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ABSTRACT
In settings where Machine Learning (ML) algorithms automate

or inform consequential decisions about people, individual deci-

sion subjects are often incentivized to strategically modify their

observable attributes to receive more favorable predictions. As a

result, the distribution the assessment rule is trained on may differ

from the one it operates on in deployment. While such distribution

shifts, in general, can hinder accurate predictions, our work iden-

tifies a unique opportunity associated with shifts due to strategic

responses: We show that we can use strategic responses effectively

to recover causal relationships between the observable features and

outcomes we wish to predict, even under the presence of unob-

served confounding variables. Specifically, our work establishes a

novel connection between strategic responses to ML models and in-

strumental variable (IV) regression by observing that the sequence

of deployed models can be viewed as an instrument that affects
agents’ observable features but does not directly influence their

outcomes. We show that our causal recovery method can be utilized

to improve decision-making across several important criteria: indi-

vidual fairness, agent outcomes, and predictive risk. In particular,

we show that if decision subjects differ in their ability to modify

non-causal attributes, any decision rule deviating from the causal

coefficients can lead to (potentially unbounded) individual-level

unfairness.

KEYWORDS
Causality, Fairness, Instrumental Variable Regression, Strategic

Learning

1 INTRODUCTION
Machine learning (ML) predictions increasingly inform high-stakes

decisions for people in areas such as college admissions [35, 46],

credit scoring [38, 39], employment [43], and beyond. One of the

major criticisms against the use of ML in socially consequential

domains is the failure of these technologies to identify causal re-
lationships among relevant attributes and the outcome of inter-

est [26]. The single-minded focus of ML on predictive accuracy has

given rise to brittle predictive models that learn to rely on spurious
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correlations—and at times, harmful stereotypes—to achieve seem-

ingly accurate predictions on held-out test data [25, 47]. The result-

ing models frequently underperform in deployment, and their pre-

dictions can negatively impact decision subjects. As an example of

the long-term negative consequences of ML-based decision-making

systems, they often prompt individuals to modify their observable

attributes strategically to receive more favorable predictions—and

subsequently, decisions [18]. These strategic responses are among

the primary causes of distribution shifts (and subsequently, the un-

satisfactory performance) of ML in high-stakes decision-making do-

mains. Moreover, recent work has established the potential of these

tools to amplify existing social disparities by incentivizing different
effort investments across distinct groups of subjects [20, 27, 33].

The above challenges have led to renewed calls on the ML com-

munity to strengthen their understanding of the connections be-

tween ML and causality [36, 44]. Knowledge of causal relationships

among predictive attributes and outcomes of interest promotes sev-

eral desirable aims: First, ML practitioners can use this knowledge

to debug their models and ensure robustness even if the underlying

population shifts over time. Second, policymakers can utilize the

causal understanding of a domain in their policy choices and exam-

ine a decision-making system’s compliance with policy goals and

societal values (e.g., they can audit the system for unfairness against

particular populations [28]). Finally, predictions rooted in causal

associations block undesirable pathways of gaming and manipula-

tion and, instead, encourage decision subjects to make meaningful

interventions that improve their actual outcomes (as opposed to

their assessments alone).

Our work responds to the above calls by offering a new approach

to recover causal relationships between observable features and the

outcome of interest in the presence of strategic responses—without

substantially hampering predictive accuracy. We consider settings

where a decision-maker deploys a sequence of models to predict the

outcome for a sequence of strategic decision subjects. Often in high-

stakes decision-making settings such as the ones mentioned earlier,

there are unobserved confounding variables that influence subjects’

attributes and outcomes simultaneously. Our key observation is

that we can correct for the effect of such confounders by viewing

the sequence of assessment rules as valid instruments which
affect subjects’ observable features but do not directly influence

their outcomes. Our main contribution is a general framework that



recovers the causal relationships between observed attributes and

the outcome of interest by treating assessment rules as instruments.

1.1 Our Setting
Next, we describe our theoretical setup in further detail, then pro-

ceed to an overview of our findings. For concreteness, we utilize a

stylized university admissions scenario as our running example for

the remainder of this section. However, the reader should note that

our model is applicable to other real-world applications in which

confounders taint the causal interpretation of predictive models.

For example, in credit lending, lack of access to affordable credit

affects not only the applicant’s debt, but also their likelihood of

default [12]. In university admissions (which will be our running

example), research has shown that the socioeconomic background

of a student can impact both their SAT scores and success in col-

lege [41].

With the running example in mind, consider a stylized setting

in which a university decides whether to admit or reject applicants

on a rolling basis
1
based (in part) on how well they are predicted to

perform if admitted to the university (See Figure 1). We model such

interactions as a game between a principal (here, the university) and
a population of agents (here, university applicants) who arrive se-

quentially over 𝑇 rounds, indexed by 𝑡 = 1, 2, · · · ,𝑇 . In each round

𝑡 , the principal deploys an assessment rule 𝜽 𝑡 ∈ R𝑚 , which is used

to assign agent 𝑡 a predicted outcome 𝑦𝑡 ∈ R. In our running ex-

ample, 𝑦 could correspond to the applicant’s predicted college GPA

if admitted. The predicted outcome is calculated based on certain

observable/measured attributes of the agent, denoted by x𝑡 ∈ R𝑚 .

For example, in the case of a university applicant, these attributes

may include the applicants’ standardized test scores, high school

math GPA, science GPA, humanities GPA, and their extracurricular

activities. For simplicity, we assume all assessment rules are linear,
that is, 𝑦𝑡 = x⊤𝑡 𝜽 𝑡 + 𝑜𝑡 for all 𝑡 . (Where 𝑜𝑡 is the current estimate

of the expected offset term E[𝑜𝑡 ].) This linear setup corresponds

to an instance of the partially linear regression model (originally
due to Robinson [40]), a commonly studied setting in both the

causal inference and strategic learning literature (e.g., Bechavod

et al. [5], Kleinberg and Raghavan [24], Shavit et al. [45]).

Measured vs. latent variables. We assume that the agent best-

responds to the assessment rule 𝜽 𝑡 by strategically modifying their

observable attributes x𝑡 to receive a more favorable predicted out-

come. Often agents cannot modify the value of their measured

attributes (e.g., SAT score) directly, but only through investing ef-

fort in certain activities that are difficult to measure. For example, a

student might take standardized test preparation courses to improve

their SAT scores, or they may spend time studying the respective

subjects to improve their math and humanities GPA.

Latent variables: effort investments. We formalize the above

hidden investments with a vector a𝑡 ∈ R𝑑 , capturing the unob-

servable efforts agent 𝑡 invests in 𝑑 activities in response to the

assessment rule 𝜽 𝑡 . We assume there exists a linear mapping E𝑡
which translates efforts to changes in observable attributes for agent

𝑡 . The (𝑘, 𝑗)-th entry of this effort conversion matrix defines the

change in the 𝑘-th observable attribute of agent 𝑡 , x𝑡 , for one unit
increase in the 𝑗th coordinate of their effort vector a𝑡 .

1
See Safier [42] for a list of such universities in the United States.

Latent variables: agent types. Each agent 𝑡 has an unobserved

private type u𝑡 that can impact both their observed attributes x𝑡
and true outcomes 𝑦𝑡 . (The type is the confounder we would like

to correct for.) In our running example, the type may broadly refer

to the student’s relevant background factors that cannot be directly

observed or measured. For example, the student’s type can specify

their socioeconomic background factors (including the level of

educational support they receive within their immediate family), as

well as their interest and skills in specific subjects such as English

or Mathematics.
2
Formally, we assume the type u𝑡 characterizes

several relevant latent attributes of the agent, which we refer to

using the tuple u𝑡 := (b𝑡 , E𝑡 , 𝑜𝑡 ):
• b𝑡 ∈ R𝑚 specifies agent 𝑡 ’s baseline observable attribute

values. For example, it can specify the baseline values of

high school grades and SAT score the student would have

received without any effort spent studying or preparing for

standardized tests.

• E𝑡 specifies agent 𝑡 ’s effort conversion matrix—that is, how
various effort investments in unobservable activities trans-

late to changes in observable features.

• 𝑜𝑡 summarizes all other environmental factors that can im-

pact the agent’s true outcome when we control for observ-

able attributes. For example, it may reflect the effect of the

institutional barriers the student faces on their actual college

GPA.

