®𝑥)⊤ ≤ (bS)⊤

AT × (®𝑥 + ®𝑜 × O)⊤ ≤ (bT)⊤

−®𝑜 ≤ ®0

®𝑐 · ®𝑜 ≤ 𝐵

max 0

s.t. AS × (®𝑥)⊤ ≤
(
®0
)⊤

AT × (®𝑥 + ®𝑜 × O)⊤ ≤
(
®0
)⊤

−®𝑜 ≤ ®0

®𝑐 · ®𝑜 ≤ 0

Because ®𝑥 ∈ H𝐵 , there exists ®𝑜 ≥ ®0 such that ®𝑥 + ®𝑜 × O ∈ HT and ®𝑐 · ®𝑥 ≤ 𝐵. Therefore, ( ®𝑥, ®𝑤) is a feasible solution to LP
𝐵
H . Notice that

LP
𝐵
Cone

is feasible (for example ®0 is a feasible solution) and LP
𝐵
H and LP

𝐵
Cone

only differ on the right hand side of the inequalities. Therefore,

due to [15, Theorem 5 (i)], there exists a feasible solution ( ®𝑥 ′, ®𝑤 ′) to LP𝐵
Cone

that is no more than 𝑞Δmax{|bS − ®0|∞, |bT − ®0|∞, 𝐵} = 𝑂 (𝐵 + 1)
away from ( ®𝑥, ®𝑤) in 𝐿∞, where Δ is the maximum absolute value of determinants of square sub-matrices of the left hand side of LP

𝐵
H and

LP
𝐵
Cone

, i.e.,


AS 0

AT AT × (O)⊤
0 −I
0 ®𝑐

 . Recall that ®𝑐 ≥
®0. This means that the −®𝑜 ≤ ®0 constraint and the ®𝑐 · ®𝑜 ≤ 0 constraint in LP

𝐵
Cone

imply

that ®𝑜 = ®0, which means that ®𝑥 ′ ∈ C0. This completes the proof of Claim 5. □

Like in Step 2.1, we define D0 to be the matrix obtained from applying Gauss-Jordan elimination on

[
A=
0

®1

]
. That is, for every ®𝑥 ′ =

( ®𝑥 ′
𝐼0
, ®𝑥 ′
𝐼1
) ∈ C0, let 𝑛′ = ®𝑥 ′ · ®1, we have

®𝑥 ′𝐼0 = ( ®𝑥 ′𝐼1 , 𝑛
′) × D0 (15)

Next, we use Claim 5 to prove that for any ®𝑦 = ( ®𝑦𝐼0 , ®𝑦𝐼1 ) ∈ H𝐵,𝑛 , | ®𝑦 − ((®𝑦𝐼1 , 𝑛) × D0, ®𝑦𝐼1 ) |∞ = 𝑂 (𝐵 + 1), which would prove (14).

For any ®𝑦 = ( ®𝑦𝐼0 , ®𝑦𝐼1 ) ∈ H𝐵,𝑛 , let ®𝑥 ′ = ( ®𝑥 ′
𝐼0
, ®𝑥 ′
𝐼1
) ∈ C0 denote the vector in C0 that is no more than 𝐶 (𝐵 + 1) away from ®𝑦 guaranteed by

Claim 5. This means that ®𝑥 ′
𝐼1
and 𝑛′ are 𝑂 (𝐵 + 1) away from ®𝑦𝐼1 and 𝑛, respectively, which implies that ®𝑥 ′

𝐼0
= ( ®𝑥 ′

𝐼1
, 𝑛′) × D0 is 𝑂 (𝐵 + 1) away
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from ( ®𝑦𝐼1 , 𝑛) ×D0. Also because ®𝑥 ′
𝐼0
is𝑂 (𝐵 + 1) away from ®𝑦𝐼0 , we have that ®𝑦𝐼0 is𝑂 (𝐵 + 1) away from ( ®𝑦𝐼1 , 𝑛) ×D0. Formally, let 𝑑0

max
denote

the maximum absolute value of entries in D0, we have the following bound.

| ®𝑦 − ((®𝑦𝐼1 , 𝑛) × D0, ®𝑦𝐼1 ) |∞ = | ®𝑦𝐼0 − (®𝑦𝐼1 , 𝑛) × D0 |∞
≤|®𝑦𝐼0 − ®𝑥 ′𝐼0 |∞ + |®𝑥 ′𝐼0 − (®𝑥 ′𝐼1 , 𝑛

′) × D0 |∞ + |( ®𝑥 ′𝐼1 , 𝑛
′) × D0 − (®𝑦𝐼1 , 𝑛) × D0 |∞

≤𝐶 (𝐵 + 1) + 0 + |( ®𝑥 ′𝐼1 − ®𝑦𝐼1 , 𝑛
′ − 𝑛) × D0 |∞ by (15)

≤𝐶 (𝐵 + 1) (2𝑞𝑑0
max

+ 1)

The last inequality holds because | ®𝑥 ′
𝐼1
− ®𝑦𝐼1 |∞ ≤ 𝐶 (𝐵 + 1) and |𝑛′ − 𝑛 | ≤ 𝑞𝐶 (𝐵 + 1). This completes the proof of Step 2.2.

Step 3 of poly upper bound: Upper-bound the probability. Recall that ®𝑋 ®𝜋 = Hist(𝑃), where 𝑃 consists of 𝑛 independent random

variables 𝑌1, . . . , 𝑌𝑛 distributed as ®𝜋 . Like [77], we represent each 𝑌𝑗 as two random variables 𝑍 𝑗 and𝑊𝑗 and a simple Bayesian network

based on the partition [𝑞] = 𝐼0 ∪ 𝐼1.

Definition 16 (Alternative representation of 𝒀1, . . . , 𝒀𝒏 [76]). For each 𝑗 ≤ 𝑛, we define a Bayesian network with two random variables
𝑍 𝑗 ∈ {0, 1} and𝑊𝑗 ∈ [𝑞], where 𝑍 𝑗 is the parent of𝑊𝑗 . The conditional probabilities are defined as follows.

• For each ℓ ∈ {0, 1}, let Pr(𝑍 𝑗 = ℓ) ≜ Pr(𝑌𝑗 ∈ 𝐼ℓ ).
• For each ℓ ∈ {0, 1} and each 𝑡 ≤ 𝑞, let Pr(𝑊𝑗 = 𝑡 |𝑍 𝑗 = ℓ) ≜ Pr(𝑌𝑗 = 𝑡 |𝑌𝑗 ∈ 𝐼ℓ ).

In particular, if 𝑡 ∉ 𝐼ℓ then Pr(𝑊𝑗 = 𝑡 |𝑍 𝑗 = ℓ) = 0. It is not hard to verify that for any 𝑗 ≤ 𝑛,𝑊𝑗 has the same distribution as 𝑌𝑗 . For any

®𝑧 ∈ {0, 1}𝑛 , we let Id0 (®𝑧 ) ⊆ [𝑛] denote the indices of components of ®𝑧 that equal to 0. Given ®𝑧, we define the following random variables.

• Let ®𝑊
Id0 (®𝑧 ) ≜ {𝑊𝑗 : 𝑗 ∈ Id0 (®𝑧 )}. That is, ®𝑊Id0 (®𝑧 ) consists of random variables {𝑊𝑗 : 𝑧 𝑗 = 0}.

• Let Hist( ®𝑊
Id0 (®𝑧 ) ) denote the vector of the 𝑞 − 𝑑0 + 1 = |𝐼0 | random variables that correspond to the histogram of ®𝑊

Id0 (®𝑧 ) restricted to

𝐼0. Technically, the domain of every random variable in ®𝑊
Id0 (®𝑧 ) is [𝑞], but since they only receive positive probabilities on 𝐼0, they are

treated as random variables over 𝐼0 when Hist( ®𝑊
Id0 (®𝑧 ) ) is defined.

• Similarly, let ®𝑊
Id1 (®𝑧 ) ≜ {𝑊𝑗 : 𝑗 ∈ Id1 (®𝑧 )} and let Hist( ®𝑊

Id1 (®𝑧 ) ) denote the vector of |𝐼1 | = 𝑑0 − 1 random variables that correspond

to the histogram of ®𝑊
Id1 (®𝑧 ) .

LetHZ
𝐵,𝑛
≜ H𝐵,𝑛 ∩ Z𝑞 . For any ®𝑦1 ∈ Z𝑑0−1≥0 , we letHZ

𝐵,𝑛
| ®𝑦1 denote the 𝐼0 components of ®𝑦 ∈ HZ

𝐵,𝑛
whose 𝐼1 components are ®𝑦1. Formally,

HZ𝐵,𝑛 | ®𝑦1 ≜
{
®𝑦0 ∈ Z𝑞−𝑑0+1≥0 : ( ®𝑦0, ®𝑦1) ∈ HZ𝐵,𝑛

}
We recall the following calculations in [77] for any ®𝜋 ∈ Π𝑛 , which is done by first separating the |Id0 (®𝑧 ) | ≥ 0.9𝜖𝑛 case (which happens

with 1 − exp(−Ω(𝑛)) probability) from the |Id0 (®𝑧 ) | < 0.9𝜖𝑛 (which happens with exponentially small probability), then applying the law of

total probability conditioned on ®𝑍 , and finally using the conditional independence in the Bayesian network (i.e., ®𝑊 ’s are independent given

®𝑍 ) to simplify the formula.

Pr𝑃∼®𝜋 (Hist(𝑃) ∈ HZ𝐵,𝑛) ≤
∑︁

®𝑧∈{0,1}𝑛 : |Id0 (®𝑧 ) |≥0.9𝜖𝑛
Pr( ®𝑍 = ®𝑧 )

∑︁
®𝑦1∈Z

𝑑
0
−1

≥0

Pr

(
Hist( ®𝑊

Id1 (®𝑧 ) ) = ®𝑦1
��� ®𝑍 = ®𝑧

)
× Pr

(
Hist( ®𝑊

Id0 (®𝑧 ) ) ∈ HZ𝐵,𝑛 | ®𝑦1
��� ®𝑍 = ®𝑧

)
+ Pr( |Id0 (®𝑧 ) | < 0.9𝜖𝑛) (16)

To upper-bound (16), we will show that for any ®𝑧 with |Id0 (®𝑧 ) | ≥ 0.9𝜖𝑛 and any ®𝑦1 ∈ Z𝑑0−1≥0 ,

Pr

(
Hist( ®𝑊

Id0 (®𝑧 ) ) ∈ HZ𝐵,𝑛 | ®𝑦1
��� ®𝑍 = ®𝑧

)
= 𝑂 ((𝐵 + 1)𝑑Δ ) ×𝑂

(
𝑛

𝑑
0
−𝑞
2

)
(17)

Conditioned on ®𝑍 = ®𝑧, Hist( ®𝑊
Id0 (®𝑧 ) ) can be viewed as a PMV of |Id0 (®𝑧 ) | strictly positive independent variables over 𝐼0 = [𝑞 − 𝑑0 + 1].

Therefore, according to the point-wise anti-concentration bound [76, Lemma 3 in the Appendix], for any ®𝑧 with |Id0 (®𝑧 ) | ≥ 0.9𝜖𝑛 and any

®𝑦0 ∈ HZ
𝐵,𝑛

| ®𝑦1 ,

Pr

(
Hist( ®𝑊

Id0 (®𝑧 ) ) = ®𝑦0
��� ®𝑍 = ®𝑧

)
= 𝑂

(
|Id0 (®𝑧 ) |

𝑑
0
−𝑞
2

)
= 𝑂

(
𝑛

𝑑
0
−𝑞
2

)
Then, to prove (17), it suffices to prove |HZ

𝐵,𝑛
| ®𝑦1 | = 𝑂 ((𝐵 + 1)𝑑Δ ). This is done by enumerating vectors inHZ

𝐵,𝑛
| ®𝑦1 as follows: According to

Step 2.2 of the poly upper bound, each 𝐼0− component of vectors inHZ
𝐵,𝑛

| ®𝑦1 has no more than ⌈𝐶∗ (𝐵 + 1) + 1⌉ choices, and given the 𝐼0−
components, each 𝐼0+ component has no more than ⌈𝐶∗ + 1⌉ choices, where 𝐶∗

is the maximum value of the constants in Step 2.1 and 3.2.

Therefore,

|HZ𝐵,𝑛 | ®𝑦1 | ≤ (𝐶∗ + 1)𝑞−𝑑∞+1 (𝐶∗ (𝐵 + 1) + 1)𝑑∞−𝑑0 = 𝑂 ((𝐵 + 1)𝑑∞−𝑑0 ) = 𝑂 ((𝐵 + 1)𝑑Δ )
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This proves (17). Then, combining (16) and (17), and following a similar argument as in [77], we have

Pr𝑃∼®𝜋 (Hist(𝑃) ∈ U𝑛,𝐵) ≤ Pr𝑃∼®𝜋 (Hist(𝑃) ∈ HZ𝐵,𝑛)

≤
∑︁

®𝑧∈{0,1}𝑛 : |Id0 (®𝑧 ) |≥0.9𝜖𝑛
Pr( ®𝑍 = ®𝑧 )

∑︁
®𝑦1∈Z

𝑑
0
−1

≥0

Pr

(
Hist( ®𝑊

Id1 (®𝑧 ) ) = ®𝑦1
��� ®𝑍 = ®𝑧

)
×𝑂 ((𝐵 + 1)𝑑Δ ) ×𝑂

(
𝑛

𝑑
0
−𝑞
2

)
+ exp(−Θ(𝑛))

= Pr( |Id0 ( ®𝑍 ) | ≥ 0.9𝜖𝑛) ×𝑂 ((𝐵 + 1)𝑑Δ ) ×𝑂
(
𝑛

𝑑
0
−𝑞
2

)
+ exp(−Θ(𝑛))

=𝑂

(
(𝐵 + 1)𝑑Δ ·

(
1

√
𝑛

)𝑞−𝑑0 )
This proves the polynomial upper bound for 𝐵 ≤

√
𝑛.

Proof for the polynomial upper bound of sup for 𝑩 >
√
𝒏. Notice that for any 𝐵 and 𝑛, H𝐵,𝑛 ⊆ H∞. Therefore, it suffices to prove the

following stronger claim, which holds for any 𝐵, any 𝑛, and any ®𝜋 ∈ Π𝑛 .

Claim 6. For any 𝑛 and ®𝜋 ∈ Π𝑛 , Pr
(
®𝑋 ®𝜋 ∈ H∞

)
= 𝑂

(
( 1√
𝑛
)𝑞−𝑑∞

)
.

Proof. The proof is similar to Step 3 of the 𝐵 ≤
√
𝑛 case above. We will define a Bayesian network for the partition [𝑞] = 𝐼0+ ∪ 𝐼1+, and

then apply (12) to enumerate vectors inHZ∞,𝑛 | ®𝑦1+ .

Definition 17 (Alternative representation of 𝒀1, . . . , 𝒀𝒏). For each 𝑗 ≤ 𝑛, we define a Bayesian network with two random variables
𝑍+
𝑗
∈ {0, 1} and𝑊 +

𝑗
∈ [𝑞], where 𝑍+

𝑗
is the parent of𝑊 +

𝑗
. The conditional probabilities are defined as follows.

• For each ℓ ∈ {0, 1}, let Pr(𝑍+
𝑗
= ℓ) ≜ Pr(𝑌𝑗 ∈ 𝐼ℓ+).

• For each ℓ ∈ {0, 1} and each 𝑡 ≤ 𝑞, let Pr(𝑊 +
𝑗
= 𝑡 |𝑍+

𝑗
= ℓ) ≜ Pr(𝑌𝑗 = 𝑡 |𝑌𝑗 ∈ 𝐼ℓ+).

In particular, if 𝑡 ∉ 𝐼ℓ+ then Pr(𝑊 +
𝑗
= 𝑡 |𝑍+

𝑗
= ℓ) = 0. It is not hard to verify that for any 𝑗 ≤ 𝑛,𝑊 +

𝑗
follows the same distribution as 𝑌𝑗 .

For any ®𝑧 ∈ {0, 1}𝑛 , we let Id0+ (®𝑧 ) ⊆ [𝑛] denote the indices of components of ®𝑧 that equal to 0. Given ®𝑧, we define the following random
variables.

• Let ®𝑊 +
Id0+ (®𝑧 )

≜ {𝑊 +
𝑗
: 𝑗 ∈ Id0+ (®𝑧 )}. That is, ®𝑊 +

Id0+ (®𝑧 )
consists of random variables {𝑊 +

𝑗
: 𝑧 𝑗 = 0}.

• Let Hist( ®𝑊 +
Id0+ (®𝑧 )

) denote the vector of the |𝐼0+ | = 𝑞 −𝑑∞ + 1 random variables that correspond to the histogram of ®𝑊 +
Id0+ (®𝑧 )

restricted

to 𝐼0+.
• Similarly, let ®𝑊 +

Id1+ (®𝑧 )
≜ {𝑊 +

𝑗
: 𝑗 ∈ Id1+ (®𝑧 )} and let Hist( ®𝑊 +

Id1+ (®𝑧 )
) denote the vector of |𝐼1+ | = 𝑑∞ − 1 random variables that

correspond to the histogram of ®𝑊 +
Id1+ (®𝑧 )

.