We assume agent 𝑡 ’s observable features are affected by their type

and effort investments. In particular, we assume they take the form

x𝑡 = b𝑡 + E𝑡a𝑡 .
Agent best responses. We assume the agent selects their effort

profile a𝑡 in order to maximize their predicted outcome 𝑦𝑡 , subject

to some effort cost 𝑐 (·) associated with modifying their observable

attributes. In particular, we assume the cost function is quadratic,

that 𝑐 (a𝑡 ) = 1

2
∥a𝑡 ∥2

2
. (Note that this assumption is common in

the strategic learning literature; see, e.g., [14, 30, 45]). Formally,

we assume agent 𝑡 selects their effort a𝑡 by solving the following

optimization problem: maxa
{
𝑦𝑡 − 1

2
∥a∥2

2

}
. It is easy to see that for

a given deployed assessment rule 𝜽 𝑡 , the agent’s best-response

effort investment is a𝑡 = E⊤
𝑡 𝜽 𝑡 .

True causal outcome model. After each round, the principal gets

to observe the agent’s true outcome 𝑦𝑡 ∈ R, which takes the form

𝑦𝑡 = x⊤𝑡 𝜽
∗ + 𝑜𝑡 . Here 𝜽

∗
is the true causal relationship between

an agent’s observable features and outcome. (Recall that 𝑜𝑡 ∈ R
captures the dependence of agent 𝑡 ’s outcome𝑦𝑡 on unobservable or

unmeasured factors.) We are interested in learning 𝜽 ∗ ∈ R𝑚 , which

can be interpreted as specifying how interventions impacting the

value of x lead to changes in𝑦. Therefore, we say that an observable

feature 𝑥𝑖 is causally relevant if 𝜃∗𝑖 ≠ 0. For convenience, throughout

we denote the subset of causally-relevant features by xC , where
C ⊆ [𝑛],∀𝑖 ∈ C if 𝜃∗

𝑖
≠ 0.

1.2 Overview of Results
Strategic regression as instruments. Since b𝑡 , E𝑡 , and 𝑜𝑡 may be

correlated with one another, ordinary least squares generally will

2
Note that later in Section 5, we use the terminology of agent subpopulations. Subpop-
ulations are distinct from types in that subpopulations determine the distribution of

types, but individual agents belonging to the same subpopulation may have different

types. We will elaborate on this in Section 5.



Figure 1: Graphical model for our setting (left) along with the way it corresponds to the admissions running example (right).
Grey nodes are observed, white unobserved. Observable features x𝑡 (e.g. high school GPA, SAT scores, etc.) depend on both the
agent’s private type u𝑡 (e.g. a student’s background) via initial features b𝑡 (e.g. the SAT score or HS GPA student 𝑡 would get
without studying) and effort conversion matrix E𝑡 (e.g. how much studying translates to an increase in SAT score for student 𝑡 )
and assessment rule 𝜽 𝑡 via action a𝑡 , which could correspond to studying, taking an SAT prep course, etc). An agent’s outcome
𝑦𝑡 (e.g. college GPA) is determined by their observable features x𝑡 (via causal relationship 𝜽 ∗) and type u𝑡 (via baseline outcome
error term 𝑜𝑡 , which could be lower for students from underserved groups due to institutional barriers, discrimination, etc).

not produce a consistent estimator for 𝜽 ∗ (see Appendix A.1 for

details). We make the novel observation that the principal’s assess-

ment rule 𝜽 𝑡 is a valid instrument, and leverage this observation

to recover 𝜽 ∗ via Two-Stage Least Squares regression (2SLS). Our

method applies to both off-policy and on-policy settings: one can

directly apply 2SLS on historical data {(𝜽 𝑡 , x𝑡 , 𝑦𝑡 )}𝑇𝑡=1
, or the prin-

cipal can intentionally deploy a sequence of varying assessment

rules (e.g., by making small perturbations on a fixed rule) and then

apply 2SLS on the collected data.

Additionally, we show that our recovery of 𝜽 ∗ can be utilized to

improve decision-making across several desired criteria, namely,

individual fairness, agent outcomes, and predictive risk.

(Non-)causal assessment rules and fairness. In Section 3, we

analyze the individual-level disparities that may result if the as-

sessment rule deviates from 𝜽 ∗. Unlike most existing definitions

of individual fairness, which rely on the observed characteristics

of individuals, our definition measures the similarity between two

individuals solely by comparing their b’s and E’s—that is, we con-
sider two individuals to be similar if they have the same baseline

values for causally relevant observable features and similar po-

tentials for improving these observable attributes through effort

investments. Individual fairness then requires similar individuals to

receive similar decisions. (We note that while our notion of individ-

ual fairness may not be easy to estimate using observational data,

it is a more fine-grained—and arguably better justified—notion of

individual fairness, as it distinguishes between the causally relevant

and causally irrelevant facets of observable features.) We show that

when making predictions using 𝜽 = 𝜽 ∗, our notion of individual

fairness is satisfied, but when the assessment rule deviates from 𝜽 ∗,
i.e., 𝜽 ≠ 𝜽 ∗, individual fairness may be violated by an arbitrarily

large amount.

Agent outcome maximization. Note that a decision-maker can

use the assessment rule 𝜽 as a form of intervention to incentivize

agents to invest their efforts optimally toward maximizing their

outcomes (𝑦). In Section 4, we show that utilizing the causal pa-

rameters recovered during our 2SLS procedure, one can find the

assessment rule maximizing expected agent outcomes.

Predictive risk minimization. Another commonly-studied goal

for decision-makers is predictive risk minimization, which aims to

minimize E[(𝑦𝑡 − 𝑦𝑡 )2], the expected squared difference between

an agent’s true outcome and the outcome predicted by the assess-

ment. Compared to standard regression, this is a more challenging

objective since both the prediction 𝑦𝑡 and outcome 𝑦𝑡 depend on

the deployed rule 𝜽 𝑡 . This leads to a non-convex risk function. In

Section 5.1, we show that the knowledge of 𝜽 ∗ enables us to com-

pute an unbiased estimate of the gradient of the predictive risk. As

a result, we can apply stochastic gradient descent to find a local

minimum of predictive risk function.

Empirical observations. In Section 5, we empirically confirm

and illustrate the performance of our algorithm. In particular, for

a semi-synthetic dataset inspired by our university admissions ex-

ample, we observe that our methods consistently estimate the true

causal relationship between observable features and outcomes (at

a rate of O(1/
√
𝑇 )), whereas OLS does not. Notably, OLS mistak-

enly estimates that SAT is causally related to college GPA, even

though our experimental setup assumes it is not. On the other hand,

our 2SLS-based method avoids this erroneous estimation. We also

show that our methods outperform standard SGD methods in the

predictive risk minimization setting.

1.3 Related Work
An active area of research on strategic learning aims to develop

machine learning algorithms that are capable of making accurate

predictions about decision subjects even if they respond strategi-
cally and potentially untruthfully to the choice of the predictive

model [9, 11, 13, 14, 18, 21, 29, 30, 45]. Generalizing strategic learn-

ing, Perdomo et al. [37] propose a framework called performative
predictions, which broadly studies settings in which the act of pre-

dicting influences the prediction target. Several recent papers have

investigated the relationship between strategic learning and causal-

ity [6, 31, 45].

The setting most similar to ours is that of Shavit et al. [45].

They consider a strategic classification setting in which an agent’s

outcome is a linear function of features –some observable and some



not (see Figure 8 in the appendix for a graphical representation of

their model). While they assume that an agent’s latent attributes

can be modified strategically, we choose to model the agent as

having an unmodifiable private type. Both of these assumptions

are reasonable, and some domains may be better described by one

model than the other. For example, the model of Shavit et al. may

be useful in a setting such as car insurance pricing, where some

unobservable factors related to safe driving are modifiable. On the

other hand, our model captures settings like university admissions,

where confounding factors (e.g., socioeconomic background) are

not easily modifiable. Both models are special cases of a broader

causal graph (described in Appendix G). Note that in the model

of Shavit et al., 𝜽 𝑡 violates the backdoor criterion and therefore

cannot serve as a valid instrument. [5] consider a setting simpler

than ours in which there are no confounding effects from agents’

unobserved types on their observable features and outcomes. As

a result, the authors can apply standard least squares regression

techniques to recover causal parameters.

Our work is also related to Miller et al. [31], which shows that

designing good incentives for agent improvement in strategic clas-

sification is at least as hard as orienting edges in the corresponding

causal graph. In contrast to their work, we make the observation

that the assessment rule deployed by the principal can be actively

used as a valid instrument, which allows us to circumvent this hard-

ness result by performing an intervention on the causal graph of

the model.

Instrumental variable (IV) regression [3, 4, 22] has mostly been

used for observational studies (see e.g., [2, 8]). Similar to ours,

there is recent work on constructing instruments through dynamic

action recommendations in multi-armed bandits settings [23, 34].

We consider an orthogonal direction: constructing instruments

through assessment rules in the strategic learning setting.

2 IV REGRESSION THROUGH STRATEGIC
LEARNING

Instrumental variable (IV) regression allows for consistent esti-

mation of the relationship between an outcome and observable

features in the presence of confounding terms. In this setting, we

view the assessment rules {𝜽 𝑡 }𝑇𝑡=1
as algorithmic instruments and

perform IV regression to estimate the true causal relationship 𝜽 ∗.
There are three criteria for 𝜽 𝑡 to be a valid instrument: (1) 𝜽 𝑡 influ-
ences the observable features x𝑡 , (2) 𝜽 𝑡 only influences the outcome

𝑦𝑡 through x𝑡 , and (3) 𝜽 𝑡 is independent from the private type u𝑡 .
By design, criterion (1) and (2) are satisfied. We aim to design a

mechanism that satisfies criterion (3) by choosing the assessment

rule 𝜽 𝑡 independently of the private type u𝑡 . As can be seen by

Figure 1, the principal’s assessment rule 𝜽 𝑡 satisfies these criteria.
We focus on two-stage least-squares regression (2SLS), a family

of techniques for IV estimation. Intuitively, 2SLS can be thought

of as estimating the causal relationship 𝜽 ∗ between x𝑡 and 𝑦𝑡 by
perturbing the instrument 𝜽 and measuring the change in x𝑡 and
𝑦𝑡 . This enables us to account for the change in 𝑦𝑡 as a result of
the change in x𝑡 . 2SLS does this by independently estimating the

relationship between an instrumental variable 𝜽 𝑡 and the observable
features x𝑡 , as well as the relationship between 𝜽 𝑡 and the outcome

𝑦𝑡 via simple least squares regression. For more background on the

specific version of 2SLS we use, see Section 4.8 of [10].

Formally, given a set of observations {𝜽 𝑡 , x𝑡 , 𝑦𝑡 }𝑇𝑡=1
, we compute

the estimate 𝜽̂ of the true casual parameters 𝜽 ∗ from the following

process of two-stage least squares regression (2SLS). We use 𝜽̃ 𝑡 to

denote the vector

[
𝜽 𝑡 1

]⊤
.

(1) Estimate Ω = E[E𝑡E⊤
𝑡 ], E[b⊤𝑡 ] using[

Ω̂
¯b⊤

]
=

(
𝑇∑︁
𝑡=1

𝜽̃𝑡 𝜽̃
⊤
𝑡

)−1 𝑇∑︁
𝑡=1

𝜽̃𝑡x⊤𝑡

(2) Estimate 𝝀 = Ω𝜽 ∗, (E[𝑜𝑡 ] + E[b⊤𝑡 ]𝜽 ∗) using[
𝝀

𝑜 + ¯b⊤𝜽 ∗

]
=

(
𝑇∑︁
𝑡=1

𝜽̃𝑡 𝜽̃
⊤
𝑡

)−1 𝑇∑︁
𝑡=1

𝜽̃𝑡 𝑦𝑡

(3) Estimate 𝜽 ∗ as 𝜽̂ = Ω̂−1𝝀̂

We assume that

∑𝑇
𝑡=1

𝜽̃ 𝑡 𝜽̃
⊤
𝑡 is invertible, as is standard in the

2SLS literature. For proof that IV regression produces a consistent

estimator of 𝜽 ∗ under our setting, see Appendix A.3.

Theorem2.1. Given a sequence of bounded assessment rules {𝜽 𝑡 }𝑇𝑡=1

and the (observable feature, outcome) pairs {(x𝑡 , 𝑦𝑡 )}𝑇𝑡=1
they induce,

the distance between the true causal relationship 𝜽 ∗ and the estimate
𝜽̂ obtained via IV regression is bounded as

∥𝜽̂ − 𝜽 ∗ ∥2 = Õ
©­­«

√︁
𝑚𝑇 log(1/𝛿)

𝜎𝑚𝑖𝑛

(∑𝑇
𝑡=1

𝜽𝑡 (x𝑡 − ¯b)⊤
) ª®®¬

with probability 1 − 𝛿 , if 𝑜𝑡 is a bounded random variable.

Proof Sketch.While similar bounds exist for traditional IV regres-

sion problems, they do not apply to the strategic learning setting

we consider. See Appendix B.1 for the full proof. The bound follows

by substituting our expressions for x𝑡 , 𝑦𝑡 into the IV regression es-

timator, applying the Cauchy-Schwarz inequality to split the bound

into two terms (one dependent on {(𝜽 𝑡 , x𝑡 )}𝑇𝑡=1
and one dependent

on {(𝜽 𝑡 , 𝑜𝑡 )}𝑇𝑡=1
), and using a Chernoff bound to bound the term

dependent on {(𝜽 𝑡 , 𝑜𝑡 )}𝑇𝑡=1
with high probability.

While in some settings, the principal may only have access to

observational (e.g., batch) data, in other settings, the principal may

be able to actively deploy assessment rules on the agent population.

We show that in scenarios in which this is possible, the principal

can play random assessment rules centered around some “reason-

able” assessment rule to achieve an O
(

1

𝜎2

𝜃

√
𝑇

)
error bound on the

estimated causal relationship 𝜽̂ , where 𝜎2

𝜃
is the variance in each

coordinate of 𝜽 𝑡 . Note that while playing random assessment rules

may be seen as unfair in some settings, the principal is free to set

the variance parameter 𝜎2

𝜃
to an “acceptable” amount for the do-

main they are working in. We formalize this notion in the following

corollary.

Corollary 2.2. If each 𝜃𝑡, 𝑗 , 𝑗 ∈ 1, . . . ,𝑚, is drawn independently
from some distribution P𝑗 with variance 𝜎2

𝜃
, b𝑡 and E𝑡 are bounded

random variables, E𝑡E⊤
𝑡 is full-rank, and 𝜎𝑚𝑖𝑛 (E[E𝑡E⊤

𝑡 ]) > 0, then

∥𝜽̂ − 𝜽 ∗ ∥2 = Õ
( √︁

𝑚 log(1/𝛿)
𝜎2

𝜃

√
𝑇

)
with probability 1 − 𝛿 .



Proof Sketch.We begin by breaking up 𝜎𝑚𝑖𝑛

(∑𝑇
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)

into two terms, ∥𝐴∥2 and 𝜎𝑚𝑖𝑛 (𝐵), where 𝐴 and 𝐵 are functions of∑𝑇
𝑡=1

𝜽 𝑡 (x𝑡 −¯b)⊤. We use the Chernoff andmatrix Chernoff inequal-

ities to bound ∥𝐴∥2 and 𝜎𝑚𝑖𝑛 (𝐵) with high probability respectively.

For the full proof, see Appendix B.3.

3 (UN)FAIRNESS OF (NON-)CAUSAL
ASSESSMENTS

Whilemaking predictions based on causal relationships is important

from an ML perspective for reasons of generalization and robust-

ness, the societal implications of using non-causal relationships to

make decisions are perhaps an even more persuasive reason to use

causally-relevant assessments. In particular, it could be the case that

a certain individual is worse at strategically manipulating features

which are not causally relevant when compared to their peers. If

these attributes are used in the decision-making process, this agent

may be unfairly seen by the decision-maker as less qualified than

their peers, even if their initial features and ability for improvement

is similar to others.

One important criterion for assessing the fairness of a machine

learning model at the individual level is that two individuals who

have similar merit should receive similar predictions. Dwork et al.

[16] formalize this intuition through the notion of individual fair-
ness, which is formally defined as follows.

Definition 3.1 (Individual Fairness [16]). A mapping 𝑀 : U →
Δ(𝑌 ) is individually fair if for every u, u′ ∈ U, we have

𝐷 (𝑀 (u), 𝑀 (u′)) ≤ 𝑑 (u, u′),

where u, u′ ∈ U are individuals in population U, Δ(𝑌 ) is the
probability distribution over predictions 𝑌 , 𝐷 (𝑀 (u), 𝑀 (u′)) is a
distance function which measures the similarity of the predictions

received by u and u′, and 𝑑 (u, u′) is a distance function which

measures the similarity of the two individuals.

Recall that in the setting we consider, the mapping between

individuals and predictions is defined to be 𝑀 (u) := x⊤𝜽 + 𝑜 =

(b+EE⊤)⊤𝜽 +𝑜 . The prediction an individual receives is determin-

istic, so a natural choice for 𝐷 (𝑀 (u), 𝑀 (u′)) is |𝑦 − 𝑦′ |. We take a

causal perspective when defining a metric 𝑑 (u, u′) to measure the

similarity of two individuals u and u′. Intuitively, individuals that
have similar initial causally-relevant features and ability to modify

causally-relevant features should be treated similarly. Therefore,

we define 𝑑 (u, u′) to reflect the difference in causally-relevant com-

ponents of b & b′ (initial feature values) and EE⊤
& E ′E′⊤

(ability

to manipulate features). With this in mind, we are now ready to

define the criterion for individual fairness to be satisfied in the

strategic learning setting.