For any ®𝑦1+ ∈ Z𝐼1+≥0, we letH
Z
∞,𝑛 | ®𝑦1+ denote the 𝐼0+ components of ®𝑦 ∈ HZ∞,𝑛 whose 𝐼1+ components are ®𝑦1+. Formally,

HZ∞,𝑛 | ®𝑦1+ ≜
{
®𝑦0+ ∈ Z𝑞−𝑑0+1≥0 : ( ®𝑦0+, ®𝑦1+) ∈ HZ∞,𝑛

}
Like Step 3 of the 𝐵 ≤

√
𝑛 case, for any ®𝜋 ∈ Π𝑛 ,

Pr𝑃∼®𝜋 (Hist(𝑃) ∈ HZ∞,𝑛)

≤
∑︁

®𝑧∈{0,1}𝑛 : |Id0+ (®𝑧 ) |≥0.9𝜖𝑛
Pr( ®𝑍+ = ®𝑧 )

∑︁
®𝑦1+∈Z𝑑∞−1

≥0

Pr

(
Hist( ®𝑊 +

Id1+ (®𝑧 ) ) = ®𝑦1+
��� ®𝑍+ = ®𝑧

)
× Pr

(
Hist( ®𝑊 +

Id0+ (®𝑧 ) ) ∈ HZ∞,𝑛 | ®𝑦1+
��� ®𝑍+ = ®𝑧

)
+ Pr( |Id0+ (®𝑧 ) | < 0.9𝜖𝑛) (18)

Following (12) and the point-wise anti-concentration bound [76, Lemma 3 in the Appendix], for any ®𝑧 with |Id0+ (®𝑧 ) | ≥ 0.9𝜖𝑛 and any

®𝑦1+ ∈ Z𝑑∞−1
≥0 , we have

Pr

(
Hist( ®𝑊 +

Id0+ (®𝑧 ) ) ∈ HZ∞,𝑛 | ®𝑦1+
��� ®𝑍+ = ®𝑧

)
= 𝑂 (1) ×𝑂

(
𝑛

𝑑∞−𝑞
2

)
(19)
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Then, combining (18) and (19) and recalling that Hist(𝑃) is a size-𝑛 non-negative integer vector, we have

Pr𝑃∼®𝜋 (Hist(𝑃) ∈ U𝑛,𝐵) ≤ Pr𝑃∼®𝜋 (Hist(𝑃) ∈ HZ∞,𝑛)

≤
∑︁

®𝑧∈{0,1}𝑛 : |Id0+ (®𝑧 ) |≥0.9𝜖𝑛
Pr( ®𝑍+ = ®𝑧 )

∑︁
®𝑦1+∈Z𝑑∞−1

≥0

Pr

(
Hist( ®𝑊 +

Id1+ (®𝑧 ) ) = ®𝑦1+
��� ®𝑍+ = ®𝑧

)
×𝑂

(
𝑛

𝑑∞−𝑞
2

)
+ exp(−Θ(𝑛))

= Pr( |Id0+ ( ®𝑍+ ) | ≥ 0.9𝜖𝑛) ×𝑂
(
𝑛

𝑑∞−𝑞
2

)
+ exp(−Θ(𝑛)) = 𝑂

((
1

√
𝑛

)𝑞−𝑑∞ )
This proves Claim 6. □

The polynomial upper bound for 𝐵 >
√
𝑛 follows after Claim 6.

Proof for the 𝛀

(

min{𝑩 + 1,
√
𝒏}𝒅𝚫

(
√
𝒏)𝒒−𝒅0

)

lower bound of PT-𝚯(
√
𝒏)-sup. It suffices to prove the lower bound for 𝐵 ≤

√
𝑛, because when

𝐵 ≥
√
𝑛, we have

sup

®𝜋∈Π𝑛

Pr( ®𝑋 ®𝜋 ∈ U𝑛,𝐵) ≥ sup

®𝜋∈Π𝑛

Pr( ®𝑋 ®𝜋 ∈ U𝑛,
√
𝑛) = Ω

(
( 1

√
𝑛
)𝑞−𝑑∞

)
,

which is the desired lower bound.

The proof for 𝐵 ≤
√
𝑛 proceeds in three steps. In Step 1, for any strictly positive 𝜋∗ ∈ C0, we identify an 𝑂 (

√
𝑛) neighborhood of 𝑛 · 𝜋∗

that contains Ω
(
(𝐵 + 1)𝑑Δ ·

(√
𝑛
)𝑑0−1)

integer vectors in U𝑛,𝐵 . In Step 2, for any 𝜋∗ ∈ CH(Π), we define ®𝜋◦ = (𝜋◦
1
, . . . , 𝜋◦𝑛) ∈ Π𝑛 such that∑𝑛

𝑗=1 𝜋
◦
𝑗
is 𝑂 (

√
𝑛) away from 𝑛 · 𝜋∗. The lower bound is then proved in Step 3. Among the three steps, Step 1 is the most involved part, and

Steps 2 and 3 follow after similar proofs in [77].

Step 1 of poly lower bound: Identify 𝛀

(

(𝑩 + 1)𝒅𝚫 ·
(√

𝒏
)𝒅0−1

)

vectors in U𝒏,𝑩 .

Overview of Step 1. The proof proceeds in four sub-steps. In Step 1.1, we prove in Claim 7 that there exists a constant 𝐶′
such that for

every (possibly non-integer) non-negative vector inH𝐵,𝑛 , there is an “accompany” integer vector inU𝑛,𝐵 that is at most 𝐶′
away in 𝐿∞.

Then, we identify a set R𝐵,𝑛 of possibly non-integer vectors in H𝐵,𝑛 that are at least 2𝐶′
away from each other, and apply Claim 7 to obtain

a set RZ
𝐵,𝑛

of integer vectors in U𝑛,𝐵 of the same size (as R𝐵,𝑛). To define R𝐵,𝑛 , we explore two directions in an 𝑂 (
√
𝑛) neighborhood of

𝑛 · 𝜋∗: the P0 direction and the P∞ direction (which we recall from (10) are affine hulls of C0 and C∞, respectively). More precisely, we will

first enumerate Ω((
√
𝑛)𝑑0−1) vectors in a P0 neighborhood of 𝑛 · 𝜋∗ (defined as R0

𝑛 in Step 1.2), and then enumerate Ω((𝐵 + 1)𝑑Δ ) vectors in
a neighborhood of 𝑛 · 𝜋∗ (defined as R∞

𝐵
in Step 1.3) that is a complement of P0 in P∞. Finally, in Step 1.4, we formally define R𝐵,𝑛 and RZ

𝐵,𝑛

and prove that |R𝐵,𝑛 | = |RZ
𝐵,𝑛

| = Ω((𝐵 + 1)𝑑Δ · (
√
𝑛)𝑑0−1) and R𝐵,𝑛 ⊆ H𝐵,𝑛 ∩ R𝑞≥0 in Claim 8 and Claim 9, respectively.

Step 1.1: Define 𝑪′.We prove the following claim.

Claim 7. There exists a constant 𝐶′ that does not depend on 𝑛 or 𝐵, such that for any ®𝑥 ∈ H𝐵,𝑛 ∩ R𝑞≥0, there exists a (non-negative integer)
vector ®𝑥 ′ ∈ U𝑛,𝐵 such that | ®𝑥 − ®𝑥 ′ |∞ < 𝐶′.

Proof. Consider the following linear program LP𝐵,𝑛 whose variables are ®𝑥 and ®𝑜 :

𝐿𝑃𝐵,𝑛 =



max 0

s.t. AS × (®𝑥)⊤ ≤ (bS)⊤
AT × (®𝑥 + ®𝑜 × O)⊤ ≤ (bT)⊤
®𝑥 · ®1 = 𝑛
®𝑐 · ®𝑜 ≤ 𝐵

®𝑥 ≥ ®0, ®𝑜 ≥ ®0

It is not hard to verify that, because ®𝑥 ∈ H𝐵,𝑛 ∩R
𝑞

≥0, LP𝐵,𝑛 has a feasible solution ( ®𝑥, ®𝑜) for some ®𝑜 ≥ ®0 (which may not be an integer vector).

Recall thatU𝑛,𝐵 ≠ ∅, which means that LP𝐵,𝑛 has a feasible integer solution. Therefore, by [15, Theorem 1], LP𝐵,𝑛 has an integer solution

( ®𝑥 ′, ®𝑜′) whose 𝐿∞ distance to ( ®𝑥, ®𝑜) is no more than (𝑞 + |O |)Δ, where Δ is the maximum absolute determinant of square submatrices of
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the matrix that defines LP𝐵,𝑛 , i.e.,



AS
®0

AT AT × (O)⊤
®1 ®0

−®1 ®0
®0 ®𝑐

−I ®0
®0 −I


. Notice that this matrix does not depend on 𝐵 or 𝑛. The claim follows after letting

𝐶′ ≜ (𝑞 + |O |)Δ and noticing that ( ®𝑥 ′, ®𝑜 ′) ∈ U𝑛,𝐵 . □

Step 1.2: Define R0
𝒏. Let P∗

0
denote the size-0 vectors of P0. That is,

P∗
0
= P0 ∩

{
®𝑥 : ®𝑥 · ®1 = 0

}
=

{
®𝑥 ∈ R𝑞 :

[
A=
0

®1

]
× (®𝑥)⊤ =

(
®0
)⊤}

Recall from Assumption 1 that Rank

( [
A=
0

®1

] )
= Rank(A=

0
) + 1 = 𝑞 − 𝑑0 + 1, which means that dim(P∗

0
) = 𝑞 − Rank

( [
A=
0

®1

] )
= 𝑑0 − 1.

Therefore, P∗
0
contains a basis of 𝑑0 − 1 linearly independent vectors, denoted by B0 = {®𝑝 0

1
, . . . , ®𝑝 0

𝑑0−1}. Let L
0
denote the lattice generated

by B0 excluding ®0. That is,

L0 =

{∑︁𝑑0−1
𝑖=1

𝛾𝑖 · ®𝑝 0

𝑖 : ∀𝑖 ≤ 𝑑0 − 1, 𝛾𝑖 ∈ Z and ∃𝑖 ≤ 𝑑0 − 1 s.t. 𝛾𝑖 ≠ 0

}
Let 𝐶0

denote the minimum 𝐿∞ norm of all vectors in L0, i.e.,

𝐶0 = inf

{
| ®𝑥 |∞ : ®𝑥 ∈ L0

}
Next, we prove 𝐶0 > 0. Suppose for the sake of contradiction that 𝐶0 = 0. Then, there exist a sequence of vectors{

®𝑥 𝑗 =
∑︁𝑑0−1

𝑖=1
𝛾
𝑗
𝑖
· ®𝑝 0

𝑖 : 𝑗 ∈ N
}

such that for all 𝑗 ∈ N, | ®𝑥 𝑗 |∞ ≤ 1

𝑗 . Let ®𝛾
𝑗 = (𝛾 𝑗

1
, . . . , 𝛾

𝑗

𝑑0−1). Because |®𝛾 𝑗 |∞ ≥ 1, we have
®𝑥 𝑗

| ®𝛾 𝑗 |∞ ≤ 1

𝑗 . Notice that {®𝛾 ∈ R𝑑0−1 : |®𝛾 |∞ = 1} is

closed and compact, there exists a subsequence of

{
®𝛾 𝑗

| ®𝛾 𝑗 |∞

}
that converges to a vector ®𝛾∗ with |®𝛾∗ |∞ = 1. Let ®𝑥∗ = ∑𝑑0−1

𝑖=1
𝛾∗
𝑖
· ®𝑝 0

𝑖
. It follows that{

®𝑥 𝑗

| ®𝛾 𝑗 |∞ : 𝑗 ∈ N
}
converges to ®𝑥∗, which means that | ®𝑥∗ |∞ = lim𝑗→∞

��� ®𝑥 𝑗

| ®𝛾 𝑗 |∞

���
∞

= 0. This contradicts the linear independence of vectors in B0.

Then, we use 𝐶0
and B0 to define a subset of

2𝐶′

𝐶0
· L0 ∪ {®0} as follows.

R0

𝑛 =

{∑︁𝑑0−1
𝑖=1

2𝐶′

𝐶0
𝛾𝑖 · ®𝑝 0

𝑖 : ∀𝑖 ≤ 𝑑0 − 1, 𝛾𝑖 ∈ {0, 1, . . . , ⌊
√
𝑛⌋}

}
(20)

By definition, R0

𝑛 ⊆ P∗
0
⊆ P0, and for every vector ®𝑥 ∈ R0

𝑛 , we have ®𝑥 · ®1 = 0 and | ®𝑥 |∞ = 𝑂 (
√
𝑛). The value 2𝐶′

𝐶0
is chosen so that the 𝐿∞

distance between any pair of different vectors in R0

𝑛 is at least 2𝐶′
.

Step 1.3: Define R∞
𝑩 . Recall that P0 ⊆ P∞, 𝑑0 = dim(P0) and 𝑑∞ = dim(C∞) = dim(P∞). In the following procedure, we define a set of 𝑑Δ

linear independent vectors B∞ ⊆ C∞, which are the basis of a complement of P0 in P∞.

Procedure for defining B∞.Let {®𝑝1, . . . , ®𝑝𝑑∞ } denote an arbitrary set of 𝑑∞ linearly independent vectors in C∞, whose existence is

guaranteed by the fact that dim(C∞) = 𝑑∞. Start with B∞ = ∅. For every 1 ≤ 𝑗 ≤ 𝑑∞, we add ®𝑝 𝑗 to B∞ if and only if it is linearly independent

with P0 ∪ B∞. At the end of procedure we have |B∞ | = 𝑑∞ − 𝑑0 = 𝑑Δ. W.l.o.g., let B∞ = {®𝑝∞
1
, . . . , ®𝑝∞

𝑑Δ
}.

Let P0 = Span(B∞). It follows that dim(P0) = 𝑑Δ and

P0 ∩ P0 = {®0} and P0 + P0 = P∞ (21)

For each 𝑖 ≤ 𝑑Δ, because ®𝑝∞
𝑖

∈ C∞, we have ®𝑝∞
𝑖

∈ HS,≤0 and we can write ®𝑝∞
𝑖

= ®𝑦∞
𝑖

− ®𝑜 ∞
𝑖

× O, where ®𝑦∞
𝑖

∈ HT,≤0 and ®𝑜 ∞
𝑖

≥ ®0. For every
𝑖 ≤ 𝑑Δ, we must have ®𝑤 ∞

𝑖
≠ ®0, because otherwise ®𝑝∞

𝑖
∈ C0 ⊆ P0, which contradicts (21), because ®𝑝∞

𝑖
∈ P0. Recall that ®𝑐 > ®0. W.l.o.g. we

can assume ®𝑐 · ®𝑤 ∞
𝑖

= 1, otherwise we divide ®𝑝∞
𝑖

by ®𝑐 · ®𝑤 ∞
𝑖
.

Let L∞ denote the lattice generated by B∞ excluding ®0. That is,

L∞ =

{∑︁𝑑Δ

𝑖=1
𝜂𝑖 · ®𝑝∞

𝑖 : ∀𝑖 ≤ 𝑑Δ, 𝜂𝑖 ∈ Z and ∃𝑖 ≤ 𝑑Δ s.t. 𝜂𝑖 ≠ 0

}
Let 𝐶∞

denote the minimum distance between L∞ and P0. That is,

𝐶∞ = inf

{��®𝑥 ∞ − ®𝑦
��
∞ : ®𝑥 ∞ ∈ L∞, ®𝑦 ∈ P0

}
(22)
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Following an argument that is similar to the proof of𝐶0 > 0, we have𝐶∞ > 0. Formally, for the sake of contradiction suppose𝐶∞ = 0. Then,

there exist two sequences of vectors {
®𝑥 𝑗 =

∑︁𝑑Δ

𝑖=1
𝜂
𝑗
𝑖
· ®𝑝∞
𝑖 : 𝑗 ∈ N

}
and

{
®𝑦 𝑗 ∈ P0 : 𝑗 ∈ N

}
,

such that for all 𝑗 ∈ N, | ®𝑥 𝑗 − ®𝑦 𝑗 |∞ ≤ 1

𝑗 . Let ®𝜂
𝑗 = (𝜂 𝑗

1
, . . . , 𝜂

𝑗

𝑑Δ
). Because | ®𝜂 𝑗 |1 ≥ 1 and P0 includes

®0, the distance between ®𝑥 𝑗

| ®𝜂 𝑗 |1 and P0

is at most
1

𝑗 . Notice that {®𝜂 ∈ R𝑑Δ : | ®𝜂 |1 = 1} is closed and compact, there exists a subsequence of

{
®𝜂 𝑗

| ®𝜂 𝑗 |1

}
that converges to a vector

®𝜂∗ with | ®𝜂∗ |1 = 1. Let { 𝑗𝑖 : 𝑖 ∈ N} denote the indices of the subsequence. Let ®𝑥∗ =
∑𝑑Δ
𝑖=1

𝜂∗
𝑖
· ®𝑝∞
𝑖
. Because ®𝑝∞

𝑖
’s are linearly independent,

we have ®𝑥∗ ≠ ®0. Then, {®𝑥 𝑗𝑖 : 𝑖 ∈ N} and {®𝑦 𝑗𝑖 : 𝑖 ∈ N} both converge to ®𝑥∗. Because P0 is closed, we have ®𝑥∗ ∈ P0, which means that

®𝑥∗ ∈ P0 ∩ P0 = {®0}. This contradicts (21).
BecauseU𝑛,𝐵 ≠ ∅, the infimum of all 𝐵∗ ≥ 0 such that there exists 𝑛∗ ∈ N so thatU𝐵∗,𝑛∗ ≠ ∅ is well-defined, formally defined as 𝐵# as

follows.

𝐵# = inf{𝐵∗ ≥ 0 : ∃𝑛∗ ∈ N s.t.U𝐵∗,𝑛∗ ≠ ∅} (23)

We note that there exists 𝑛# ∈ N such that U𝐵#,𝑛# ≠ ∅, because there are finite number of combinations of operations whose total budget is

under 𝐵, and 𝐵# is the minimum budget among the successful combinations (at a non-negative integer vector whose size is 𝑛#). Clearly

𝐵 ≥ 𝐵#. Define

R∞
𝐵 =

{∑︁𝑑Δ

𝑖=1

2𝐶′

𝐶∞ 𝜂𝑖 · ®𝑝
∞
𝑖 : ∀𝑖 ≤ 𝑑Δ, 𝜂𝑖 ∈ {0, 1, . . . ,

⌊
(𝐵 − 𝐵#)𝐶∞

2𝑑Δ𝐶
′

⌋
}
}

(24)

where we recall that 𝐶′
is the constant guaranteed by Claim 7. Intuitively, R∞

𝐵
consists of some “grids” in

2𝐶′
𝐶∞ · L∞ ∪ {®0}, which is a subset

of C∞, because for all 𝑖 ≤ 𝑑Δ, ®𝑝∞
𝑖

∈ C∞.

Step 1.4: Define R𝑩,𝒏 and RZ𝑩,𝒏. Recall the definition of 𝐵# from (23) thatU𝐵#,𝑛# ≠ ∅. Fix ®𝑥 # ∈ U𝐵#,𝑛# . Let ®𝑥 @ ∈ C0 denote an arbitrary

interior point of C0. That is, let A+
0
denote the remaining rows of A0 =

[
AS

AT

]
after removing the implicit equalities A=

0
, there exists a

constant 𝜖@ > 0 such that

A+
0
×

(
®𝑥 @

)⊤
< −

(
𝜖@ · ®1

)⊤
and A=

0
×

(
®𝑥 @

)⊤
=

(
®0
)⊤

Let 𝐶@ > 0 denote an arbitrary constant such that

𝐶@ >
2𝐶′

𝐶0
·

∑𝑑0−1
𝑖=1

|A+
0
×

(
®𝑝 0

𝑖

)⊤
|∞

𝜖@
(25)

The constraint on 𝐶@
in (25) guarantees that for any ®𝑥 0 ∈ R0

𝑛 , we have 𝐶
@
√
𝑛®𝑥 @ + ®𝑥 0 ∈ C0, which will be formally proved and used in the

proof of Claim 9 below.

For any 𝑛 ∈ N and any ®𝑥 ∞ ∈ R∞
𝐵
, define

R ®𝑥 ∞ = (𝑛 − 𝑛# −𝐶@
√
𝑛 · ( ®𝑥@ · ®1) − ®𝑥 ∞ · ®1) · 𝜋∗ + ®𝑥 # +𝐶@

√
𝑛®𝑥 @ + R0

𝑛 + ®𝑥 ∞

It follows that the size of every vector in R ®𝑥 ∞ is 𝑛. Let R𝐵,𝑛 =
⋃

®𝑥 ∞∈R∞
𝐵
R ®𝑥 ∞ . The following claim states that vectors in R𝐵,𝑛 are 2𝐶′

away

from each other in 𝐿∞, where we recall that 𝐶′
is the constant guaranteed by Claim 7.

Claim 8 (Sparsity of R𝑩,𝒏). For any pair of vectors ®𝑥1, ®𝑥2 ∈ R𝐵,𝑛 whose R0

𝑛 or R∞
𝐵

components are different, we have | ®𝑥1 − ®𝑥2 |∞ ≥ 2𝐶′.

Proof. For 𝑗 ∈ {1, 2}, we write

®𝑥 𝑗 = ℓ 𝑗𝜋∗ + ®𝑥 # +𝐶@
√
𝑛®𝑥 @ +

∑︁𝑑0−1
𝑖=1

2𝐶′

𝐶0
𝛾
𝑗
𝑖
· ®𝑝 0

𝑖 +
∑︁𝑑Δ

𝑖=1

2𝐶′

𝐶∞ 𝜂
𝑗
𝑖
· ®𝑝∞
𝑖 ,

where ℓ1 and ℓ2 guarantee that ®𝑥1 · ®1 = ®𝑥2 · ®1 = 𝑛. Then,

®𝑥1 − ®𝑥2 = (ℓ1 − ℓ2)𝜋∗︸        ︷︷        ︸
∈P0

+
∑︁𝑑0−1

𝑖=1

2𝐶′

𝐶0
(𝛾1𝑖 − 𝛾

2

𝑖 ) · ®𝑝
0

𝑖︸                            ︷︷                            ︸
∈ 2𝐶′

𝐶0
·L0∪{®0}

+
∑︁𝑑Δ

𝑖=1

2𝐶′

𝐶∞ (𝜂1𝑖 − 𝜂
2

𝑖 ) · ®𝑝
∞
𝑖︸                           ︷︷                           ︸

∈ 2𝐶′
𝐶∞ ·L∞∪{®0}

For 𝑗 ∈ {1, 2}, let ®𝛾 𝑗 = (𝛾 𝑗
1
, . . . , 𝛾

𝑗

𝑑0−1) and ®𝜂 𝑗 = (𝜂 𝑗
1
, . . . , 𝜂

𝑗

𝑑Δ
). Let ®𝛾Δ = ®𝛾1 − ®𝛾2 and ®𝜂Δ = ®𝜂1 − ®𝜂2. Claim 8 is proved in the following two cases.
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• ®𝜂Δ ≠ ®0. Notice that ∑𝑑Δ
𝑖=1

(𝜂1
𝑖
−𝜂2

𝑖
) · ®𝑝∞

𝑖
∈ L∞. Recall that 𝜋∗ ∈ C0 ⊆ P0, which means that (ℓ2 − ℓ1)𝜋∗ −∑𝑑0−1

𝑖=1
2𝐶′

𝐶0
(𝛾1
𝑖
−𝛾2

𝑖
) · ®𝑝 0

𝑖
∈ P0.

According to (22), the 𝐿∞ distance between

∑𝑑Δ
𝑖=1

(𝜂1
𝑖
− 𝜂2

𝑖
) · ®𝑝𝑖 ∈ L∞ and any vector in P0 is at least 𝐶

∞
. Therefore,

| ®𝑥1 − ®𝑥2 |∞ =

����(ℓ1 − ℓ2)𝜋∗ + ∑︁𝑑0−1
𝑖=1

2𝐶′

𝐶0
(𝛾1𝑖 − 𝛾

2

𝑖 ) · ®𝑝
0

𝑖 +
∑︁𝑑Δ

𝑖=1

2𝐶′

𝐶∞ (𝜂1𝑖 − 𝜂
2

𝑖 ) · ®𝑝
∞
𝑖

����
=
2𝐶′

𝐶∞ ·
����∑︁𝑑Δ

𝑖=1
(𝜂1𝑖 − 𝜂

2

𝑖 ) · ®𝑝
∞
𝑖 − 𝐶∞

2𝐶′

(
(ℓ2 − ℓ1)𝜋∗ −

∑︁𝑑0−1
𝑖=1

2𝐶′

𝐶0
(𝛾1𝑖 − 𝛾

2

𝑖 ) · ®𝑝
0

𝑖

)����
≥ 2𝐶′

𝐶∞ ·𝐶∞ = 2𝐶′

• ®𝜂Δ = ®0. In this case we must have ℓ1 = ℓ2 and ®𝛾Δ ≠ ®0. Notice that ∑𝑑0−1
𝑖=1

(𝛾1
𝑖
−𝛾2

𝑖
) · ®𝑝 0

𝑖
∈ L0, and recall that the 𝐿∞ norm of any vector

in L0 is at least 𝐶0 > 0, we have ��®𝑥1 − ®𝑥2
��
∞ =

2𝐶′

𝐶0
·
����∑︁𝑑0−1

𝑖=1
(𝛾1𝑖 − 𝛾

2

𝑖 ) · ®𝑝
0

𝑖

���� ≥ 2𝐶′

𝐶0
·𝐶0 = 2𝐶′

This completes the proof of Claim 8. □

By Claim 8, |R𝐵,𝑛 | =
(
1 +

⌊
(𝐵−𝐵# )𝐶∞

2𝑑Δ𝐶
′

⌋ )𝑑Δ
×

(
⌊
√
𝑛⌋

)𝑑0−1
, which is Ω((𝐵 + 1)𝑑Δ · (

√
𝑛)𝑑0−1). Next, we prove that for all sufficiently large 𝑛,

R𝐵,𝑛 ⊆ H𝐵,𝑛 ∩ R𝑞≥0.

Claim 9 (R𝑩,𝒏 ⊆ H𝑩,𝒏 ∩ R
𝒒
≥0). There exists 𝑁 ∈ N that does not depend on 𝐵 or 𝑛, such that when 𝑛 ≥ 𝑁 , R𝐵,𝑛 ⊆ H𝐵,𝑛 ∩ R𝑞≥0.

Proof. For any ®𝑥 ∈ R𝐵,𝑛 , we can write

®𝑥 = ℓ𝜋∗ + ®𝑥 # +𝐶@
√
𝑛®𝑥 @ + ®𝑥 0 + ®𝑥 ∞,

where ®𝑥 0 ∈ R0

𝑛 , ®𝑥 ∞ ∈ R∞
𝐵
, and ℓ guarantees that ®𝑥 · ®1 = 𝑛. Recall that 𝜋∗ ∈ C0 is strictly positive. Therefore, ®𝑥 ≥ ®0 for any sufficiently large

𝑛, which means that R𝐵,𝑛 ⊆ R𝑞≥0. The rest of the claim proves ®𝑥 ∈ H𝐵,𝑛 in the following three steps.

(1) 𝑪@√
𝒏®𝒙@ + ®𝒙 0 ∈ C0. Let ®𝑥 ′′ = 𝐶@

√
𝑛®𝑥 @ + ®𝑥 0

, we prove the following.

(1.1) A=
0 ×

(

®𝒙′′
)⊤

=
(

®0
)⊤

. Recall that ®𝑥 @
is an interior point of C0 ⊆ HS,≤0, which means that A=

0
×

(
®𝑥 @

)⊤
=

(
®0
)⊤

. Also recall that

R0

𝑛 ⊆ P0
, which means that A=

0
×

(
®𝑥 0

)⊤
=

(
®0
)⊤

. Therefore,

A=
0
×

(
®𝑥 ′′

)⊤
= 𝐶@

√
𝑛A=

0
×

(
®𝑥 @

)⊤
+ A=

0
×

(
®𝑥 0

)⊤
=

(
®0
)⊤

(1.2) A+
0 ×

(

®𝒙′′
)⊤

<
(

®0
)⊤

. Let ®𝑥 0 =
∑𝑑0−1
𝑖=1

2𝐶′

𝐶0
𝛾
𝑗
𝑖
· ®𝑝 0

𝑖
. Recall that A+

0
×

(
®𝑥 @

)⊤
<

(
−𝜖@ · ®1

)⊤
, and recall the lower bound of𝐶@

from

(25). We have

A+
0
×

(
®𝑥 ′′

)⊤
= 𝐶@

√
𝑛A+

0
×

(
®𝑥 @

)⊤
+

∑︁𝑑0−1
𝑖=1

2𝐶′

𝐶0
𝛾
𝑗
𝑖
· A+

0
×

(
®𝑝 0

𝑖

)⊤
<

(
®0
)⊤

(2) ®𝒙 ∈ HS. Recall that 𝜋∗ ∈ C0, ®𝑥 # ∈ U𝐵#,𝑛# ⊆ HS, and ®𝑥 ∞ ∈ C∞ ⊆ HS,≤0. Therefore,

AS × (®𝑥)⊤ =ℓAS × (𝜋∗)︸︷︷︸
in C0

⊤ + AS × (®𝑥 #)︸︷︷︸
in HS

⊤ + AS × (𝐶@
√
𝑛®𝑥 @ + ®𝑥 0)︸                ︷︷                ︸
in C0

⊤ + AS × (®𝑥 ∞)︸︷︷︸
in HS,≤0

⊤

≤
(
®0
)⊤

+ (bS)⊤ +
(
®0
)⊤

+
(
®0
)⊤

= (bS)⊤

This proves ®𝑥 ∈ HS.

(3) ®𝒙 is 𝑩-manipulable. Because ®𝑥 # ∈ U𝐵#,𝑛# , there exists ®𝑜 # ∈ Z |O |≥0 such that ®𝑐 · ®𝑜 # ≤ 𝐵# and ®𝑥 # + ®𝑜 # ×O ∈ HT. Let ®𝑥 ∞ =
∑𝑑Δ
𝑖=1

2𝐶′
𝐶∞ 𝜂𝑖 · ®𝑝∞

𝑖
.

Also recall that for all 𝑖 ≤ 𝑑Δ, ®𝑝∞
𝑖

= ®𝑦∞
𝑖

− ®𝑜 ∞
𝑖

× O, where ®𝑦∞
𝑖

∈ HT,≤0, ®𝑜 ∞𝑖 ≥ ®0, and ®𝑐 · ®𝑜 ∞
𝑖

= 1. Let ®𝑜∗ = ®𝑜 # + ∑𝑑Δ
𝑖=1

2𝐶′
𝐶∞ 𝜂𝑖 · ®𝑜 ∞𝑖 . We prove

that ®𝑐 · ®𝑜∗ ≤ 𝐵 as follows.

®𝑐 · ®𝑜∗ = ®𝑐 · ®𝑜 # +
∑︁𝑑Δ

𝑖=1

2𝐶′

𝐶∞ 𝜂𝑖 · ®𝑐 · ®𝑜
∞
𝑖

≤ 𝐵# +
∑︁𝑑Δ

𝑖=1

2𝐶′

𝐶∞ · (𝐵 − 𝐵#)𝐶∞

2𝑑Δ𝐶
′ = 𝐵# + 𝐵 − 𝐵# = 𝐵
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Then,

AT ×
(
®𝑥 + ®𝑜∗ × O

)⊤
=ℓAT × (𝜋∗)︸︷︷︸

in C0

⊤ + AT × (®𝑥 # + ®𝑜 # × O)︸            ︷︷            ︸
in HT

⊤ + AT × (𝐶@
√
𝑛®𝑥 @ + ®𝑥 0)︸                ︷︷                ︸
in C0

⊤

+
∑︁𝑑Δ

𝑖=1

2𝐶′

𝐶∞ 𝜂𝑖 · AT × ( ®𝑝∞
𝑖 + ®𝑜 ∞𝑖 × O)︸              ︷︷              ︸
= ®𝑦 𝑖 ∈HT,≤0

⊤

≤
(
®0
)⊤

+ (bT)⊤ +
(
®0
)⊤

+
(
®0
)⊤

= (bT)⊤

This proves that ®𝑥 + ®𝑜∗ × O ∈ HT and completes the proof of Claim 9. □

By Claim 7, for every ®𝑥 ∈ R𝐵,𝑛 , there exists ®𝑥 ′ ∈ U𝑛,𝐵 that is no more than 𝐶′
away from ®𝑥 in 𝐿∞. Because vectors in R𝐵,𝑛 are at least

2𝐶′
away from each other, their corresponding vectors inU𝑛,𝐵 are different, denoted by RZ

𝐵,𝑛
and is formally defined as follows.

Definition 18 (RZ𝑩,𝒏). Let R
Z
𝐵,𝑛

denote the integer vectors corresponding to the vectors in R𝐵,𝑛 guaranteed by Claim 7.

It follows that |RZ
𝐵,𝑛

| = |R𝐵,𝑛 | = Ω
(
(𝐵 + 1)𝑑Δ ·

(√
𝑛
)𝑑0−1)

. This completes Step 1 for poly lower bound.

Step 2 for poly lower bound: Define ®𝝅◦ for any 𝝅∗ ∈ CH(𝚷). In this step, we define ®𝜋◦ = (𝜋◦
1
, . . . , 𝜋◦𝑛) ∈ Π𝑛 such that

∑𝑛
𝑗=1 𝜋

◦
𝑗
is

𝑂 (
√
𝑛) away from 𝑛𝜋∗ in a way that is similar to [77].