Definition 3.2. In the strategic learning setting, individual fairness
is satisfied if

|𝑦 − 𝑦′ | ≤ 𝑑 (u, u′)

= ∥bC − b′C ∥2 + ∥(EE⊤)C − (E ′E
′⊤)C ∥2,

where

𝑏C,𝑖 =

{
𝑏𝑖 if 𝑖 ∈ C
0 otherwise

,

(EE⊤)C,𝑖 𝑗 =
{
(EE⊤)𝑖 𝑗 if 𝑖 ∈ C or 𝑗 ∈ C
0 otherwise.

Recall that C ⊆ {1, . . . , 𝑛} denotes the set of indices of observable
features x which are causally relevant to 𝑦 (i.e., 𝜃∗

𝑖
≠ 0 for 𝑖 ∈ C).

Theorem 3.3. Assessment 𝜽 = 𝜽 ∗ satisfies individual fairness for
any two agents u and u′.

Proof Sketch. See Appendix C for the full proof, which follows

straightforwardly from the Cauchy-Schwarz inequality and the def-

inition of the matrix operator norm. (Our results are not dependent

upon the specific matrix or vector norms used, analogous results

will hold for other popular choices of norm.) Throughout the proof

we assume that ∥𝜽 ∗∥2 = 1 by definition, although our results hold

up to constant multiplicative factors if this is not the case.

While 𝜽 = 𝜽 ∗ satisfies the criterion for individual fairness, this

will generally not be the case for an arbitrary assessment 𝜽 ≠ 𝜽 ∗.
For instance, consider the case where 𝑑 (u, u′) = 0 for two agents

u and u′. Under this setting, it is possible to express |𝑦 − 𝑦′ | using
quantities which do not depend on 𝑑 (u, u′). As these quantities

increase, |𝑦 − 𝑦′ | increases as well, despite the fact that 𝑑 (u, u′)
remains constant.

Theorem 3.4. For any deployed assessment rule 𝜽 , the gap in pre-
dictions between two agents u and u′ such that 𝑑 (u, u′) = 0 is

|𝑦̂ − 𝑦̂′ | =

������∑︁𝑖∉C (𝑏𝑖 − 𝑏′𝑖 )𝜃𝑖 +
∑︁
𝑖∉C

∑︁
𝑗∉C

( (EE⊤)𝑖 𝑗 − (E′E′⊤)𝑖 𝑗 )𝜃𝑖𝜃 𝑗

������ .
See Appendix C for the full derivation. Note that all components

of 𝜽 which appear in Theorem 3.4 are outside of the support of 𝜽 ∗.
In order to illustrate how |𝑦−𝑦′ | can growwhile𝑑 (u, u′) remains

constant, consider the following example.

Example 3.5. Consider a setting in which the distance 𝑑 (u, u′) = 0

between agents u and u′, and there is a one-to-one mapping be-

tween actions and observable features for each agent, with one

agent having an advantage when it comes to manipulating features

which are not causally relevant. Formally, let𝜽 ∗ = [0⊤
𝑛/2

√︃
2

𝑛 1
⊤
𝑛/2

]⊤,
b = b′, E = 𝜹𝐼𝑛×𝑛 , and E ′ = 𝜹 ′𝐼𝑛×𝑛 , where 𝜹 = [

√
𝑛1⊤

𝑛/2
1⊤
𝑛/2

]⊤

and 𝜹 ′ = [0⊤
𝑛/2

1⊤
𝑛/2

]⊤.
Under such a setting, the equation in Theorem 3.4 simplifies to

|𝑦̂ − 𝑦̂′ | = 𝑛
∑︁
𝑖∉C

𝜃 2

𝑖 = 𝑛

𝑛/2∑︁
𝑖=1

𝜃 2

𝑖 .

For the full derivation, see Appendix C. Suppose now that the

assessment 𝜽 puts weight at least 1/
√
𝑛 on each observable feature

which is not causally relevant. Under such a setting, |𝑦 −𝑦′ | ≥ 𝑛/2,

meaning that the difference in predictions tends towards infinity

as 𝑛 grows large, despite the fact that 𝑑 (u, u′) = 0 and 𝑦 = 𝑦′!

4 AGENT OUTCOME IMPROVEMENTS
In the strategic learning setting, the goal of each agent is clear:

they aim to achieve the highest prediction 𝑦 possible, regardless



Figure 2: OLS versus 2SLS estimates for SAT effect on col-
lege GPA over 5000 rounds. Results are averaged over 10
runs, with the error bars (in lighter colors) representing one
standard deviation. The red dashed line is the true causal
relationship between SAT score and college GPA.

of their true label 𝑦. On the other hand, what the goal should be

for the principal is less clear, and depends on the specific setting

being considered. For example, in some settings it may be enough

to discover the causal relationships between observable features

and outcomes. However in other settings, the principal may wish to

take a more active role. In particular, when making decisions which

have real-world consequences, it may be in the principal’s best

interest to use a decision rule which promotes desirable behavior

[19, 24, 45], i.e., behavior which has the potential to improve the

actual outcome of an agent.

In the agent outcome improvement setting, the goal of the prin-

cipal is to maximize the expected outcome E[𝑦] of an agent drawn

from the agent population. In our college admissions example, this

would correspond to deploying an assessment rule with the goal

of maximizing expected student college GPA. Formally, we aim to

find 𝜽𝐴𝑂 in a convex set S of feasible assessment rules such that

the induced expected agent outcome E[𝑦] is maximized.

After some algebraic manipulation, the optimization becomes

𝜽𝐴𝑂 = arg max𝜽 ∈S 𝜽⊤𝝀, where 𝝀 = E[E𝑡E⊤
𝑡 ]𝜽 ∗.

For the full derivation, see Appendix D.1. Note that while the

principal never directly observes E[E𝑡E⊤
𝑡 ] nor 𝜽 ∗, they estimate

𝝀 = E[E𝑡E⊤
𝑡 ]𝜽 ∗ during the second stage of the 2SLS procedure.

Therefore, if the principal has already ran 2SLS to recover a suf-

ficiently accurate estimate of the causal parameters 𝜽 ∗, they can

estimate the agent outcome-maximizing decision rule by solving

the above optimization.

5 EXPERIMENTS
We empirically evaluate our model on a semi-synthetic dataset in-

spired by our running university admissions example. We compare

our 2SLS-based method against ordinary least squares (OLS), which

directly regresses observed outcomes 𝑦 on observable features x.
We show that even in our stylized setting with just two observable

features, OLS does not recover 𝜽 ∗, whereas our method does.

Figure 3: OLS effect estimate error ∥𝜽̂OLS − 𝜽 ∗∥2 (in orange)
and 2SLS estimate error ∥𝜽̂2SLS − 𝜽 ∗∥2 (in blue) over 5000
rounds. Results are averaged over 10 runs. Error bars (in
lighter colors) represent one standard deviation. 2SLS esti-
mate error decreases at a rate of about 1√

𝑇
(red dashed line).

University admissions experimental descriptionWe constructed

a semi-synthetic dataset based on the SATGPA dataset, a collec-

tion of real university admissions data.
3
The SATGPA dataset con-

tains 6 variables on 1000 students. We use the following: two fea-

tures (high school (HS) GPA and SAT score) and an outcome (col-

lege GPA). Using OLS (which is assumed to be consistent since

we have yet to modify the data to include confounding), we find

that the effect of [SAT,HS GPA] on college GPA in this dataset is

𝜽 ∗ = [0.0015, 0.5895]⊤. We then construct synthetic data that is

based on this original data, yet incorporates confounding factors.

For simplicity, we let the true effect 𝜽 ∗ = [0, 0.5]⊤. That is, we
assume HS GPA is causally related to college GPA, but SAT score is

not.
4
We consider two private types of applicant backgrounds: dis-

advantaged and advantaged. Disadvantaged applicants have lower

initial HS GPA and SAT (b), lower baseline college GPA (𝑜), and

need more effort to improve observable features (E).5 Each appli-

cants’ initial features are randomly drawn from one of two Gaussian

distributions, depending on background. Applicants may manipu-

late both of their features. See Appendix F for a full experimental

description.