More precisely, because 𝜋∗ ∈ CH(Π), by Carathéodory’s theorem for convex/conic hulls (see e.g., [42, p. 257]), we can write 𝜋∗ as the
convex combination of 1 ≤ 𝑡 ≤ 𝑞 distributions in Π, i.e.,

𝜋∗ =
∑︁𝑡

𝑖=1
𝛼𝑖𝜋

∗
𝑖 , where

∑︁𝑡

𝑖=1
𝛼𝑖 = 1 and 𝜋∗𝑖 ∈ Π

We note that 𝜋∗ ≥ 𝜖 · ®1, because Π is strictly positive (by 𝜖). For each 𝑖 ≤ 𝑡 −1, let ®𝜋 ℓ
𝑖
denote the vector of 𝛽𝑖 = ⌊ℓ𝛼𝑖 ⌋ copies of 𝜋∗𝑖 . Let ®𝜋

ℓ
𝑘
denote

the vector of 𝛽𝑡 = 𝑛−
∑𝑡−1
𝑖=1 𝛽𝑖 copies of 𝜋

∗
𝑡 . It follows that for any 𝑖 ≤ 𝑡−1, |𝛽𝑖 −ℓ𝛼𝑖 | ≤ 1, and |𝛽𝑡 −ℓ𝛼𝑡 | ≤ 𝑡 +(®𝑦𝑛 ·®1−ℓ𝜋∗ ·®1) = 𝑂 (

√
ℓ) = 𝑂 (

√
𝑛).

Let ®𝜋◦ = ( ®𝜋 ℓ
1
, . . . , ®𝜋 ℓ𝑡 ), or equivalently

®𝜋◦ = (𝜋∗
1
, . . . , 𝜋∗

1︸      ︷︷      ︸
𝛽1

, 𝜋∗
2
, . . . , 𝜋∗

2︸      ︷︷      ︸
𝛽2

, . . . , 𝜋∗𝑡 , . . . , 𝜋
∗
𝑡︸      ︷︷      ︸

𝛽𝑡

)

Step 3 for poly lower bound: Lower-bound Pr𝑷∼ ®𝝅 (
®𝑿 ®𝝅 ∈ H𝑩).

Claim 10. For any PMV-instability setting S, any strictly positive set of distributions Π (by 𝜖 > 0), and any 𝛼 > 0, there exist 𝐶S > 0 and
𝑁 > 0 such that for any 𝑛 ≥ 𝑁 , any 0 ≤ 𝐵 ≤

√
𝑛, and any ®𝜋 ∈ Π𝑛 such that the 𝐿∞ distance between

∑𝑛
𝑗=1 𝜋 𝑗 and C0 is no more than 𝛼

√
𝑛,

Pr( ®𝑋 ®𝜋 ∈ U𝑛,𝐵) ≥ 𝐶S · (𝐵 + 1)𝑑Δ ·
(
1

√
𝑛

)𝑞−𝑑0
Proof. Let 𝜋∗ ∈ C0 denote an arbitrary vector such that |∑𝑛𝑗=1 𝜋 𝑗 − 𝑛𝜋∗ |∞ < 2𝛼

√
𝑛. Let RZ

𝐵,𝑛
denote the set of integer vectors for 𝜋∗

(Definition 18 in Step 1.4 above). Because 𝐵 = 𝑂 (
√
𝑛), each vector in RZ

𝐵,𝑛
is 𝑂 (

√
𝑛) away from 𝑛𝜋∗, which is 𝑂 (

√
𝑛) away from

∑𝑛
𝑗=1 𝜋 𝑗 . By

the point-wise concentration bound ([77, Lemma 1]), for every ®𝑥 ∈ RZ
𝐵,𝑛

, we have Pr𝑃∼®𝜋 (Hist(𝑃) = ®𝑥) = Ω((
√
𝑛)1−𝑞). Therefore,

Pr( ®𝑋 ®𝜋 ∈ U𝑛,𝐵) ≥ Pr𝑃∼®𝜋 (Hist(𝑃) ∈ RZ𝐵,𝑛) ≥ |RZ𝐵,𝑛 | × Ω
(
(
√
𝑛)1−𝑞

)
=Ω

(
(𝐵 + 1)𝑑Δ · (

√
𝑛)𝑑0−1

)
× Ω

(
(
√
𝑛)1−𝑞

)
= Ω

(
(𝐵 + 1)𝑑Δ · ( 1

√
𝑛
)𝑞−𝑑0

)
This completes proof of Claim 10. □

The lower bound for PT-Θ(
√
𝑛)-sup follows after applying Claim 10 to any 𝜋∗ ∈ CH(Π) ∩ C0 and ®𝜋◦ defined in Step 2 for poly lower

bound above.

Proof for the phase transition at 𝚯(𝒏) case of sup (PT-𝚯(𝒏)-sup for short).

𝑩 ≤ 𝑪2𝒏. Let 𝑐∗ = 1

2
(𝐶2 + 𝐵CH(Π) ). We first show that 𝑛 · CH(Π) is Ω(𝑛) away from C𝑛𝑐∗ , which is equivalent to CH(Π) being Ω(1) away

from C𝑐∗ . Due to the minimality of 𝐵
CH(Π) , we have CH(Π) ∩ C𝑐∗ = ∅. Notice that CH(Π) is convex and compact and C𝑐∗ is convex. By the



How Likely A Coalition of Voters Can Influence A Large Election? LSA’22, May 9–10, 2022, Online

strict separating hyperplane theorem, the distance between CH(Π) and C𝑐∗ is strictly positive, denoted by 𝑐′. Let 𝑐2 > 0 denote any fixed

constant that is smaller than 𝑐′.
Next, we prove that 𝑛 · CH(Π) is Ω(𝑛) away fromH𝐵 . To this end, we prove the following claim, which states that for any sufficiently

large 𝐵′ ≥ 0,H𝐵′ is 𝑂 (1) away from C𝐵′+𝑂 (1) .

Claim 11. Given a PMV-instability setting S, there exists a constant 𝐶 such that for any 𝐵′ ≥ 𝐶 , any 𝑛, and any ®𝑥 ∈ H𝐵′ , there exists
®𝑥 ′ ∈ C𝐵′+𝐶 such that | ®𝑥 − ®𝑥 ′ |∞ ≤ 𝐶 .

Proof. The proof is done by analyzing feasible solutions to the following two linear programs LPH and LPCone, whose variables are ®𝑥
and ®𝑜 .

LPH LPCone

max 0

s.t. AS × (®𝑥)⊤ ≤ (bS)⊤

AT × (®𝑥 + ®𝑜 × O)⊤ ≤ (bT)⊤

−®𝑜 ≤ ®0

max 0

s.t. AS × (®𝑥)⊤ ≤
(
®0
)⊤

AT × (®𝑥 + ®𝑜 × O)⊤ ≤
(
®0
)⊤

−®𝑜 ≤ ®0

Because ®𝑥 ∈ H𝐵′ , there exists ®𝑜 ≥ ®0 such that ®𝑥 + ®𝑜 × O ∈ HT and ®𝑐 · ®𝑜 ≤ 𝐵′. Therefore, ( ®𝑥, ®𝑤) is a feasible solution to LPH . Notice that

LPCone is feasible (for example ®0 is a feasible solution) and LPH and LPCone only differ on the right hand side of the inequalities. Therefore,

due to [15, Theorem 5 (i)], there exists a feasible solution ( ®𝑥 ′, ®𝑤 ′) to LPCone that is no more than 𝑞Δmax{|bS − ®0|∞, |bT − ®0|∞} = 𝑂 (1) away
from ( ®𝑥, ®𝑤) in 𝐿∞, where Δ is the maximum absolute value of determinants of square sub-matrices of the left hand side of LPH and LPCone,

i.e.,


AS 0

AT AT × (O)⊤
0 −I

 . This implies that

®𝑐 · ®𝑜′ ≤ ®𝑐 · ®𝑤 + (®𝑐 · ®1)𝑞Δmax{|bS |∞, |bT |∞}

The claim follows after letting 𝐶 = (®𝑐 · ®1)𝑞Δmax{|bS |∞, |bT |∞}. □

As proved above, 𝑛 · CH(Π) is Ω(𝑛) away from C𝑛𝑐∗ for any sufficiently large 𝑛. Notice that for any sufficiently large 𝑛, we have

(𝑐∗ −𝐶2)𝑛 > 𝐶 , where 𝐶 is the constant guaranteed by Claim 11. Therefore, by Claim 11, every vector ®𝑥 in H𝐵 is 𝑂 (1) away from a vector

®𝑥 ′ in C𝐵+𝑂 (1) ⊆ C𝑛𝑐∗ . Recall from above that 𝑛 · CH(Π) is Ω(𝑛) away from C𝑛𝑐∗ . Therefore, 𝑛 · CH(Π) is Ω(𝑛) away fromH𝐵 .

Finally, for any ®𝜋 ∈ Π𝑛 , let 𝜋 ′ = 1

𝑛

∑𝑛
𝑗=1 𝜋 𝑗 . Because 𝜋

′ ∈ CH(Π), the 𝐿∞ distance between 𝜋 ′, which is the mean vector of ®𝑋 ®𝜋 , andH𝐵 is

Ω(𝑛). The (exponential) upper bound for the 𝐵 ≤ 𝐶2𝑛 case is proved by a straightforward application of Hoeffding’s inequality and the

union bound to all 𝑞 dimensions as in the proof of the exponential case of sup. The exponential lower bound trivially holds.

𝑩 ≥ 𝑪3𝒏. The 𝑂
(
( 1√
𝑛
)𝑞−𝑑∞

)
upper bound of this case follows after Claim 6. At a high level, the proof of the Ω

(
( 1√
𝑛
)𝑞−𝑑∞

)
lower

bound is similar to the proof of the polynomial lower bound of PT-Θ(
√
𝑛)-sup. The main difference is that the condition is weaker now

(CH(Π) ∩ C∞ ≠ ∅ compared to C0 ∩ CH(Π) ≠ ∅). Therefore, we will identify two different sets R+
𝐵,𝑛

⊆ H𝐵,𝑛 and RZ+
𝐵,𝑛

⊆ U𝑛,𝐵 for any

strictly positive 𝜋+ ∈ Cone𝐵+ with 𝜋+ · ®1 = 1, where 𝐵+ is a fixed number such that 𝐶3 > 𝐵+ > 𝐵
CH(Π) . It follows that 𝜋

+ ∈ HS,≤0 and we

can write 𝜋+ = ®𝑦 + − ®𝑜 + × O, where ®𝑦 + ∈ HT,≤0, ®𝑜 + ≥ ®0, and ®𝑐 · ®𝑜 + ≤ 𝐵+.
In the following procedure, we define a basis B+ of P∞ that is similar to 𝐵∞. Let {®𝑝 +

1
, . . . , ®𝑝 +

𝑑∞
} denote a set of 𝑑∞ linearly independent

vectors in C∞ ⊆ P∞. W.l.o.g. suppose for every 𝑗 ≤ 𝑑∞, ®𝑝 +
𝑗
· ®1 ∈ {−1, 0, 1}—otherwise we divide ®𝑝 +

𝑗
by | ®𝑝 +

𝑗
· ®1|. For every 𝑗 ≤ 𝑑∞, let

®𝑝 +
𝑗
= ®𝑦 +

𝑗
− ®𝑜 +

𝑗
× O, where ®𝑦 +

𝑗
∈ HT,≤0 and ®𝑜 +

𝑗
≥ ®0. For convenience, let ®𝑝 +

0
≜ 𝜋+.

Procedure. Start with B+ = {®𝑝 +
0
}. For every 1 ≤ 𝑗 ≤ 𝑑∞, we add ®𝑝 +

𝑗
to B+ if and only if it is linearly independent of existing vectors in B+.

At the end of the procedure, we have |B+ | = 𝑑∞. W.l.o.g., let B+ = {®𝑝 +
0
, ®𝑝 +

1
, . . . , ®𝑝 +

𝑑∞−1}.
Next, we define L+,𝐶+

, and R+
𝑛 that are similar to L0,𝐶0

, and R0

𝑛 in Step 1.2 of the proof of the polynomial lower bound of PT-Θ(
√
𝑛)-sup,

respectively.

Let L+ denote the lattice generated by B+ excluding ®0. That is,

L+ =

{∑︁𝑑∞−1
𝑖=0

𝜆𝑖 · ®𝑝 +
𝑖 : ∀0 ≤ 𝑖 ≤ 𝑑∞ − 1, 𝜆𝑖 ∈ Z and ∃0 ≤ 𝑖 ≤ 𝑑∞ − 1 s.t. 𝜆𝑖 ≠ 0

}
Let 𝐶+

denote the minimum 𝐿∞ norm of vectors in L+. That is,

𝐶+ = inf

{
| ®𝑥 |∞ : ®𝑥 ∈ ˆL

}
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Following a similar argument that proves 𝐶0 > 0, we have 𝐶+ > 0. Then, define

R+
𝑛 =

{∑︁𝑑∞−1
𝑖=1

⌈
2𝐶′

𝐶+

⌉
· 𝜆𝑖 · ®𝑝 +

𝑖 : ∀1 ≤ 𝑖 ≤ 𝑑∞ − 1, 𝜆𝑖 ∈ {0, 1, . . . , ⌊
√
𝑛⌋}

}
Notice that vectors in R+

𝑛 do not have ®𝑝0 = 𝜋+ components. Recall that ®𝑥# ∈ U𝐵#,𝑛# , which means that ®𝑥# · ®1 = 𝑛#. For any 𝑛 ∈ N, define

R+
𝐵,𝑛 =

{
(𝑛 − 𝑛# − ®𝑥 + · ®1) · 𝜋+ + ®𝑥 # + ®𝑥 +

: ®𝑥 + ∈ R+
𝑛

}
Like Claim 8, in the following claim we prove that vectors in R+

𝐵,𝑛
are at least 2𝐶′

from each other in 𝐿∞.

Claim 12 (Sparsity of R+
𝑩,𝒏). For any pair of vectors ®𝑥1, ®𝑥2 ∈ R+

𝐵,𝑛
whose R+

𝑛 components are different, we have | ®𝑥1 − ®𝑥2 |∞ ≥ 2𝐶′.

Proof. For 𝑗 ∈ {1, 2}, we write

®𝑥 𝑗 = ℓ 𝑗 · 𝜋+ + ®𝑥 # +
∑︁𝑑∞−1

𝑖=1

⌈
2𝐶′

𝐶+

⌉
· 𝜆 𝑗
𝑖
· ®𝑝 +
𝑖 ,

where ℓ1 and ℓ2 guarantee that ®𝑥1 · ®1 = ®𝑥2 · ®1 = 𝑛. Then, because ( ®𝑥1 − ®𝑥2) · ®1 = 0 and 𝜋+ · ®1 = 1, we have

ℓ1 − ℓ2 =
∑︁𝑑∞−1

𝑖=1

⌈
2𝐶′

𝐶+

⌉
(𝜆2𝑖 − 𝜆

1

𝑖 ) · ( ®𝑝
+
𝑖 · ®1)

Therefore,

®𝑥1 − ®𝑥2 =(ℓ1 − ℓ2)𝜋+ +
∑︁𝑑∞−1

𝑖=1

⌈
2𝐶′

𝐶+

⌉
(𝜆1𝑖 − 𝜆

2

𝑖 ) · ®𝑝
+
𝑖

=
∑︁𝑑∞−1

𝑖=1

⌈
2𝐶′

𝐶+

⌉
(𝜆2𝑖 − 𝜆

1

𝑖 ) · ( ®𝑝
+
𝑖 · ®1) · 𝜋+ +

∑︁𝑑∞−1
𝑖=1

⌈
2𝐶′

𝐶+

⌉
(𝜆1𝑖 − 𝜆

2

𝑖 ) · ®𝑝
+
𝑖

=

⌈
2𝐶′

𝐶+

⌉ (∑︁𝑑∞−1
𝑖=1

(𝜆2𝑖 − 𝜆
1

𝑖 ) · ( ®𝑝
+
𝑖 · ®1) · 𝜋+ +

∑︁𝑑∞−1
𝑖=1

(𝜆1𝑖 − 𝜆
2

𝑖 ) · ®𝑝
+
𝑖

)
Recall that for all 𝑖 ≤ 𝑑∞ − 1, ®𝑝 +

𝑖
· ®1 is an integer, which means that

∑𝑑∞−1
𝑖=1

(𝜆2
𝑖
− 𝜆1

𝑖
) · ( ®𝑝 +

𝑖
· ®1) is an integer. Also because the R+

𝑛 components

of ®𝑥1 and ®𝑥2 are different, there exists 𝑖 ≤ 𝑑∞ − 1 such that 𝜆1
𝑖
− 𝜆2

2
≠ 0. Therefore,∑︁𝑑∞−1

𝑖=1
(𝜆2𝑖 − 𝜆

1

𝑖 ) · ( ®𝑝
+
𝑖 · ®1) · 𝜋+ +

∑︁𝑑∞−1
𝑖=1

(𝜆1𝑖 − 𝜆
2

𝑖 ) · ®𝑝
+
𝑖 ∈ L+

Therefore, ��®𝑥1 − ®𝑥2
��
∞ =(ℓ1 − ℓ2)𝜋+ +

∑︁𝑑∞−1
𝑖=1

⌈
2𝐶′

𝐶+

⌉
(𝜆1𝑖 − 𝜆

2

𝑖 ) · ®𝑝
+
𝑖

=
∑︁𝑑∞−1

𝑖=1

⌈
2𝐶′

𝐶+

⌉
(𝜆2𝑖 − 𝜆

1

𝑖 ) · ( ®𝑝
+
𝑖 · ®1) · 𝜋+ +

∑︁𝑑∞−1
𝑖=1

⌈
2𝐶′

𝐶+

⌉
(𝜆1𝑖 − 𝜆

2

𝑖 ) · ®𝑝
+
𝑖

=

⌈
2𝐶′

𝐶+

⌉ ����∑︁𝑑∞−1
𝑖=1

(𝜆2𝑖 − 𝜆
1

𝑖 ) · ( ®𝑝
+
𝑖 · ®1) · 𝜋+ +

∑︁𝑑∞−1
𝑖=1

(𝜆1𝑖 − 𝜆
2

𝑖 ) · ®𝑝
+
𝑖

����
∞

≥
⌈
2𝐶′

𝐶+

⌉
·𝐶+ = 2𝐶′

This completes the proof of Claim 12. □

Then, we prove the counterpart of Claim 9 for R+
𝐵,𝑛

in the following claim.

Claim 13 (R+
𝑩,𝒏 ⊆ H𝑩,𝒏 ∩ R

𝒒
≥0). There exists 𝑁 ∈ N that does not depend on 𝐵 or 𝑛, such that when 𝑛 ≥ 𝑁 , R+

𝐵,𝑛
⊆ H𝐵,𝑛 ∩ R𝑞≥0.

Proof. Let ®𝑥 = (𝑛 − 𝑛# − ®𝑥 + · ®1) · 𝜋+ + ®𝑥 # + ®𝑥 +
denote any vector in R+

𝐵,𝑛
, where ®𝑥 + =

∑𝑑∞−1
𝑖=1

⌈
2𝐶′
𝐶+

⌉
· 𝜆𝑖 · ®𝑝 +

𝑖
. Clearly R+

𝐵,𝑛
⊆ R𝑞≥0 for

sufficiently large 𝑛, because 𝜋+ is strictly positive. It is not hard to verify that ®𝑥 ∈ HS, because 𝜋
+ ∈ HS,≤0, ®𝑥 # ∈ HS, and ®𝑥 + ∈ HS,≤0. Let

®𝑜 = (𝑛 − 𝑛# − ®𝑥 + · ®1) · ®𝑜 + + ®𝑜 # +
∑︁𝑑∞−1

𝑖=1

⌈
2𝐶′

𝐶+

⌉
· 𝜆𝑖 · ®𝑜 +𝑖

It follows that ®𝑐 · ®𝑤 ≤ 𝐵+𝑛 + 𝐵# +𝑂 (
√
𝑛), which is smaller than 𝐵 ≥ 𝐶3𝑛 for any sufficiently large 𝑛, because 𝐶3 > 𝐵+. Then,

®𝑥 + ®𝑤 × O =

(
𝑛 − 𝑛# − ®𝑥 + · ®1

)
· ®𝑦 +︸︷︷︸
in HT,≤0

+ ®𝑦 #︸︷︷︸
in HT

+
∑︁𝑑∞−1

𝑖=1

⌈
2𝐶′

𝐶+

⌉
· 𝜆𝑖 · ®𝑦𝑖︸︷︷︸

in HT,≤0

∈ HT

Therefore, R+
𝐵,𝑛

⊆ H𝐵,𝑛 . This completes the proof of Claim 13. □
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Let RZ+
𝐵,𝑛

⊆ U𝑛,𝐵 denote the integer vectors corresponding to vectors in R+
𝐵,𝑛

guaranteed by Claim 7. Then, |RZ+
𝐵,𝑛

| = Ω((
√
𝑛)𝑑∞−1). The

Ω
(
( 1√
𝑛
)𝑞−𝑑∞

)
lower bound follows after similar steps as Step 2 and Step 3 for the polynomial lower bound of PT-Θ(

√
𝑛)-sup. Specifically,

we have the following counterpart to Claim 10 with a similar proof.

Claim 14. For any PMV-instability setting S, any strictly positive set of distributions Π such that 𝐵−CH(Π) < ∞, and any 𝐶−
3
> 𝐵−CH(Π) , there

exist 𝐶S > 0 and 𝑁 > 0 such that for any 𝑛 ≥ 𝑁 , any 𝐵 ≥ 𝐶−
3
𝑛, and any ®𝜋 ∈ Π𝑛 ,

Pr( ®𝑋 ®𝜋 ∈ U𝑛,𝐵) ≥ 𝐶S ·
(
1

√
𝑛

)𝑞−𝑑∞
Proof for inf . Like the sup part, we call the four cases in inf part the 0 case, the exponential case, the phase transition at Θ(

√
𝑛) case, and

the phase transition at Θ(𝑛) case.
The 0 case is straightforward. To prove the exponential upper bound, we need to prove that there exists ®𝜋 ∈ Π𝑛 such that Pr( ®𝑋 ®𝜋 ∈

U𝑛,𝐵) = exp(−Ω(𝑛)). Let 𝜋 ′ denote an arbitrary vector in CH(Π) \ C∞. Because C∞ is a closed cone, the distance between 𝜋 ′ and C∞
is strictly positive, which means that the distance between 𝑛 · 𝜋 ′ and C∞ is Ω(𝑛). Then, let ®𝜋 ∈ Π𝑛 denote an arbitrary vector such that

1

𝑛

∑𝑛
𝑗=1 𝜋 𝑗 is 𝑂 (1) from 𝜋 ′ in 𝐿∞. Therefore,

∑𝑛
𝑗=1 𝜋 𝑗 , which is the mean vector of ®𝑋 ®𝜋 , is Θ(𝑛) away from C∞ ⊇ C𝐵 . Then, similar to the

proof for the exponential case of sup, by Claim 3,

∑𝑛
𝑗=1 𝜋 𝑗 is Θ(𝑛) away from H𝐵 ⊇ U𝑛,𝐵 . The exponential upper bound of inf then follows

after Hoeffding’s inequality and the union bound. The exponential lower bound trivially holds.

Proof for the phase transition at 𝚯(
√
𝒏) case of inf . The (polynomial) upper bound follows after the upper bound of the phase

transition at Θ(
√
𝑛) case of sup. The polynomial lower bound follows after applying Claim 10 to every ®𝜋 = (𝜋1, . . . , 𝜋𝑛) ∈ Π𝑛 and letting

𝜋∗ = 1

𝑛

∑𝑛
𝑗=1 𝜋 𝑗 ∈ C0.

Proof for the phase transition at 𝚯(𝒏) case of inf . When 𝐵 ≤ 𝐶−
2
𝑛, the (exponential) lower bound is straightforward. The proof for the

(exponential) upper bound is similar to the proof of the 𝐵 ≤ 𝐶2𝑛 case of PT-Θ(𝑛)-sup. More precisely, let 𝑐∗ = 1

2
(𝐶−

2
+ 𝐵−

CH(Π) ). According
to the minimality of 𝐵−

CH(Π) , we have CH(Π) ⊈ C𝑐∗ . Let 𝜋 ′ ∈ CH(Π) \ C𝑐∗ , which means that 𝜋 ′ is Ω(1) away from C𝑐∗ , because C𝑐∗ is a
closed set. Let ®𝜋 ∈ Π𝑛 denote an arbitrary vector such that

∑𝑛
𝑗=1 𝜋 𝑗 is 𝑂 (1) from 𝑛 · 𝜋 ′ in 𝐿∞. Then,

∑𝑛
𝑗=1 𝜋 𝑗 is Ω(𝑛) away from C𝑐∗ . By

Claim 11,

∑𝑛
𝑗=1 𝜋 𝑗 , which is the mean vector of ®𝑋 ®𝜋 , is Ω(𝑛) away fromH𝐵 in 𝐿∞. The exponential upper bound follows after Hoeffding’s

inequality and the union bound.

When 𝐵 ≥ 𝐶−
3
𝑛, the polynomial upper bound follows after the sup case. To prove the polynomial lower bound, notice that 𝐶−

3
>

𝐵−
CH(Π) ≥ 𝐵

CH(Π) . Let 𝐵
+
be any number such that 𝐵−

CH(Π) < 𝐵+ < 𝐶−
3
. This means that CH(Π) ⊆ C𝐵+ . Because 𝐵−

CH(Π) ≥ 𝐵
CH(Π) , we

have 𝐵+ > 𝐵
CH(Π) . The proof for the lower bound is similar to the proof for the lower bound in the phase transition at Θ(𝑛) case of inf:

notice that in the proof of the 𝐵 ≥ 𝐶3𝑛 case of PT-Θ(𝑛)-sup, the proof works for any 𝜋+ ∈ CH(Π) ∩ C𝐵+ = CH(Π). □

F Materials for Section C.4
F.1 Proof of Theorem 3
Theorem 3. (Semi-Random Likelihood of PMV-multi-instability, 𝐵 = 𝑂 (𝑛)). Given any 𝑞 ∈ N, any closed and strictly positive Π over
[𝑞], and any unionM of 𝐼 ∈ N PMV-instability settings {S𝑖 : 𝑖 ≤ 𝐼 }, there exists a constant 𝐶1 > 0 so that for any 𝑛 ∈ N and any 𝐵 ≥ 0 with
𝐵 ≤ 𝐶1𝑛,

sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ UM

𝑛,𝐵

)
=


0 if𝑤max = −∞
exp(−Θ(𝑛)) if𝑤max = − 2𝑛

log𝑛

Θ
((

1√
𝑛

)𝑞−𝑤max

)
otherwise

inf

®𝜋∈Π𝑛
Pr

(
®𝑋 ®𝜋 ∈ UM

𝑛,𝐵

)
=


0 if𝑤min = −∞
exp(−Θ(𝑛)) if𝑤min = − 2𝑛

log𝑛

Θ
((

1√
𝑛

)𝑞−𝑤min

)
otherwise

Proof. The 0 cases of sup and inf are straightforward. Like the proof of Theorem 2, it suffices to prove the other cases of sup and inf for

every sufficiently large 𝑛.

Proof for the sup part.We first prove a convenient corollary of Theorem 2, which uses the weight in the activation graph to represent

conditions of the sup part of Theorem 2.
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Corrollary 2 (Activation graph representation of the sup part of Theorem 2). Given any 𝑞 ∈ N, any closed and strictly positive
Π over [𝑞], and any PMV-instability setting S = ⟨HS,HT,O, ®𝑐 ⟩, any 𝐶2 with 𝐶2 < 𝐵CH(Π) , any 𝑛 ∈ N, and any 0 ≤ 𝐵 ≤ 𝐶2𝑛, let
𝑤∗ = sup𝜋∈CH(Π) 𝑤𝑛,𝐵 (𝜋,S),

sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
=


0 if𝑤∗ = −∞
exp(−Θ(𝑛)) if −∞ < 𝑤∗ < 0

Θ

((
1√
𝑛

)𝑞−𝑤∗ )
otherwise

Proof. The 0 case is straightforward. Like in the proof of Theorem 2, for the non-zero cases it is without loss of generality to assume that

𝑛 is larger than a constant.

Exponential case. In this case we have𝑤∗ = − 2𝑛
log𝑛

, which means that CH(Π) ∩ C0 = ∅. Therefore, the exponential case of Corollary 2 follows

after the exponential case and the 𝐵 ≤ 𝐶2𝑛 case of in Theorem 2.

Polynomial case. Because CH(Π) is bounded and closed, it is compact. Therefore, there exists 𝜋∗ ∈ CH(Π) such that 𝑤𝑛,𝐵 (𝜋∗,S) = 𝑤∗ =

𝑑0 + 𝑑Δ ·min

{
2 log(𝐵+1)

log𝑛
, 1

}
. It follows from Theorem 2 that

sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
= Θ

(
min{𝐵 + 1,

√
𝑛}𝑑Δ

(
√
𝑛)𝑞−𝑑0

)
Notice that

log

(
min{𝐵 + 1,

√
𝑛}𝑑Δ

(
√
𝑛)𝑞−𝑑0

)
= 𝑑Δ min

{
log(𝐵 + 1), log𝑛

2

}
+ (𝑑0 − 𝑞)

log𝑛

2

=
log𝑛

2

·
(
𝑑0 + 𝑑Δ ·min

{
2 log(𝐵 + 1)

log𝑛
, 1

}
− 𝑞

)
= log

((
1

√
𝑛

)𝑞−𝑤∗ )
This completes the proof of Corollary 2. □

Define 𝑪1 for sup. Let 𝐶1 > 0 denote any positive number that is smaller than any strictly positive 𝐵𝑖
CH(Π) . That is,

0 < 𝐶1 < min{𝐵𝑖
CH(Π) : 𝐵

𝑖
CH(Π) > 0, 𝑖 ≤ 𝐼 }

The rest of the proof for the sup part of Theorem 3 is done by combining the results of the applications of Corollary 2 to all PMV-instability

settings and the following inequality.

max

𝑖∈𝐼
sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑖

𝑛,𝐵

)
≤ sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ UM

𝑛,𝐵

)
≤ 𝐼 ·max

𝑖∈𝐼
sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑖

𝑛,𝐵

)
(26)

Exponential case of sup. In this case𝑤max = − 2𝑛
log𝑛

. Notice that for all 𝜋 ∈ CH(Π) and all 𝑖 ≤ 𝐼 , we have𝑤𝑛,𝐵 (𝜋,S𝑖 ) ≤ − 2𝑛
log𝑛

, and there

exists 𝜋∗ ∈ CH(Π) and 𝑖∗ ≤ 𝐼 such that𝑤𝑛,𝐵 (𝜋∗,S𝑖
∗ ) = − 2𝑛

log𝑛
. Therefore, by Corollary 2, sup ®𝜋∈Π𝑛 Pr

(
®𝑋 ®𝜋 ∈ U𝑖∗

𝑛,𝐵

)
= − 2𝑛

log𝑛
, which means

that

max

𝑖∈𝐼
sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑖

𝑛,𝐵

)
= exp(−Θ(𝑛))

The exponential case follows after (26).

Polynomial case of sup. The proof for the polynomial case is similar. To prove the polynomial upper bound, notice that for all 𝜋 ∈ CH(Π)
and all 𝑖 ≤ 𝐼 , we have𝑤𝑛,𝐵 (𝜋,S𝑖 ) ≤ 𝑤max. By Corollary 2, when 𝑛 is sufficiently large, for all 𝑖 ≤ 𝐼 , we have

max

𝑖∈𝐼
sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑖

𝑛,𝐵

)
= max

𝑖∈𝐼
Θ

((
1

√
𝑛

)𝑞−𝑤𝑖∗ )
= 𝑂

((
1

√
𝑛

)𝑞−𝑤max

)
,

where𝑤𝑖∗ is the weight𝑤∗
in Corollary 2 applied to S = S𝑖 .

To prove the polynomial lower bound, let 𝜋∗ ∈ CH(Π) and 𝑖∗ ≤ 𝐼 be such that 𝑤𝑖
∗
𝑛,𝐵

(𝜋∗,S𝑖∗ ) = 𝑤max. According to the polynomial

case of Corollary 2, we have

max

𝑖∈𝐼
sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑖

𝑛,𝐵

)
= Ω

((
1

√
𝑛

)𝑞−𝑤max

)
The polynomial lower bound of sup follows after (26). This proves the sup part of Theorem 3.
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Proof for the inf part. The hardness in proving the inf part is that any ®𝜋 ∈ Π𝑛 that achieves inf for one PMV-instability setting S𝑖 may

not achieve inf for another PMV-instability setting S𝑖′ , and therefore may not achieve inf of the PMV-multi-instability problem. This

is different from the sup part, where the ®𝜋 ∈ Π𝑛 with the highest value of sup under some S𝑖′ achieves sup of the union-manipulation

problem. Consequently, even though the inf counterpart of Corollary 2 can be proved for inf, it is cannot be leveraged to prove the inf part

of Theorem 3.

To prove the inf part, we first define some distributions that will be used to prove the upper bounds for inf.

Definition 19 (𝝅I ’s). Given a PMV-multi-instability settingM, for every non-empty set I ⊆ [𝐼 ] such that CH(Π) ⊈ ⋃
𝑖∈I C𝑖

0
, we choose

𝜋I ∈ CH(Π) \
(⋃

𝑖∈I C𝑖
0

)
.

Because every C𝑖
0
is a closed set, the distance between 𝜋I and

⋃
𝑖∈I C𝑖

0
is strictly positive and is denoted by 𝛿I > 0. Due to Claim 5, for

every 𝑖 ∈ I there exists a constant 𝑐𝑖 such that each vector in H 𝑖
𝐵
is no more than 𝑐𝑖 (𝐵 + 1) away from a vector in C𝑖

0
. It follows that for any

𝑛 >
4𝑐𝑖
𝛿I

and any 𝐵 ≤ 𝛿I
4𝑐𝑖
𝑛, the distance between 𝜋I andH 𝑖

𝐵
is at least

𝛿I
2
𝑛.

Define 𝑪1 for inf . Let 𝐶1 denote the minimum
𝛿I
4𝑐𝑖

for all well-defined 𝛿I and all 𝑖 ∈ I. Let 𝛿 denote the minimum
𝛿I
2

for all well-defined

𝛿I . It follows that for any sufficiently large 𝑛 (that is larger than all
4𝑐𝑖
𝛿I

) and any 𝐵 ≤ 𝐶1𝑛, the distance between any well-defined 𝜋I and

any 𝑖 ∈ I is at least 𝛿𝑛.