Results. In Figure 2, we compare the true effect of SAT score on

college GPA (𝜽 ∗) with the estimates of these quantities given by our

method of 2SLS from Section 2 (
ˆ𝜽 2SLS) and with the estimates given

by OLS (
ˆ𝜽OLS). (An analogous figure for the effects of HS GPA is

included in the appendix.) In Figure 3, we compare the estimation

errors of OLS and 2SLS, i.e. ∥𝜽̂OLS − 𝜽 ∗∥2 and ∥𝜽̂ 2SLS − 𝜽 ∗∥2.

We find that our 2SLS method converges to the true causal re-

lationship (at a rate of about
1√
𝑇
), whereas OLS has a constant

bias. Although our setting assumes that SAT score has no causal

relationship with college GPA, OLS mistakenly predicts that, on

average, a 100 point increase in SAT score leads to about a 0.05

3
Originally collected by the Educational Testing Service, the SATGPA dataset is publicly

available and can be found here: https://www.openintro.org/data/index.php?data=

satgpa.

4
Though this assumption may be contentious, it is based on existing research (e.g.,

Allensworth and Clark [1]).

5
For example, this could be due to the disadvantaged group being systemically under-

served or marginalized (and the converse for advantaged group).

https://www.openintro.org/data/index.php?data=satgpa
https://www.openintro.org/data/index.php?data=satgpa


point increase in college GPA. If SAT were not causally related to

collegiate performance in real life, these biased estimates could lead

universities to erroneously use SAT scores in admissions decisions.

This highlights the advantage of our method, since using a naive

parameter estimation method like OLS in the presence of confound-

ing could cause decision-making institutions to deploy assessments

which don’t accurately reflect the characteristics they are trying to

measure.

5.1 Predictive Risk Minimization
Analogous to recovering causal relationships and improving agent

outcomes, another common goal of the principal in the strategic

learning setting is to minimize predictive risk. Formally, the goal of

the principal in the predictive risk minimization setting is to learn

the assessment rule that minimizes the expected squared difference

between an agent’s true outcome and the outcome predicted by the

principal, i.e., 𝑓 (𝜽 𝑡 ) = E[(𝑦𝑡 − 𝑦𝑡 )2].
Due to the dependence of x𝑡 and 𝑦𝑡 on 𝜽 𝑡 , 𝑓 (𝜽 𝑡 ) will be non-

convex in general, and can have several extrema which are not

global minima, even in the case of just one observable feature.

When faced with such non-convex optimization problems, gradi-

ent descent is often a popular approach due to its simplicity and

convergence to local minima in practice.

If the effort conversion matrix E is the same for all agents, the

gradient of population risk function can be written as

∇𝜽𝑡 𝑓 (𝜽𝑡 ) = 2(E[ (𝑦𝑡 − 𝑦𝑡 )x𝑡 ] + E[𝑦𝑡 − 𝑦𝑡 ]EE⊤ (𝜽𝑡 − 𝜽 ∗) .
See Appendix E.1 for the derivation. In our college admissions

example, this would correspond to the setting in which all students’

math GPA, SAT scores, etc. improve the same amount given the

same effort: this may be a reasonable assumption if the students

being considered have the same ability to learn, despite other dif-

ferences in background they may have. If EE⊤
is known to the

principal (e.g. through the 2SLS procedure in Section 2), then each

(𝜽 𝑡 , x𝑡 , 𝑦𝑡 ) tuple can be used to compute an unbiased estimate of

∇𝜽 𝑡
𝑓 (𝜽 𝑡 ) for use in online gradient descent.

Recent work on performative prediction [30, 32, 37] examines the

use of repeated gradient descent in the strategic learning setting

and finds that repeated gradient descent generally converges to

performatively stable points. There is no direct comparison between

performatively stable points and local minima in our setting. In

fact, performatively stable points can actually maximize predictive
risk under some settings. (See Miller et al. [32] for such an exam-

ple.) Our methods differ from this line of work because we take

x𝑡 , 𝑦𝑡 , and 𝑦𝑡 ’s direct dependence on the assessment rule 𝜽 𝑡 into
account when calculating the gradient of the risk function, whereas

these performative prediction models (henceforth simple stochastic
gradient descent or SSGD) do not. While SSGD may be satisfactory

for some settings, it produces a biased estimate of the gradient in

general, which can lead to unexpected behavior under our setting;

by contrast, our gradient estimate is unbiased (see Figure 4). Even

in situations which SSGD does get the sign of the gradient correct, it
may converge at a much slower rate, due to its incomplete estimate

of the gradient (see Figure 11 in Appendix H).

6 CONCLUSION
In this work, we establish the possibility of recovering the causal

relationship between observable attributes and the outcome of in-

terest in settings where a decision-maker utilizes a series of linear

Figure 4: Stochastic Gradient Descent (SGD, takes into ac-
count 𝑥𝑡 , 𝑦𝑡 , 𝑦𝑡 ’s dependence on 𝜃𝑡 ) vs Simple Stochastic Gra-
dient Descent (SSGD, does not). In the 1D setting, it is possible
for the gradient of SSGD to have the wrong sign. When both
are initialized at 𝜃0 = 0.5, SGD is able to follow the gradient
and converge to the global minima, while SSGD is not. We
ran eachmethod for 1000 time-steps with a decaying learning
rate of 0.001√

𝑇
.

assessment rules to evaluate strategic individuals. Our key obser-

vation is that in strategic settings, assessment rules serve as valid

instruments (because they causally impact observable attributes

but do not directly affect the outcome). This observation enables

us to present a 2SLS method to correct for confounding bias in

causal estimates. We then demonstrate the potential of the recov-

ered causal coefficients to be utilized for preventing individual-level

disparities, improving agent outcomes, and reducing predictive risk

minimization.

While our work offers an initial step toward extracting causal

knowledge from automated assessment rules, we rely on several

simplifying assumptions—all of which mark critical directions for

future work. In particular, we assume all assessment rules and the

underlying causal model are linear. This assumption allows us to

utilize linear IV methods. Extending our work to non-linear assess-
ment rules and IV methods is necessary for the applicability of

our method to real-world settings. Another critical assumption is

the agent’s full knowledge of the assessment rule and their rational
response to it, subject to a quadratic effort cost. While these are

standard assumptions in economic modeling, they need to be em-

pirically verified in the particular decision-making context at hand

before our method’s outputs can be viewed as reliable estimates of

causal relationships.
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A PARAMETER ESTIMATION IN THE CAUSAL
SETTING

A.1 Ordinary least squares is not consistent
The least-squares estimate of 𝜽 ∗ is given as

𝜽̂𝐿𝑆 =

(
𝑇∑︁
𝑡=1

x𝑡x⊤𝑡

)−1 𝑇∑︁
𝑡=1

x𝑡𝑦𝑡 .

However, 𝜽̂𝐿𝑆 is not a consistent estimator of 𝜽 ∗. To see this, let

us plug in our expression for 𝑦𝑡 into our expression for 𝜽̂𝐿𝑆 . We get

𝜽̂𝐿𝑆 =

(
𝑇∑︁
𝑡=1

x𝑡x⊤𝑡

)−1 𝑇∑︁
𝑡=1

x𝑡 (x⊤𝑡 𝜽 ∗ + 𝑜𝑡 )

After distributing terms and simplifying, we get

𝜽̂𝐿𝑆 = 𝜽 ∗ +
(
𝑇∑︁
𝑡=1

x𝑡x⊤𝑡

)−1 𝑇∑︁
𝑡=1

x𝑡𝑜𝑡 .

x𝑡 and 𝑜𝑡 are not independent due to their shared dependence on

the agent’s private type𝑢𝑡 . Because of this,

(∑𝑇
𝑡=1

x𝑡x⊤𝑡
)−1 ∑𝑇

𝑡=1
x𝑡𝑜𝑡

will generally not equal 0𝑚 , even as the number of data points

(agents) grows large. To see this, recall that x𝑡 = b𝑡 + E𝑡a𝑡 , so∑𝑇
𝑡=1

x𝑡𝑜𝑡 =
∑𝑇
𝑡=1

(b𝑡 + E𝑡E⊤
𝑡 𝜽 𝑡 )𝑜𝑡 . 𝑜𝑡 and b𝑡 are both determined

by the agent’s private type. Take the examplewhere b𝑡 = [𝑜𝑡 , 0, . . . , 0]⊤.
In this setting,

∑𝑇
𝑡=1

b𝑡𝑜𝑡 = [𝑜2

𝑡 , 0, . . . , 0]⊤, which will always be

greater than 0 unless 𝑜𝑡 = 0, ∀𝑡 .

A.2 2SLS derivations

Define 𝜽̃ 𝑡 =

[
𝜽 𝑡
1

]
. x𝑡 can now be written as x𝑡 =

[
E𝑡E⊤

𝑡 b𝑡
] [

𝜽 𝑡
1

]
.

Lemma A.1. Using OLS, we can estimate
[
E[E𝑡E⊤

𝑡 ]
E[b𝑡 ]⊤

]
as[

Ω̂
¯b⊤

]
=

(
𝑇∑︁
𝑡=1

𝜽̃ 𝑡 𝜽̃
⊤
𝑡

)−1 𝑇∑︁
𝑡=1

𝜽̃ 𝑡x⊤𝑡

=

(
𝑇∑︁
𝑡=1

𝜽̃ 𝑡 𝜽̃
⊤
𝑡

)−1 [∑𝑇
𝑡=1

𝜽 𝑡x⊤𝑡∑𝑇
𝑡=1

x⊤𝑡

]
,

where Ω̂ =

(∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡

)−1 ∑𝑇
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤.

Proof. In order to calculate Ω̂, we will make use of the following

fact:

Fact A.2 (Block Matrix Inversion ([7])). If a matrix 𝑃 is partitioned

into four blocks, it can be inverted blockwise as follows:

𝑃 =

[
𝐴 𝐵

𝐶 𝐷

]−1

=

[
𝐴−1 +𝐴−1𝐵𝐸−1𝐶𝐴−1 −𝐴−1𝐵𝐸−1

−𝐸−1𝐶𝐴−1 𝐸−1

]
,

where A and D are square matrices of arbitrary size, and B and C

are conformable for partitioning. Furthermore, A and the Schur

complement of A in P (𝐸 = 𝐷 −𝐶𝐴−1𝐵) must be invertible.

Let 𝐴 =
∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 , 𝐵 =

∑𝑇
𝑡=1

𝜽 𝑡 , 𝐶 =
∑𝑇
𝑡=1

𝜽⊤𝑡 , and 𝐷 =∑𝑇
𝑡=1

1 = 𝑇 . Note that 𝐴 is invertible by assumption and 𝐸 is a

scalar, so is trivially invertible unless 𝐶𝐴−1𝐵 = 𝑇 .

Using this formulation, observe that

¯b⊤ = −𝐸−1𝐶𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡x⊤𝑡 + 𝐸−1

𝑇∑︁
𝑡=1

x⊤𝑡

and

Ω̂ = 𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡x⊤𝑡 +𝐴−1𝐵𝐸−1𝐶𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡x⊤𝑡

−𝐴−1𝐵𝐸−1

𝑇∑︁
𝑡=1

x⊤𝑡

Rearranging terms, we see that 𝝀̂ can be written as

Ω̂ = 𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡x⊤𝑡

+𝐴−1𝐵(𝐸−1𝐶𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡x⊤𝑡 − 𝐸−1

𝑇∑︁
𝑡=1

x⊤𝑡 )

= 𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡x⊤𝑡 −𝐴−1𝐵¯b⊤

Finally, plugging in for 𝐴 and 𝐵, we see that

Ω̂ =

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡

)−1 𝑇∑︁
𝑡=1

𝜽 𝑡x⊤𝑡

−
(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡

)−1 𝑇∑︁
𝑡=1

𝜽 𝑡 ¯b⊤

=

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡

)−1 𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − 𝑧)⊤

□

Similarly, we can write 𝑦𝑡 as 𝑦𝑡 =
[
𝜽⊤𝑡 1

] [
E𝑡E⊤

𝑡 𝜽
∗

𝑜𝑡 + b⊤𝑡 𝜽
∗

]
.

Lemma A.3. Using OLS, we can estimate
[
E[E𝑡E⊤

𝑡 ]𝜽 ∗
E[𝑜𝑡 ] + E[b⊤𝑡 ]𝜽 ∗

]
as

[
𝝀̂

𝑜 + ¯b⊤𝜽 ∗

]
=

(
𝑇∑︁
𝑡=1

𝜽̃ 𝑡 𝜽̃
⊤
𝑡

)−1 𝑇∑︁
𝑡=1

𝜽̃ 𝑡𝑦𝑡

=

(
𝑇∑︁
𝑡=1

𝜽̃ 𝑡 𝜽̃
⊤
𝑡

)−1 [∑𝑇
𝑡=1

𝜽 𝑡𝑦⊤𝑡∑𝑇
𝑡=1

𝑦⊤𝑡

]
,

where 𝝀̂ =

(∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡

)−1 ∑𝑇
𝑡=1

𝜽 𝑡 (𝑦𝑡 − 𝑜 − ¯b⊤𝜽 ∗).

Proof. The proof follows similarly to the proof of the previous

lemma. Let 𝐴 =
∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 , 𝐵 =

∑𝑇
𝑡=1

𝜽 𝑡 , 𝐶 =
∑𝑇
𝑡=1

𝜽⊤𝑡 , and 𝐷 =∑𝑇
𝑡=1

1 = 𝑇 . Note that𝐴 is invertible by assumption and 𝐸 is a scalar,

so is trivially invertible unless 𝐶𝐴−1𝐵 = 𝑇 .



Using this formulation, observe that

𝑜⊤ + 𝑧⊤𝜽 ∗ = −𝐸−1𝐶𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡𝑦𝑡 + 𝐸−1

𝑇∑︁
𝑡=1

𝑦𝑡

and

𝝀̂ = 𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡𝑦𝑡

+𝐴−1𝐵

(
𝐸−1𝐶𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡𝑦𝑡 − 𝐸−1

𝑇∑︁
𝑡=1

𝑦𝑡

)
= 𝐴−1

𝑇∑︁
𝑡=1

𝜽 𝑡𝑦𝑡 −𝐴−1𝐵
(
𝑜⊤ + 𝑧⊤𝜽 ∗

)
=

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡

)−1 𝑇∑︁
𝑡=1

𝜽 𝑡
(
𝑦𝑡 − 𝑜⊤ − 𝑧⊤𝜽 ∗

)
□

Theorem A.4. We can estimate 𝜽 ∗ as

𝜽̂ = Ω̂−1𝝀̂ =

(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 𝑇∑︁

𝑡=1

𝜽 𝑡 (𝑦𝑡 − 𝑜 − 𝑧⊤𝜽 ∗)

Proof. This follows immediately from the previous two lemmas.

□

A.3 2SLS is consistent
Consider the two-stage least squares (2SLS) estimate of 𝜽 ∗,

𝜽̂ 𝐼𝑉 =

(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 𝑇∑︁

𝑡=1

𝜽 𝑡 (𝑦𝑡 − 𝑜 − 𝑧⊤𝜽 ∗)

Plugging in for 𝑦𝑡 and simplifying, we get

𝜽̂ 𝐼𝑉 = 𝜽 ∗ +
(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 𝑇∑︁

𝑡=1

𝜽 𝑡 (𝑜𝑡 − 𝑜)

To see that 𝜽̂ 𝐼𝑉 is a consistent estimator of 𝜽 ∗, we show that

lim𝑇→∞ E∥𝜽̂ 𝐼𝑉 − 𝜽 ∗∥2

2
= 0.

E∥𝜽̂ 𝐼𝑉 − 𝜽 ∗∥2

2
= E








(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 𝑇∑︁

𝑡=1

𝜽 𝑡 (𝑜𝑡 − 𝑜)








2

2

𝑜𝑡 − 𝑜 and 𝜽 𝑡 are uncorrelated, so

∑𝑇
𝑡=1

𝜽 𝑡 (𝑜𝑡 − 𝑜) will go to

zero as𝑇 → ∞. On the other hand,

∑𝑇
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤ will approach

𝑇E[𝜽 𝑡 (x𝑡 −¯b)⊤]. 𝜽 𝑡 and x𝑡 −¯b are correlated, so E[𝜽 𝑡 (x𝑡 −¯b)⊤] ≠ 0
in general.