Exponential case of inf . In this case𝑤min = − 2𝑛
log𝑛

. The exponential lower bound trivially holds, because there exists an active S𝑖 . To
prove the exponential upper bound, let 𝜋MM ∈ CH(Π) be an arbitrary distribution such that for all 𝑖 ≤ 𝐼 ,𝑤𝑛,𝐵 (𝜋MM,S𝑖 ) ≤ − 2𝑛

log𝑛
. Let

IMM denote the indices to the active PMV-instability settings (whose C0’s do not contain 𝜋MM), that is,

IMM ≜

{
𝑖 ≤ 𝐼 : 𝑤𝑛,𝐵 (𝜋MM,S𝑖 ) = − 2𝑛

log𝑛

}
Because 𝜋MM ∈ CH(Π) \

(⋃
𝑖∈I C𝑖

0

)
, we have that 𝜋IMM

is well-defined. Therefore, for every 𝑖 ∈ IMM, the distance between 𝜋IMM
and C𝑖

0
is

at least 𝛿𝑛. The exponential upper bound follows after applying Claim 11, Hoeffding’s inequality, and the union bound to any ®𝜋 ∈ Π𝑛 such

that |∑𝑛𝑗=1 𝜋 𝑗 − 𝑛 · 𝜋IMM
|∞ = 𝑂 (1), as done in the 𝐵 ≤ 𝐶2𝑛 case of the proof for PT-Θ(𝑛)-sup of Theorem 2.

Polynomial case of inf .To prove thepolynomial lower bound, notice that for every ®𝜋 ∈ Π𝑛 , there exists 𝑖 ≤ 𝐼 such that𝑤𝑛,𝐵 (avg( ®𝜋),S𝑖 ) =
𝑑𝑖
𝑛,𝐵

≥ 𝑤min. It follows from Claim 10 (applied to S𝑖 , and ®𝜋 ) that, for every 𝐵 ≤
√
𝑛,

Pr( ®𝑋 ®𝜋 ∈ UM
𝑛,𝐵

) ≥ Pr( ®𝑋 ®𝜋 ∈ U𝑖
𝑛,𝐵) = Θ

((
1

√
𝑛

)𝑞−𝑑𝑖
𝑛,𝐵

)
= Ω

((
1

√
𝑛

)𝑞−𝑤min

)
Notice that for every 𝐵 >

√
𝑛, the inequality still holds, because we have Pr( ®𝑋 ®𝜋 ∈ U𝑖

𝑛,𝐵
) ≥ Pr( ®𝑋 ®𝜋 ∈ U𝑖

𝑛,
√
𝑛
).

To prove the polynomial upper bound, let

𝜋MM ≜ argmin𝜋∈CH(Π) max𝑖≤𝐼
{
𝑤𝑛,𝐵 (𝜋,S𝑖 )

}
Like in the proof of the exponential upper bound of inf above, define

IMM ≜
{
𝑖 ≤ 𝐼 : 𝑤𝑛,𝐵 (𝜋MM,S𝑖 ) < 0

}
Because 𝜋MM ∈ CH(Π) \

(⋃
𝑖∈I C𝑖

0

)
, we have that 𝜋IMM

is well-defined. Therefore, for every 𝑖 ∈ IMM, the distance between 𝜋IMM
and C𝑖

0

is at least 𝛿𝑛. Choose any ®𝜋 ∈ Π𝑛 such that |∑𝑛𝑗=1 𝜋 𝑗 − 𝑛 · 𝜋IMM
|∞ = 𝑂 (1). Like the exponential case above, for every 𝑖 ∈ IMM, we have

Pr( ®𝑋 ®𝜋 ∈ U𝑖
𝑛,𝐵

) ≤ exp(−Ω(𝑛)). Moreover, for every 𝑖 ∉ IMM such that S𝑖 is active, we have 𝜋MM ∈ C𝑖
0
, which means that C𝑖

0
∩ CH(Π) ≠ ∅.

Recall that 𝑑𝑖
𝑛,𝐵

≤ 𝑤min. By Corollary 2, we have

Pr( ®𝑋 ®𝜋 ∈ U𝑖
𝑛,𝐵) = 𝑂

((
1

√
𝑛

)𝑞−𝑑𝑖
𝑛,𝐵

)
≤ 𝑂

((
1

√
𝑛

)𝑞−𝑤min

)
Therefore,

Pr( ®𝑋 ®𝜋 ∈ UM
𝑛,𝐵

) ≤
∑︁

𝑖≤𝐼 Pr(
®𝑋 ®𝜋 ∈ U𝑖

𝑛,𝐵) = 𝑂
((

1

√
𝑛

)𝑞−𝑤min

)
,

which proves the polynomial upper bound of inf. □
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G Materials for Section 4
G.1 Full Version of Theorem 4 and Its Proof

Theorem 4. Let 𝑟 be an integer positional scoring rule, STV, ranked pairs, Schulze, maximin, Copeland, plurality with runoff, or Bucklin with
lexicographic tie-breaking. For any closed and strictly positive Π with 𝜋uni ∈ CH(Π), any𝑋 ∈ {CM,MoV}∪e-Control (except𝑋 ∈ e-Control

when 𝑟 = Cd0), there exists 𝑁 > 0 such that for all 𝑛 > 𝑁 and all 𝐵 ≥ 0,

𝑋max

Π (𝑟, 𝑛, 𝐵) =
{
0 if 𝐵 = 0

Θ
(
min

{
𝐵√
𝑛
, 1

})
if 𝐵 ≥ 1

For any 𝑋 ∈ Control, any 𝑛 > 𝑁 and any 𝐵 ≥ 0, 𝑋max

Π (𝑟, 𝑛, 𝐵) = Θ (1).

Proof. We first prove the 𝑩 = 0 case. For any 𝑋 ∈ {CM,MoV} ∪ e-Control, it is not hard to verify that if no budget is given, then the

goal under 𝑋 cannot be reached, which requires the winner to be changed. Therefore, 𝑋max

Π (𝑟, 𝑛, 𝐵) = 0. For any 𝑋 ∈ Control, it suffices to

prove that for any alternative 𝑎,

sup ®𝜋∈Π𝑛 Pr𝑃∼®𝜋 (𝑟 (𝑃) = {𝑎}) = Θ(1) (27)

It is not hard to see that for all voting rules mentioned in this statement of the theorem, there exists a polyhedron H𝑎
such that for all

®𝑥 ∈ H𝑎
, 𝑟 ( ®𝑥) = {𝑎}, 𝜋uni ∈ H𝑎

≤0, and dim(H𝑎
≤0) = 𝑚!. Therefore, (27) follows after [77, Theorem 1] (or equivalently, Theorem 2 with

HS = HT = H𝑎 and 𝐵 = 0).

In the rest of the proof, we assume that 𝑋 ∈ {CM,MoV} ∪ e-Control and 𝐵 ≥ 1.

Overview. Due to Theorem 5, it suffices to prove the Θ
(
min

{
𝐵√
𝑛
, 1

})
matching lower bound by identifying a PMV-instability setting S that

represents some unstable histogramsU𝑛,𝐵 , such that for all 𝐵 ≥ 1,

𝑋max

Π (𝑟, 𝑛, 𝐵) ≥ sup ®𝜋∈Π𝑛 Pr𝑃∼®𝜋 (Hist(𝑃) ∈ U𝑛,𝐵), and

sup ®𝜋∈Π𝑛 Pr𝑃∼®𝜋 (Hist(𝑃) ∈ U𝑛,𝐵) = Θ

(
min

{
𝐵
√
𝑛
, 1

})
(28)

Notice that for any constant𝐶1 and any 𝐵 ≥ 𝐶1
√
𝑛, the right hands side of (28) isΘ(1). Therefore, it suffices to prove (28) for all 1 ≤ 𝐵 ≤ 𝐶1

√
𝑛.

For each 𝑋 and each voting rule 𝑟 in the statement of the theorem, we define S = ⟨HS,HT,O, ®1 ⟩, prove thatU𝑛,1 ≠ ∅ for any sufficiently

large 𝑛 by construction, and prove that 𝑑0 =𝑚! − 1 (which if often obvious), 𝑑∞ =𝑚! (by applying Claim 15).

We now prove Theorem 4 for 𝑋 = CM, and then comment on how to modify the proof for other 𝑋 ∈ {MoV} ∪ e-Control.

CM for integer positional scoring rules. Let 𝑟 = 𝑟®𝑠 denote the positional scoring rule with scoring vector ®𝑠 . Let HS denote the set of

vectors where 1’s total score is at least as high as 2’s total score, which is strictly higher than the total score of any other alternative. Let HT

denote the set of vectors where 2’s total score is strictly the highest. To formally defineHS andHT, we first recall the definition of score

difference vectors.

Definition 20 (Score difference vector [76]). For any scoring vector ®𝑠 = (𝑠1, . . . , 𝑠𝑚) and any pair of different alternatives 𝑎, 𝑏, let Score®𝑠
𝑎,𝑏

denote the𝑚!-dimensional vector indexed by rankings in L(A): for any 𝑅 ∈ L(A), the 𝑅-element of Score®𝑠
𝑎,𝑏

is 𝑠 𝑗1 − 𝑠 𝑗2 , where 𝑗1 and 𝑗2 are
the ranks of 𝑎 and 𝑏 in 𝑅, respectively.

In words, Score
®𝑠
𝑎,𝑏

is the score vector of 𝑎 (under all linear orders) minus the score vector of 𝑏. Then, we define

HS ≜

®𝑥 :

Score
®𝑠
2,1 · ®𝑥 ≤ 0

∀𝑖 ≥ 3, Score®𝑠𝑖,2 · ®𝑥 ≤ −1

−®𝑥 ≤ ®0

 ,HT ≜

{
®𝑥 :

∀𝑖 ≠ 2, Score®𝑠𝑖,2 · ®𝑥 ≤ −1

−®𝑥 ≤ ®0

}
, and

S®𝑠 = ⟨HS,HT,O
1→2

± , ®1 ⟩
It is not hard to verify that for any ®𝑦 ∈ HS and any ®𝑥 ∈ HT, we have 𝑟®𝑠 ( ®𝑦) = {1} (1 has the highest score and wins due to tie-breaking if 2

also has the highest score) and 𝑟®𝑠 ( ®𝑥) = {2} (2 has the strictly highest score).

Next, we show that U𝑛,𝐵 ≠ ∅ for any sufficiently large 𝑛 by constructing a successful instance of manipulation by a single voter. We

first define some profiles and rankings that will be used in the rest of the proof. For any 𝑎 ∈ A, let 𝜎𝑎 denote a cyclic permutation among

A \ {𝑎}. Let 𝑃𝑎 denote the following (𝑚 − 1)-profile.
𝑃𝑎 ≜

{
𝜎𝑖𝑎 (𝑎 ≻ others) : 1 ≤ 𝑖 ≤ 𝑚 − 1

}
∪ 3 × L(A),

where alternatives in “others” are ranked alphabetically. Let

𝑃∗ ≜ 2𝑚 × (𝑃1 ∪ 𝑃2) ∪
𝑚⋃
𝑖=3

2(𝑚 − 𝑖) × 𝑃𝑖
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It follows that the ®𝑠 (𝑃∗, 1) = ®𝑠 (𝑃∗, 2) > ®𝑠 (𝑃∗, 3) > · · · > ®𝑠 (𝑃∗,𝑚).
Let 𝑅1 (respectively, 𝑅2) denote the ranking where 1 (respectively, 2) is ranked at the top, 2 (respectively, 1) is ranked at the bottom, and

the remaining alternatives are ranked alphabetically. That is,

𝑅1 ≜ [1 ≻ 3 ≻ · · · ≻𝑚 ≻ 2] and 𝑅2 ≜ [2 ≻ 3 ≻ · · · ≻𝑚 ≻ 1]

Let ℓ ≤ 𝑚 − 1 denote the index to the minimum value of 𝑠ℓ − 𝑠ℓ+1. Let 𝑅′
2
denote the ranking where 2 and 1 are ranked at the ℓ-th and the

(ℓ + 1)-th positions respectively, and the remaining alternatives are ranked alphabetically. That is,

𝑅′
2
≜ 3 ≻ · · · ≻ ℓ + 1︸            ︷︷            ︸

ℓ−1

≻ 2 ≻ 1 ≻ 𝑙 + 2 ≻ · · · ≻𝑚︸             ︷︷             ︸
𝑚−ℓ−1

Next, we define 𝑃S and 𝑃T. We first define 𝑃 ′
S
to be the 𝑛-profile that consists of as many copies of 𝑃∗ as possible, and the remaining rankings

are 𝑅1. That is, let 𝑛
′ ≜

⌊
𝑛
|𝑃∗ |

⌋
× |𝑃∗ |, and

𝑃 ′
S
≜

𝑛′

|𝑃∗ |
× 𝑃∗ ∪ (𝑛 − 𝑛′) × {𝑅1}

Let 𝑃S denote the profile obtained from 𝑃 ′
S
by replacing

⌊
(𝑛−𝑛′ ) (𝑠1−𝑠𝑚 )
𝑠1+𝑠ℓ+1−𝑠𝑚−𝑠ℓ

⌋
copies of 𝑅′

2
by 𝑅2. It follows that for any sufficiently large 𝑛 (so

that 𝑃 ′
S
contains enough copies of 𝑅′

2
and the score difference between 1 and any alternative 𝑖 ≥ 3 is sufficiently large), 𝑃S is well-defined and

𝑟®𝑠 (𝑃S) = {1}. Let 𝑃T be obtained from 𝑃S by replacing an 𝑅′
2
vote by an 𝑅2 vote. It follows that 𝑟®𝑠 (𝑃T) = {2}. This proves thatU𝑛,1 ≠ ∅ for

any sufficiently large 𝑛.

It is not hard to verify that 𝑑0 =𝑚! − 1 (the only implicit equality represents 1 and 2 have the same score). Let 𝑃∗
S
be the profile obtained

from 𝑃S by replacing an 𝑅2 vote by an 𝑅′
2
vote. It follows that Hist(𝑃∗

S
) and Hist(𝑃T) are interior points ofHS,≤0 andHT,≤0, respectively.

Therefore, By Claim 15, 𝑑∞ =𝑚!. The lower bound (28) follows after the polynomial case of sup of Theorem 2 (applied to S®𝑠 ). This completes

the proof of Theorem 4 for CM under integer positional scoring rules.

CM for STV. LetHS consists of the histograms (for which the STV winner is 1) where the execution of STV satisfies the following conditions:

• for every 1 ≤ 𝑖 ≤ 𝑚 − 4, in round 𝑖 , alternative𝑚 + 1 − 𝑖 has the strictly lowest plurality score among the remaining alternatives;

• In round𝑚 − 3, alternative 3 has the highest score, and the score of 2 is no more than the score of 1;

• if 1 loses in round𝑚 − 3, then 2 would become the winner; and if 2 loses in round𝑚 − 3, then 1 would become the winner.

Formally, let us recall the score difference vector (for a pair of alternatives 𝑎, 𝑏, after a set of alternatives 𝐵 is removed) to define HS and HT.

Definition 21 ([78]). For any pair of alternatives 𝑎, 𝑏 and any subset of alternatives 𝐵 ⊆ (A \ {𝑎, 𝑏}), we let ScoreΔ
𝐵,𝑎,𝑏

denote the vector,

where for every 𝑅 ∈ L(A), the 𝑅-th component of ScoreΔ
𝐵,𝑎,𝑏

is the plurality score of 𝑎 minus the plurality score of 𝑏 in 𝑅 after alternatives in 𝐵
are removed.

Then, HS consists of vectors ®𝑥 that satisfies the following linear constraints.

• For every 𝑖 ≤ 𝑚 − 4 and every 𝑖′ < 𝑖 ,
Score

Δ
{𝑚+2−𝑖,...,𝑚},𝑚+1−𝑖,𝑖′ · ®𝑥 ≤ −1

• Let 𝐵3 = {4, . . . ,𝑚}. There are two constraints: Score
Δ
𝐵3,2,1

· ®𝑥 ≤ 0 and Score
Δ
𝐵3,1,3

· ®𝑥 ≤ −1.
• Score

Δ
𝐵3∪{1},3,2 · ®𝑥 ≤ −1 and Score

Δ
𝐵3∪{2},3,1 · ®𝑥 ≤ −1.

• For every 𝑅 ∈ L(A), there is a constraint −𝑥𝑅 ≤ 0.

LetHT denote the polyhedron that differs fromHS in round𝑚 − 3, where 1 has the lowest plurality score and drops out, which means

that 2 is the STV winner. It is not hard to verify that for all ®𝑦 ∈ HS and all ®𝑥 ∈ HT, we have STV( ®𝑦) = {1} and STV( ®𝑥) = {2}.
Let SSTV ≜ ⟨HS,HT,O

1→2

± , ®1 ⟩. Next, we construct profiles 𝑃S and 𝑃T to show thatU𝑛,𝐵 ≠ ∅ for any sufficiently large 𝑛 and 𝐵 ≥ 1. For

any 𝑎 ∈ A, let 𝑃∗𝑎 denote the (𝑚 − 1)!-profile that is obtained from L(A \ {𝑎}) by putting 𝑎 at the top. Let

𝑃∗ ≜
𝑚⋃
𝑖=4

(𝑚 − 𝑖) × 𝑃∗𝑎 and 𝑛∗ ≜ |𝑃∗ |

Let

𝑃S ≜

⌊
𝑛 − 𝑛∗

3

− 1

⌋
× {[1 ≻ 2 ≻ others], [2 ≻ 1 ≻ others]}

+
(
𝑛 − 𝑛∗ + 2 − 2

⌊
𝑛 − 𝑛∗

3

⌋)
× {3 ≻ 2 ≻ 1 ≻ others} + 𝑃∗

It follows that |𝑃S | = 𝑛, and for all 𝑛 ≥ 𝑛∗ + 3𝑚(𝑚 − 1)!, Hist(𝑃S) ∈ HS. Let 𝑃T be the profile obtained from 𝑃S by replacing one vote of

[3 ≻ 2 ≻ 1 ≻ others] by [2 ≻ 3 ≻ 1 ≻ others]. It is not hard to verify that Hist(𝑃T) ∈ HT. Therefore, U𝑛,𝐵 ≠ ∅ for every 𝐵 ≥ 1.
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It is not hard to verify that 𝑑0 = dim(HS,≤0 ∩HT,≤0) =𝑚! − 1, where the only implicit equality requires 1 and 2 are tied for the last place

in round𝑚 − 3. To see 𝑑∞ =𝑚!, let 𝑃∗
S
denote the profile obtained from 𝑃S by adding one vote of [1 ≻ 2 ≻ others]. Let ®𝑦 = Hist(𝑃∗

S
) and let

®𝑥 be the histogram of the profile obtained from 𝑃∗
S
by changing two votes of [3 ≻ 2 ≻ 1 ≻ others] to [2 ≻ 1 ≻ 3 ≻ others]. It is not hard to

verify that ®𝑦 is an interior point ofHS,≤0, ®𝑦 is an interior point ofHT,≤0, dim(HS,≤0) = dim(HT,≤0) =𝑚!. By Claim 15, we have 𝑑∞ =𝑚!.

Then, (28) follows after the application of the sup part of Theorem 2 to the PMV-instability setting SSTV for CM under STV.

CM for Ranked Pairs, Schulze, and maximin. The proof for the three rules share the same construction. Let HS denote the polyhedron

that consists of vectors ®𝑥 whose WMG satisfies the following conditions.

• The weights on the following edges are strictly positive: 1 → 2, 2 → 3, 3 → 1, {1, 2, 3} → {4, . . . ,𝑚}.
• For all 𝑖 ≥ 4, the weight on 1 → 𝑖 is strictly larger than the weight on 1 → 2.

• 𝑤 ®𝑥 (2 → 3) > 𝑤 ®𝑥 (1 → 2) ≥ 𝑤 ®𝑥 (3 → 1).
See Figure 5 (a) for an example of WMG that satisfies these conditions. Formally, we first recall the pairwise difference vectors as follows.

Definition 22 (Pairwise difference vectors [76]). For any pair of different alternatives 𝑎, 𝑏, let Pair𝑎,𝑏 denote the𝑚!-dimensional vector
indexed by rankings in L(A): for any 𝑅 ∈ L(A), the 𝑅-component of Pair𝑎,𝑏 is 1 if 𝑎 ≻𝑅 𝑏; otherwise it is −1.

Then, let HS be characterized by the following linear inequalities/constraints:

• For each edge 𝑎 → 𝑏 ∈ {1 → 2, 2 → 3, 3 → 1} ∪ ({1, 2, 3} → {4, . . . ,𝑚}), there is a constraint Pair𝑏,𝑎 · ®𝑥 ≤ −1.
• For all 𝑖 ≥ 4, (Pair1,2 − Pair1,𝑖 ) · ®𝑥 ≤ −1.
• (Pair1,2 − Pair2,3) · ®𝑥 ≤ −1 and (Pair3,1 − Pair1,2) · ®𝑥 ≤ 0.

• For all linear order 𝑅 ∈ L(A), there is a constraint −𝑥𝑅 ≤ 0.

Let HT denote the polyhedron that consists of vectors ®𝑥 whose WMG satisfies the same conditions as HT, except that now it is required

that 𝑤 ®𝑥 (2 → 3) > 𝑤 ®𝑥 (3 → 1) > 𝑤 ®𝑥 (1 → 2). See Figure 5 (b) for an example of WMG that satisfies these conditions for odd 𝑛. We have

dim(HT,≤0) =𝑚! − 1 (the implicit equality is (Pair3,1 − Pair2,3) · ®𝑥 = 0) and dim(HT,≤0) =𝑚!.
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Figure 5: CM under RP, Sch, and MM.

Let S = ⟨HS,HT,O
1→2

± , ®1 ⟩. It follows that for any ®𝑦 ∈ HS and any ®𝑥 ∈ HT, RP( ®𝑦) = {1} (1 → 2 is fixed before 3 → 1 due to tie-breaking)

and RP( ®𝑥) = {2} (3 → 1 is fixed before 1 → 2); Sch( ®𝑦) = {1} (1 and 2 are co-winners, so 1 wins due to tie-breaking) and Sch( ®𝑥) = {2} (2 is
the unique winner); and MM( ®𝑦) = {1} (1 and 2 are co-winners, so 1 wins due to tie-breaking) and MM( ®𝑥) = {2} (2 is the unique winner).

Next, we define 𝑛-profiles 𝑃S and 𝑃T to show thatU𝑛,1 ≠ ∅. The construction depends on the parity of 𝑛. If 𝑛 is odd, let 𝑃S denote a profile

whose WMG is the figure shown in Figure 5 (a), where the weights on 1 → 2 and 3 → 1 are the same. Due to McGarvey’s theorem [44],

such 𝑃S exists for all sufficiently large odd number 𝑛, and we can assume that 𝑃S contains two copies of L(A). Let 𝑃T denote the profile

obtained from 𝑃S by replacing a [2 ≻ 1 ≻ 3 ≻ others] vote by [2 ≻ 3 ≻ 1 ≻ others], which means that the WMG of 𝑃T is Figure 5 (b). If 𝑛 is

even, then let the positive weights on edges in the WMGs of 𝑃S and 𝑃T be one more than those for odd 𝑛, so that all weights become even

numbers. In either case, it is not hard to verify thatU𝑛,𝐵 ≠ ∅ for every sufficiently large 𝑛 and every 𝐵.

It is not hard to verify that 𝑑0 =𝑚! − 1. To see 𝑑∞ =𝑚!, let ®𝑦 be any vector such that WMG( ®𝑥) is the same as Figure 5 (c). Let ®𝑥 denote

the vector obtained from ®𝑦 by replacing two votes of [2 ≻ 1 ≻ 3 ≻ others] by [2 ≻ 3 ≻ 1 ≻ others]. It follows that the WMG( ®𝑥) is Figure 5
(b). Notice that ®𝑦 is an interior point ofHS,≤0; ®𝑥 is an interior point ofHT,≤0; and dim(HS,≤0) = dim(HT,≤0) =𝑚!. By Claim 15, we have

𝑑∞ =𝑚!. Then, (28) follows after the application of the sup part of Theorem 2 to the PMV-instability setting for CM under ranked pairs,

Schulze, and maximin.

CM for Copeland.
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CM, odd 𝒏. Let HS denote the polyhedron that consists of vectors ®𝑥 whose UMG has the following edges: 1 → 3, 3 → 2, 2 → 1,

{1, 2, 3} → {4, . . . ,𝑚}. See Figure 6 (a) for an example for𝑚 = 4. Formally,HS is characterized by the following linear inequalities/constraints:

• For each edge 𝑎 → 𝑏 ∈ {1 → 3, 3 → 2, 2 → 1} ∪ ({1, 2, 3} → {4, . . . ,𝑚}), there is a constraint Pair𝑏,𝑎 · ®𝑥 ≤ −1.
• For all linear order 𝑅 ∈ L(A), there is a constraint −𝑥𝑅 ≤ 0.

Let HT denote the polyhedron that consists of vectors ®𝑥 whose UMG has the same edges HS, except that the direction between 2 and 3 is

flipped, i.e.,𝑤 ®𝑥 (3 → 2) ≤ −1. See Figure 6 (b) for an example of the UMG for𝑚 = 4.
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Figure 6: CM under Cd𝛼 , odd 𝑛.

Let S
Cd𝛼

= ⟨HS,HT,O
1→2

± , ®1 ⟩. It follows that for any ®𝑦 ∈ HS and any ®𝑥 ∈ HT, Cd𝛼 ( ®𝑦) = {1} (1, 2, 3 have the same highest Copeland

score, and then 1 wins due to tie-breaking) and Cd𝛼 ( ®𝑥) = {2} (2 is the Condorcet winner).
Next, we define 𝑛-profiles 𝑃S and 𝑃T to show thatU𝑛,1 ≠ ∅. Let 𝑃S denote a profile whose WMG is the figure shown in Figure 6 (c), where

the weight on 3 → 2 is 1. Due to McGarvey’s theorem [44], such 𝑃S exists for all sufficiently large odd number 𝑛, and we can assume that 𝑃S
contains L(A). Let 𝑃T denote the profile obtained from 𝑃S by replacing a [3 ≻ 2 ≻ 1 ≻ others] vote by [2 ≻ 3 ≻ 1 ≻ others], which means

that the UMG of 𝑃T is Figure 6 (b).

Recall that 𝑃T is obtained from 𝑃S by replacing a vote. Therefore, Hist(𝑃S) ∈ U𝑛,1, which means thatU𝑛,1 ≠ ∅. It is not hard to verify that

𝑑0 =𝑚! − 1 (the implicit equality corresponds to the tie between 2 and 3). Notice that Hist(𝑃S) and Hist(𝑃T) are interior points ofHS,≤0 and
HT,≤0, respectively, and dim(HS,≤0) = dim(HT,≤0) =𝑚!. By Claim 15, we have 𝑑∞ =𝑚!. Also notice that 𝜋uni ∈ HS,≤0 ∩HT,≤0. Therefore,
by Theorem 2, for any 𝐵 ≥ 1 and any sufficiently large odd 𝑛 , we have

sup ®𝜋∈Π𝑛 Pr𝑃∼®𝜋 (Hist(𝑃) ∈ U𝑛,𝐵) = Θ

(
min

{
𝐵
√
𝑛
, 1

})
CM, even 𝒏, 𝜶 > 0. Let HS be the same as defined for the odd 𝑛 case above (the UMG of all vectors in HS is illustrated in Figure 7 (a)).

LetHT be the polyhedron that consists of vectors ®𝑥 whose UMG satisfies the following conditions: the weights on the following edges are

strictly positive: 1 → 3, 2 → 1, {1, 2, 3} → {4, . . . ,𝑚}. In addition, we require that WMG( ®𝑥) does not contain the edge 3 → 2, i.e., we require

𝑤 ®𝑥 (2 → 3) ≥ 0. See Figure 7 (b) for the UMG for𝑚 = 4 (where the dashed edge from 2 to 3 means that either there is no edge between 2 and

3, or there is an edge 2 → 3). Formally,HT is characterized by the following linear inequalities/constraints:

• For each edge 𝑎 → 𝑏 ∈ {1 → 3, 2 → 1} ∪ ({1, 2, 3} → {4, . . . ,𝑚}), there is a constraint Pair𝑏,𝑎 · ®𝑥 ≤ −1.
• Pair3,2 · ®𝑥 ≤ 0.

• For all linear order 𝑅 ∈ L(A), there is a constraint −𝑥𝑅 ≤ 0.

Let S
Cd𝛼

= ⟨HS,HT,O
1→2

± , ®1 ⟩. It follows that for any ®𝑦 ∈ HS and any ®𝑥 ∈ HT, Cd𝛼 ( ®𝑦) = {1} (1, 2, 3 have the same highest Copeland

score, and then 1 wins due to tie-breaking) and Cd𝛼 ( ®𝑥) = {2} (2 has the highest Copeland score, which is at least𝑚 − 2 + 𝛼).
Next, we define𝑛-profiles 𝑃S and 𝑃T to show thatU𝑛,1 ≠ ∅. Let 𝑃S denote any𝑛-profile that containsL(A), whose UMG is as in Figure 7 (a),

and its existence is guaranteed by McGarvey’s theorem [44]. Let 𝑃T denote the profile obtained from 𝑃S by replacing a [3 ≻ 2 ≻ 1 ≻ others]
vote by [2 ≻ 3 ≻ 1 ≻ others], which means that the UMG of 𝑃T is consistent Figure 7 (b) (and there is no edge between 2 and 3 in UMG(𝑃T)).

To characterize 𝑑∞, we prove the following convenient claim for general PMV-instability problems (for general 𝑞) that will be frequently

used in the proofs of this paper.

Claim 15. Suppose dim(HT,≤0) = 𝑞 and HS,≤0 has an interior point that can be manipulated to an interior point of HS,≤0, then 𝑑∞ =

dim(HS,≤0).
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Figure 7: e-CCAV under Cd𝛼 , even 𝑛, 𝛼 > 0.

Proof. Because C∞ ⊆ HS,≤0, we have 𝑑∞ ≤ dim(HS,≤0). Next, we prove that 𝑑∞ ≥ dim(HS,≤0). Let ®𝑦 = ®𝑥 − ®𝑜 × O denote an interior

point HS,≤0, where ®𝑥 is an interior point of HT,≤0 and ®𝑜 ≥ ®0 represents successful operations (without budget constraints). Let 𝐶 > 0

denote an arbitrary number so that the 𝐶 neighborhood of ®𝑥 in 𝐿∞ is contained in dim(HT,≤0). Therefore, the 𝐶 neighborhood of ®𝑦 in 𝐿∞ is

contained inHT,≤0 + Q®𝑐 · ®𝑜 . It follows that any vector ®𝑦′ ∈ HS,≤0 that is at most 𝐶 away from ®𝑦 in 𝐿∞ is in C∞. Because ®𝑦 is an interior point

ofHS,≤0, we have 𝑑∞ ≥ dim(HS,≤0), which proves Claim 15. □

It is not hard to verify that 𝑑0 =𝑚! − 1 and 𝑑∞ =𝑚! (by Claim 15). Notice that 𝜋uni ∈ HS,≤0 ∩HT,≤0. The even 𝑛 and 𝛼 > 0 case follows

after Theorem 2.

CM, even 𝒏, 𝜶 = 0. Let HS be the polyhedron that consists of vectors ®𝑥 whose UMG contains 1 → 3, 2 → 1, {1, 2, 3} → {4, . . . ,𝑚}. In
addition, we require that WMG( ®𝑥) does not contain 2 → 3, that is, 𝑤 ®𝑥 (3 → 2) ≥ 0. See Figure 8 (a) for the UMG for𝑚 = 4 (where the

dashed edge from 3 to 2 means that either there is no edge between 2 and 3, or there is an edge 3 → 2). Formally, HS is characterized by the

following linear inequalities/constraints:

• For each edge 𝑎 → 𝑏 ∈ {1 → 3, 2 → 1} ∪ ({1, 2, 3} → {4, . . . ,𝑚}), there is a constraint Pair𝑏,𝑎 · ®𝑥 ≤ −1.
• Pair2,3 · ®𝑥 ≤ 0.

• For all linear order 𝑅 ∈ L(A), there is a constraint −𝑥𝑅 ≤ 0.

Then, we let HT be the same as HT in the odd 𝑛 case above (as illustrated in Figure 8 (b) for𝑚 = 4). Let S
Cd𝛼

= ⟨HS,HT,O
1→2

± , ®1 ⟩. It
follows that for any ®𝑦 ∈ HS and any ®𝑥 ∈ HT, Cd𝛼 ( ®𝑦) = {1} (1 and 2 have the same highest Copeland score, so 1 wins due to tie-breaking)

and Cd𝛼 ( ®𝑥) = {2} (2 has the strictly highest Copeland score𝑚 − 1).

Let 𝑃S denote an arbitrary 𝑛-profile whose WMG is as shown in Figure 8 (c) and it contains two copies of L(A). Let 𝑃T denote the

𝑛-profile obtained from 𝑃S by replacing a [3 ≻ 2 ≻ 1 ≻ others] vote by [2 ≻ 3 ≻ 1 ≻ others], which means that the UMG of 𝑃T is like

Figure 8 (b). It follows that Hist(𝑃S) ∈ HS and Hist(𝑃T) ∈ HT, which proves thatU𝑛,1 ≠ ∅.
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Figure 8: e-CCAV under Cd𝛼 , even 𝑛, 𝛼 = 0.

It is not hard to verify that 𝑑0 =𝑚! − 1. To see 𝑑∞ =𝑚!, let ®𝑦 be any vector such that WMG( ®𝑥) is the same as Figure 8 (d) and it contains

two copies of [3 ≻ 2 ≻ 1 ≻ others]. Let ®𝑥 denote the vector obtained from ®𝑦 by replacing two votes of [3 ≻ 2 ≻ 1 ≻ others] vote by
[2 ≻ 3 ≻ 1 ≻ others]. It follows that the UMG( ®𝑥) is Figure 8 (b). Notice that ®𝑦 is an interior point of HS,≤0; ®𝑥 is an interior point of HT,≤0;
and dim(HS,≤0) = dim(HT,≤0) =𝑚!. By Claim 15, we have 𝑑∞ =𝑚!. The even 𝑛 and 𝛼 = 0 case follows after Theorem 2.
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Other coalitional influence problems.

The proof for MoV is based on the same constructions of 𝑃S, 𝑃T, HS, and HT. The only difference is that the set of vote operations in S is

O±.