B CAUSAL PARAMETER RECOVERY
DERIVATIONS

B.1 Proof of Theorem 2.1
Recall that 𝜽̂ =

(∑𝑇
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 ∑𝑇

𝑡=1
𝜽 𝑡 (𝑦𝑡 −𝑜 − ¯b⊤𝜽 ∗) from

Appendix A.2. Plugging this into ∥𝜽̂ − 𝜽 ∗∥2, we get


𝜽̂ − 𝜽 ∗





2

=






(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 (

𝑇∑︁
𝑡=1

𝜽 𝑡 (𝑦𝑡 − 𝑜 − ¯b⊤𝜽 ∗)
)
− 𝜽 ∗








2

Next, we substitute in our expression for 𝑦𝑡 and simplify, obtaining

∥𝜽̂ − 𝜽 ∗∥2

=








(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1

(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x⊤𝑡 𝜽 ∗ + 𝑜𝑡 − 𝑜 − ¯b⊤𝜽 ∗)
)
− 𝜽 ∗







2

=








(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 (

𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤𝜽 ∗
)

+
(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 (

𝑇∑︁
𝑡=1

𝜽 𝑡 (𝑜𝑡 − 𝑜)
)
− 𝜽 ∗








2

=







𝜽 ∗ +
(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 (

𝑇∑︁
𝑡=1

𝜽 𝑡 (𝑜𝑡 − 𝑜)
)
− 𝜽 ∗








2

=








(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1 (

𝑇∑︁
𝑡=1

𝜽 𝑡 (𝑜𝑡 − 𝑜)
)







2

≤








(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)−1








2






 𝑇∑︁
𝑡=1

𝜽 𝑡 (𝑜𝑡 − 𝑜)







2

≤


∑𝑇

𝑡=1
𝜽 𝑡 (𝑜𝑡 − 𝑜)




2

𝜎𝑚𝑖𝑛

(∑𝑇
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)

We now bound the numerator and denominator separately with

high probability.

B.2 Bound on numerator




 𝑇∑︁
𝑡=1

𝜽 𝑡 (𝑜𝑡 − 𝑜)







2

=






 𝑇∑︁
𝑡=1

𝜽 𝑡 (𝑜𝑡 − E[𝑜𝑡 ] + E[𝑜𝑡 ] − 𝑜)







2

≤





 𝑇∑︁
𝑡=1

𝜽 𝑡 (𝑜𝑡 − E[𝑜𝑡 ])







2

+





 𝑇∑︁
𝑡=1

𝜽 𝑡 (E[𝑜𝑡 ] − 𝑜)







2



B.2.1 Bound on first term.




 𝑇∑︁
𝑡=1

𝜽 𝑡 (𝑜𝑡 − E[𝑜𝑡 ])







2

=
©­«
𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

𝜃𝑡, 𝑗 (𝑜𝑡 − E[𝑜𝑡 ])
)2ª®¬

1/2

Since (𝑜𝑡 − E[𝑜𝑡 ]) is a zero-mean bounded random variable

with variance parameter 𝜎2

𝑔 , the product 𝜃𝑡, 𝑗 (𝑜𝑡 − E[𝑜𝑡 ]) will also
be a zero-mean bounded random variable with variance at most

𝛽2𝜎2

𝑔 . In order to bound

(∑𝑚
𝑗=1

(∑𝑇
𝑡=1

𝜃𝑡, 𝑗 (𝑜𝑡 − E[𝑜𝑡 ])
)

2

)
1/2

with

high probability, we make use of the following lemma. Note that

bounded random variables are sub-Gaussian random variables.

Lemma B.1 (High probability bound on the sum of unbounded

sub-Gaussian random variables). Let 𝑥𝑡 ∼ subG(0, 𝜎2). For any
𝛿 ∈ (0, 1), with probability at least 1 − 𝛿 ,��� 𝑇∑︁

𝑡=1

𝑥𝑡

��� ≤ 𝜎
√︁

2𝑇 log(1/𝛿)

Applying Lemma B.1 to

(∑𝑚
𝑗=1

(∑𝑇
𝑡=1

𝜃𝑡, 𝑗 (𝑜𝑡 − E[𝑜𝑡 ])
)

2

)
1/2

, we

get √√√√ 𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

𝜃𝑡, 𝑗 (𝑜𝑡 − E[𝑜𝑡 ])
)2

≤

√√√ 𝑚∑︁
𝑗=1

(
𝛽𝜎𝑔

√︃
2𝑇 log(1/𝛿 𝑗 )

)
2

≤

√√√ 𝑚∑︁
𝑗=1

𝛽2𝜎2

𝑔2𝑇 log(𝑚/𝛿)

(by a union bound, where 𝛿 𝑗 = 𝛿/𝑚 for all 𝑗 )

≤ 𝛽𝜎𝑔
√︁

2𝑇𝑚 log(𝑚/𝛿)

with probability at least 1 − 𝛿 .

B.2.2 Bound on second term.




 𝑇∑︁
𝑡=1

𝜽 𝑡 (E[𝑜𝑡 ] − 𝑜)







2

=






 𝑇∑︁
𝑡=1

𝜽 𝑡

(
E[𝑜𝑡 ] −

1

𝑇

𝑇∑︁
𝑠=1

𝑜𝑠

)





2

=






 𝑇∑︁
𝑡=1

𝜽 𝑡
1

𝑇

𝑇∑︁
𝑠=1

(E[𝑜𝑡 ] − 𝑜𝑠 )







2

=
©­«
𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

𝜃𝑡, 𝑗
1

𝑇

𝑇∑︁
𝑠=1

(E[𝑜𝑡 ] − 𝑜𝑠 )
)2ª®¬

1/2

≤ ©­«
𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

|𝜃𝑡, 𝑗 |
1

𝑇

����� 𝑇∑︁
𝑠=1

E[𝑜𝑡 ] − 𝑜𝑠

�����
)2ª®¬

1/2

After applying Lemma B.1, we get




 𝑇∑︁
𝑡=1

𝜽 𝑡 (E[𝑜𝑡 ] − 𝑜)







2

≤ ©­«
𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

|𝜃𝑡, 𝑗 |
1

𝑇
𝜎𝑔

√︃
2𝑇 log(1/𝛿 𝑗 )

)2ª®¬
1/2

≤ ©­«
𝑚∑︁
𝑗=1

(
𝛽𝜎𝑔

√︃
2𝑇 log(1/𝛿 𝑗 )

)
2ª®¬

1/2

≤ ©­«
𝑚∑︁
𝑗=1

𝛽2𝜎2

𝑔2𝑇 log(𝑚/𝛿)ª®¬
1/2

≤ 𝛽𝜎𝑔
√︁

2𝑇𝑚 log(𝑚/𝛿)

with probability at least 1 − 𝛿

B.3 Proof of Corollary 2.2
Next let’s bound the denominator. By plugging in the expression

for x𝑡 , we see that

𝜎𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡 (x𝑡 − ¯b)⊤
)

= 𝜎𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡 (b𝑡 − ¯b)⊤ + 𝜽 𝑡𝜽
⊤
𝑡 E𝑡E⊤

𝑡

)
= 𝜎𝑚𝑖𝑛 (𝐴 + 𝐵) ,

where 𝐴 =
∑𝑇
𝑡=1

𝜽 𝑡 (b𝑡 − ¯b)⊤ and 𝐵 =
∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 E𝑡E⊤

𝑡 . By defini-

tion,

𝜎𝑚𝑖𝑛 (𝐴 + 𝐵) = min

a, ∥a∥2=1

∥(𝐴 + 𝐵)a∥2 .

Via the triangle inequality,

𝜎𝑚𝑖𝑛 (𝐴 + 𝐵) ≥ min

a, ∥a∥2=1

(∥𝐵a∥2 − ∥𝐴a∥2)

≥ min

a, ∥a∥2=1

∥𝐵a∥2 − ∥𝐴∥2

≥ 𝜎𝑚𝑖𝑛 (𝐵) − ∥𝐴∥2

.

B.3.1 Bounding ∥𝐴∥2.

∥𝐴∥2 =






 𝑇∑︁
𝑡=1

𝜽 𝑡 (b𝑡 − E[b𝑡 ] + E[b𝑡 ] − ¯b)⊤







2

≤





 𝑇∑︁
𝑡=1

𝜽 𝑡 (b𝑡 − E[b𝑡 ])⊤







2

+





 𝑇∑︁
𝑡=1

𝜽 𝑡 (E[b𝑡 ] − ¯b)⊤







2

Bound on first term




 𝑇∑︁
𝑡=1

𝜽 𝑡 (b𝑡 − E[b𝑡 ])⊤







2

≤





 𝑇∑︁
𝑡=1

𝜽 𝑡 (b𝑡 − E[b𝑡 ])⊤






𝐹

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

𝜃𝑡,𝑖 (𝑧𝑡, 𝑗 − E[𝑧𝑡, 𝑗 ])
)2ª®¬

1/2



Notice that 𝜃𝑡,𝑖 (𝑧𝑡, 𝑗 − E[𝑧𝑡, 𝑗 ]) is a zero-mean bounded random

variable with variance at most 𝛽2𝜎2

𝑧 . Applying Lemma B.1, we can

see that 




 𝑇∑︁
𝑡=1

𝜽 𝑡 (b𝑡 − E[b𝑡 ])⊤







2

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝛽𝜎𝑧

√︃
2𝑇 log(1/𝛿𝑖, 𝑗 )

)
2ª®¬

1/2

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛽2𝜎2

𝑧 2𝑇 log(𝑚2/𝛿)ª®¬
1/2

≤
(
𝑚2𝛽2𝜎2

𝑧 2𝑇 log(𝑚2/𝛿)
)

1/2

≤ 𝑚𝛽𝜎𝑧

√︃
2𝑇 log(𝑚2/𝛿)

with probability at least 1 − 𝛿 .