The proofs for e-CCAV and e-CCDV are is based on similarly constructions of 𝑃S, 𝑃T, HS, and HT. The main differences are, first, the set

of vote operations in S is O+ and O− for e-CCAV and e-CCDV, respectively. Second, the added (respectively, deleted) votes correspond to

the new (respectively, old) votes in CM. We add 3 × L(A) to 𝑃S so that there is enough votes to be deleted for e-CCDV. Below we take

constructive control {𝑑} = 𝑟 (𝑃T) for example (where 𝑃T depends on the problem and will be specified soon). Other cases can be proved

similarly.

• Integer positional scoring rules. If 𝑑 ≠ 1, then 𝑃S,HS, andHT are similar to their counterparts in the proof of CM under integer

positional scoring rules. Take 𝑑 = 2 for example, for e-CCAV, the added votes are 𝑅2; and for e-CCDV, the deleted votes are 𝑅1. If

𝑑 = 1, then we switch the roles of HS, and HT, and switch the roles of 𝑃S and 𝑃T in the proof of CM under integer positional scoring

rules. Then, for e-CCAV, the added votes are 𝑅1; and for e-CCDV, the deleted votes are 𝑅2.

• STV. If 𝑑 ≠ 1, then 𝑃S, HS, and HT are similar to their counterparts in the proof of CM under STV. Take 𝑑 = 2 for example, for

e-CCAV, for e-CCAV, the added votes are [2 ≻ 3 ≻ 1 ≻ others]; and for e-CCDV, the deleted votes are [4 ≻ 1 ≻ 2 ≻ 3 ≻ others]. If
𝑑 = 1, then we switch the roles ofHS, andHT, and switch the roles of 𝑃S and 𝑃T in the proof of CM under integer STV.

• Ranked pairs, Schulze, and maximin. If 𝑑 ≠ 1, then 𝑃S, HS, and HT are similar to their counterparts for CM. Take 𝑑 = 2 for

example, for e-CCAV, the added votes are [2 ≻ 3 ≻ 1 ≻ others]; for e-CCDV, the deleted votes are [1 ≻ 3 ≻ 2 ≻ others]. When 𝑛 is

even, the weights in WMG(𝑃S) are all even, for example the positive weights can be one plus the weights in Figure 5 (a). If 𝑑 = 1, then

we switch the roles ofHS, andHT, and switch the roles of 𝑃S and 𝑃T in the proof of their counterparts for CM.

• Copeland. The proof for Copeland (𝛼 ≠ 0) is slightly more complicated than the proof for other rules, as HS, HT, 𝑃S, and 𝑃T depend

on the parity of 𝑛. We prove e-CCAV with 𝑑 = 2 (changed from a profileHS where 1 is the winner) for odd and even 𝑛 respectively,

then comment on how to modify it for other cases.

When 𝒏 is odd, letHS andHT be the same as those for CM, even 𝑛, 𝛼 > 0 (Figure 7 (a) and (b)). Let 𝑃S be any 𝑛-profile whose WMG

is as shown in Figure 9 (a), and let 𝑃T be the (𝑛 + 1)-profile obtained from 𝑃S by adding one vote of [2 ≻ 1 ≻ 3 ≻ · · · ≻𝑚]. The WMG

of 𝑃T is shown in Figure 9 (b).

1

4 3

2

5

3

111

15

19

1

4 3

2

6

4

12

16

20

1

4 3

2

7

5

13

17

21

1

(a) WMG(𝑃S) (b) WMG(𝑃T) (c) WMG( ®𝑥)

Figure 9: e-CCAV under Cd𝛼 , odd 𝑛.

Let S = ⟨HS,HT,S+, ®1 ⟩. It follows that for any ®𝑦 ∈ HS and any ®𝑥 ∈ HT, Cd𝛼 ( ®𝑦) = {1} (1, 2, and 3 have the same highest

Copeland score, so 1 wins due to tie-breaking) and Cd𝛼 ( ®𝑥) = {2} (2 has the strictly highest Copeland score 𝑚 − 2 + 𝛼). It is
not hard to verify that 𝑑0 = 𝑚! − 1 (the only implicit equality is the tie between 2 and 3). Moreover, let ®𝑦 = Hist(HS) and let

®𝑥 = Hist(HS ∪ 2× [2 ≻ 1 ≻ 3 ≻ · · · ≻𝑚]), whose WMG is illustrated in Figure 9 (c). Then we have that ®𝑦 and ®𝑥 are the interior points

ofHS,≤0 andHT,≤0, respectively, and it follows from Claim 15 that 𝑑∞ =𝑚!. The case of 𝑑 = 2, odd 𝑛 follows after Theorem 2.

When 𝒏 is even, let HS and HT be the same as those for CM, even 𝑛, 𝛼 = 0 (Figure 8 (a) and (b)). Let 𝑃S be any 𝑛-profile whose

WMG is as shown in Figure 10 (a) (which is the same as 8 (c)), and let 𝑃T be the (𝑛 + 1)-profile obtained from 𝑃S by adding one vote of

[2 ≻ 1 ≻ 3 ≻ · · · ≻𝑚]. The WMG of 𝑃T is shown in Figure 10 (b) (which is the same as Figure 10 (c)).

Let S = ⟨HS,HT,S+, ®1 ⟩. It follows that for any ®𝑦 ∈ HS and any ®𝑥 ∈ HT, Cd𝛼 ( ®𝑦) = {1} (1, 2, and 3 have the same highest Copeland

score, so 1 wins due to tie-breaking) and Cd𝛼 ( ®𝑥) = {2} (2 has the strictly highest Copeland score𝑚 − 2 + 𝛼). It is not hard to verify

that 𝑑0 =𝑚!− 1 (the only implicit equality is the tie between 2 and 3). Moreover, let ®𝑦 denote the histogram of 𝑃S subtracting one vote

of [2 ≻ 1 ≻ 3 ≻ · · · ≻ 𝑚] (whose WMG is illustrated in Figure 10 (c), which is the same as Figure 9 (a)), and let ®𝑥 = Hist(HT). Then
we have that ®𝑦 and ®𝑥 are the interior points of HS,≤0 and HT,≤0, respectively, and it follows from Claim 15 that 𝑑∞ =𝑚!. The case of

𝑑 = 2, odd 𝑛 follows after Theorem 2.
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Figure 10: e-CCAV under Cd𝛼 , even 𝑛.

The proof for e-CCAV and any 𝒅 ≥ 3 is similar, which is done by simply switching the role 2 and 𝑑 in the proof for 𝑑 = 2. The proof

for e-CCAV and 𝒅 = 1 is done by (1) switching the role ofHS and HT, (2) switching the role of 𝑃S and 𝑃T, and (3) the added vote is

the inverse of [2 ≻ 1 ≻ 3 ≻ · · · ≻𝑚]. The proof for e-CCDV is similar, by noticing that adding [2 ≻ 1 ≻ 3 ≻ · · · ≻𝑚] is equivalent to
subtracting its inverse.

The proofs for e-DCAV and e-DCDV are similar to the proofs for e-CCAV and e-CCDV, as the proof essentially works for control of

changing any source winner to any target winner. □

G.2 Full Version of Theorem 5 and Its Proof
Theorem 5 (Upper bound on Coalitional Influence under GSRs). Let 𝑟 denote any GSR with fixed𝑚 ≥ 3. For any closed and strictly

positive Π, any 𝑋 ∈ {CM,MoV} ∪ Control ∪ e-Control, any 𝑛, and any 𝐵 ≥ 0,

𝑋max

Π (𝑟, 𝑛, 𝐵) = 𝑂
(
min

{
𝐵 + 1

√
𝑛
, 1

})
Proof. Let 𝑋 be any coalitional influence problem described in the lemma and let its PMV multi-instability representation beM = {S𝑖 =

⟨H 𝑖
S
,H 𝑖

T
,O𝑖 , ®𝑐 𝑖 ⟩ : 𝑖 ≤ 𝐼 } due to Lemma 1. For every 𝑖 ≤ 𝐼 , recall that there exist a pair of feasible signatures ®𝑡1 and ®𝑡2 so that 𝑟 (®𝑡1) ≠ 𝑟 (®𝑡2)

and H 𝑖
S
= H®𝑡1 and H 𝑖

T
= H®𝑡2 . Therefore, at least one component of ®𝑡1 ⊕ ®𝑡2 is zero. This means that 𝑑𝑖

0
= dim(H®𝑡1⊕®𝑡2 ) ≤ 𝑚! − 1. Also notice

that 𝑑𝑖∞ ≤ 𝑚!, which means that 𝑑Δ ≤ 𝑚! − 𝑑𝑖
0
. Therefore, according to Theorem 2, we have

sup ®𝜋∈Π𝑛 𝑃𝑟𝑃∼®𝜋 (Hist(𝑃) ∈ U𝑖
𝑛,𝐵) = 𝑂

(
min{𝐵 + 1,

√
𝑛}𝑑

𝑖
Δ · ( 1

√
𝑛
)𝑚!−𝑑𝑖

0

)
=𝑂

((
min

{
𝐵 + 1

√
𝑛
, 1

})𝑚!−𝑑𝑖
0

)
= 𝑂

(
min

{
𝐵 + 1

√
𝑛
, 1

})
This proves Theorem 5 because 𝐼 is finite. □

G.3 Proof of Theorem 6
Theorem 6 (Max-Semi-RandomCoalitionalManipulation for The Loser). Let 𝑟®𝑠 be an integer positional scoring rule with lexicographic

tie-breaking for fixed𝑚 ≥ 3 that is different from veto. For any closed and strictly positive Π with 𝜋uni ∈ CH(Π), there exists 𝑁 > 0 and 𝐵∗ > 0

such that for any 𝑛 > 𝑁 and any 𝐵 ≥ 𝐵∗, �CML

max

Π (𝑟®𝑠 , 𝑛, 𝐵) = Θ

(
min

{
𝐵
√
𝑛
, 1

}𝑚−1)
Proof. The proof proceeds in the following two steps.

Define the PMV-multi-instability setting MCML. For every pair of different alternatives 𝑎, 𝑏, we define a PMV-instability setting

S𝑎→𝑏
CML

= (HS,HT,O
𝑎→𝑏
± , ®1), where

• HS denote the set of vectors where 𝑎 is the winner and 𝑏 is the loser under 𝑟®𝑠 .
• HT denote the set of vectors where 𝑏 is the winner under 𝑟®𝑠 .
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Take 𝑎 = 1 and 𝑏 = 2 for example. Recall that Score
®𝑠
𝑎,𝑏

is the score vector of 𝑏 (under all linear orders) minus the score vector of 𝑎

(Definition 20). Then, we have:

HS ≜

®𝑥 :

∀𝑖 ≥ 2, Score®𝑠𝑖,1 · ®𝑥 ≤ 0

∀𝑖 ≥ 3, Score®𝑠
2,𝑖 · ®𝑥 ≤ −1

−®𝑥 ≤ ®0

 , HT ≜

®𝑥 :

Score
®𝑠
1,2 · ®𝑥 ≤ −1

∀𝑖 ≥ 3, Score®𝑠𝑖,2 · ®𝑥 ≤ 0

−®𝑥 ≤ ®0

 , and

MCML =

{
S𝑎→𝑏
CML

: 𝑎, 𝑏 ∈ A, 𝑎 ≠ 𝑏

}
Apply Theorem 2. In this step, we prove that for every S𝑎→𝑏

CML
(with corresponding U𝑎→𝑏

𝑛,𝐵
),

sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
= Θ

(
min

{
𝐵
√
𝑛
, 1

}𝑚−1)
(29)

We first prove 𝜅1 = false (i.e.,U𝑎→𝑏
𝑛,𝐵

≠ ∅) for any sufficiently large 𝑛 and 𝐵, by constructing a successful manipulation by 𝐵 voters. Recall

from the proof of Theorem 4 that for any 𝑎 ∈ A, 𝜎𝑎 denotes a cyclic permutation among A \ {𝑎}. Then, we define two profiles, each of

which consists of𝑚 − 1 votes as follows.

𝑃
top

𝑎 ≜
{
𝜎𝑖𝑎 (𝑎 ≻ others) : 1 ≤ 𝑖 ≤ 𝑚 − 1

}
and 𝑃bot𝑎 ≜

{
𝜎𝑖𝑎 (others ≻ 𝑎) : 1 ≤ 𝑖 ≤ 𝑚 − 1

}
We further define the following “cyclic” profile of𝑚 votes: let 𝜎 denote any cyclic permutation among A, e.g., 1 → 2 → · · · →𝑚 → 1.

𝑃cyc ≜
{
𝜎𝑖 (1 ≻ · · · ≻𝑚) : 1 ≤ 𝑖 ≤ 𝑚

}
Let 𝑃S denote the 𝑛-profile that consists of 𝑃

top

𝑎 , 𝑃bot𝑎 , as many copies of 𝑃cyc as possible, and the remaining rankings are [𝑎 ≻ others ≻ 𝑏]. Let
𝑃T denote the profile obtained from 𝑃S by replacing

⌈
(𝑚−1) (𝑠1−𝑠𝑚 )
(𝑚−2) (𝑠1−𝑠𝑚−1 )

⌉
+ 1 copies of [others ≻ 𝑏 ≻ 𝑎] to [𝑏 ≻ others ≻ 𝑎]. 𝑃T is well-defined

for any sufficiently large 𝑛. It is not hard to verify that 𝑎 has the strictly highest score in 𝑃S, 𝑏 has the strictly lowest score in 𝑃S, and 𝑏 has

the strictly highest score in 𝑃T. This means that for any sufficient large 𝐵,U𝑎→𝑏
𝑛,𝐵

≠ ∅.
Next, let C𝑎→𝑏

0
= HS,≤0 ∩HT,≤0. We have 𝜋uni ∈ CH(Π) ∩ C0, which means that 𝜅3 = false. Therefore, the polynomial case of Theorem 2

holds for S𝑎→𝑏
CML

. Notice that

C𝑎→𝑏
0

= HS,≤0 ∩HT,≤0 =

®𝑥 :

∀𝑖 ≠ 𝑏, Score®𝑠
𝑖,𝑏

· ®𝑥 ≤ 0

∀𝑖 ≠ 𝑏, Score®𝑠
𝑏,𝑖

· ®𝑥 ≤ 0

−®𝑥 ≤ ®0


Therefore, we have 𝑑0 = dim(C𝑎→𝑏

0
) =𝑚! − (𝑚 − 1) (because the implicit equalities represent the scores of all alternatives are the same,

which are characterized by𝑚 − 1 equations). Notice that Hist(𝑃S) is an interior point of HS,≤0, Hist(𝑃T) is an interior point of HT, and

dim(HS,≤0) = dim(HT,≤0) =𝑚!. Therefore, by Claim 15, we have 𝑑∞ = dim(HS,≤0) =𝑚!, which means that 𝑑Δ =𝑚 − 1. It follows from

Theorem 2 that

sup

®𝜋∈Π𝑛

Pr

(
®𝑋 ®𝜋 ∈ U𝑛,𝐵

)
= Θ

(
min{𝐵 + 1,

√
𝑛}𝑚−1

(
√
𝑛)𝑚!−(𝑚!−(𝑚−1) )

)
= Θ

(
min

{
𝐵
√
𝑛
, 1

}𝑚−1)
,

which proves Equation (29). Then, Theorem 6 follows after applying Equation (29) to all 𝑎 ≠ 𝑏. □

H Ties⇎ [Θ(1) instability]
Example 6 (Ties⇏ 𝚯(1) instability). Consider Cd𝛼 with four alternatives. Let 𝑃 ′ denote an arbitrary profile whose UMG is the same as

Figure 11 (a). For any 𝑛′ ∈ N, we let 𝑃 = 𝑛′𝑃 ′. It is not hard to verify that Cd𝛼 (𝑃) = {1, 2}. The winner under 𝑃 is stable with Θ(𝑛) changes in
votes, because the UMG of any profile whose histogram is Θ(1) away from Hist(𝑃) is the same as Figure 11 (a).

Example 7 (Ties⇍ 𝚯(1) instability). Let 𝑟 denote a biased Copeland0 rule for four alternatives, which differs from Copeland0 in that if
1 → 2, then alternative 1 gets 2 points (instead of 1). Let 𝑃 ′ denote an arbitrary profile whose UMG is the same as Figure 11 (b). For any 𝑛′ ∈ N,
we let 𝑃 = 𝑛′𝑃 ′. Notice that 𝑟 (𝑃) = {2}. To see that 𝑃 is Θ(1) unstable, let 𝑅 denote any vote in 𝑃 where 2 ≻ 1. Replace 𝑅 by [1 ≻ 2 ≻ others],
the winner becomes 1.

Let 𝑃∗ denote any profile that is Θ(1) away from 𝑃 . It is not hard to see that UMG(𝑃∗) contains the same edges as the graph in Figure 11 (b)
except the edge between 1 and 2. This means that either 𝑟 (𝑃∗) = {2} (if there is no edge between 1 and 2 or there is an edge 2 → 1 in UMG(𝑃∗)),
or 𝑟 (𝑃∗) = {1} (if 1 → 2 in UMG(𝑃∗)). This means that 𝑃 is not close to any tied profile under 𝑟 .
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Figure 11: Graphs used in Example 6 and 7.
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