Bound on second term




 𝑇∑︁
𝑡=1

𝜽 𝑡 (E[b𝑡 ] − ¯b)⊤







2

=






 𝑇∑︁
𝑡=1

𝜽 𝑡
1

𝑇

𝑇∑︁
𝑠=1

(E[b𝑡 ] − b𝑗 )⊤







2

≤





 𝑇∑︁
𝑡=1

𝜽 𝑡
1

𝑇

𝑇∑︁
𝑠=1

(E[b𝑡 ] − b𝑗 )⊤






𝐹

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

𝜃𝑡,𝑖
1

𝑇

𝑇∑︁
𝑠=1

(E[𝑧𝑡, 𝑗 ] − 𝑧 𝑗 )
)2ª®¬

1/2

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

|𝜃𝑡,𝑖 |
1

𝑇

����� 𝑇∑︁
𝑠=1

(E[𝑧𝑡, 𝑗 ] − 𝑧 𝑗 )
�����
)2ª®¬

1/2

By applying Lemma B.1, we obtain




 𝑇∑︁
𝑡=1

𝜽 𝑡 (E[b𝑡 ] − ¯b)⊤







2

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

|𝜃𝑡,𝑖 |
1

𝑇
𝜎𝑧

√︃
2𝑇 log(1/𝛿𝑖, 𝑗 )

)2ª®¬
1/2

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝛽𝜎𝑧

√︃
2𝑇 log(1/𝛿𝑖, 𝑗 )

)
2ª®¬

1/2

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛽2𝜎2

𝑧 2𝑇 log(𝑚2/𝛿)ª®¬
1/2

≤ 𝑚𝛽𝜎𝑧

√︃
2𝑇 log(𝑚2/𝛿)

B.3.2 Bounding𝜎𝑚𝑖𝑛 (𝐵). Nextwe bound𝜎𝑚𝑖𝑛 (𝐵) = 𝜎𝑚𝑖𝑛 (
∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 E𝑡E⊤

𝑡 ).
We can write E𝑡E⊤

𝑡 as E[E𝑡E⊤
𝑡 ] + 𝜖𝑡 . Note that since each element

of E𝑡 is bounded, each element of 𝜖𝑡 ∈ R𝑚×𝑚
will be bounded as

well. Using this formulation,

𝜎𝑚𝑖𝑛 (𝐵) = 𝜎𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 (E[E𝑡E⊤

𝑡 ] + 𝜖𝑡 )
)

= 𝜎𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 E[E𝑡E⊤

𝑡 ] +
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 𝜖𝑡 )

)
≥ 𝜎𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 E[E𝑡E⊤

𝑡 ]
)
−






 𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 𝜖𝑡







2

≥ 𝜎𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 E[E𝑡E⊤

𝑡 ]
)
−






 𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 𝜖𝑡







𝐹

We proceed by bounding each term separately.

Bound on first term

𝜎𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 E[E𝑡E⊤

𝑡 ]
)
≥ 𝜎𝑚𝑖𝑛 (E[E𝑡E⊤

𝑡 ])𝜎𝑚𝑖𝑛 (
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 )

Let 𝑐 = 𝜎𝑚𝑖𝑛 (E[E𝑡E⊤
𝑡 ]). We assume that E𝑡 is distributed such

that 𝑐 > 0. Therefore,

𝜎𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 E[E𝑡E⊤

𝑡 ]
)
≥ 𝑐𝜎𝑚𝑖𝑛 (

𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 ) .

Next, we use thematrix Chernoff bound to bound 𝑐𝜎𝑚𝑖𝑛 (
∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 ) =

𝑐𝜆𝑚𝑖𝑛 (
∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 ) with high probability.

TheoremB.2 (Matrix Chernoff). Consider a finite sequence {𝑋𝑡 }𝑇𝑡=1

of independent, random, Hermitian matrices with common dimension
𝑑 . Assume that

0 ≤ 𝜆𝑚𝑖𝑛 (𝑋𝑡 ) and 𝜆𝑚𝑎𝑥 (𝑋𝑡 ) ≤ 𝐿 for each index 𝑡

Introduce the random matrix

𝑌 =

𝑇∑︁
𝑡=1

𝑋𝑡 .

Define the minimum eigenvalue 𝜇𝑚𝑖𝑛 of the expectation E[𝑌 ]:

𝜇𝑚𝑖𝑛 = 𝜆𝑚𝑖𝑛 (E[𝑌 ]) = 𝜆𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

E[𝑋𝑡 ]
)

Then,

𝑃 (𝜆𝑚𝑖𝑛 (𝑌 ) ≤ (1 − 𝜖)𝜇𝑚𝑖𝑛) ≤ 𝑑

(
𝑒−𝜖

(1 − 𝜖)1−𝜖

)𝜇𝑚𝑖𝑛/𝐿

for 𝜖 ∈ [0, 1).

Let 𝑌 =
∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 . In our setting,

𝜇𝑚𝑖𝑛 = 𝜆𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

E[𝜽 𝑡𝜽⊤𝑡 ]
)

= 𝑇𝜆𝑚𝑖𝑛

(
E[𝜽 𝑡𝜽⊤𝑡 ]

)
= 𝑇𝜆𝑚𝑖𝑛

(
𝜎2

𝜃
I𝑚×𝑚 + E[𝜽 𝑡 ]E[𝜽⊤𝑡 ]

)
𝜎2

𝜃
I𝑚×𝑚 and E[𝜽 𝑡 ]E[𝜽⊤𝑡 ] commute, so



𝜇𝑚𝑖𝑛 = 𝑇

(
𝜆𝑚𝑖𝑛

(
𝜎2

𝜃
I𝑚×𝑚

)
+ 𝜆𝑚𝑖𝑛

(
E[𝜽 𝑡 ]E[𝜽⊤𝑡 ]

) )
= 𝑇𝜆𝑚𝑖𝑛

(
𝜎2

𝜃
I𝑚×𝑚

)
= 𝑇𝜎2

𝜃
𝜆𝑚𝑖𝑛 (I𝑚×𝑚)

= 𝑇𝜎2

𝜃

𝜆𝑚𝑎𝑥 (𝜽 𝑡𝜽⊤𝑡 ) = 𝛽𝑚,

so let 𝐿 = 𝛽𝑚.

Picking 𝜖 = 1/2 and applying the matrix Chernoff bound to

𝜆𝑚𝑖𝑛 (
∑𝑇
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 ), we obtain

𝑃

(
𝜆𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡

)
≤ 1

2

𝑇𝜎2

𝜃

)
≤ 𝑑

(
1

2

𝑒

)−𝑇𝜎2

𝜃
2𝛽𝑚

By rearranging terms, we see that if 𝑇 ≥ 2𝛽𝑚

𝜎2

𝜃
log

1

2
𝑒

log
𝑑
𝛿
, then

𝜆𝑚𝑖𝑛

(
𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡

)
≥ 1

2

𝑇𝜎2

𝜃

with probability at least 1 − 𝛿 .

Bound on second term




 𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 𝜖𝑡







𝐹

=
©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝑇∑︁
𝑡=1

𝜃𝑡,𝑖𝜃𝑡, 𝑗𝜖𝑡,𝑖, 𝑗

)2ª®¬
1/2

Since each 𝜖𝑡,𝑖, 𝑗 is a bounded zero-mean randomvariable,𝜃𝑡,𝑖𝜃𝑡, 𝑗𝜖𝑡,𝑖, 𝑗
is also a bounded zero-mean random variable, with variance at most

𝛽4𝜎2

E We can now apply Lemma B.1:




 𝑇∑︁
𝑡=1

𝜽 𝑡𝜽
⊤
𝑡 𝜖𝑡







𝐹

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝛽2𝜎E

√︃
2𝑇 log(1/𝛿𝑖, 𝑗 )

)
2ª®¬

1/2

≤ ©­«
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛽4𝜎2

E2𝑇 log(𝑚2/𝛿)ª®¬
1/2

≤
(
𝑚2𝛽4𝜎2

E2𝑇 log(𝑚2/𝛿)
)

1/2

≤ 𝑚𝛽2𝜎E
√︃

2𝑇 log(𝑚2/𝛿)

with probability at least 1 − 𝛿 .

Putting everything together
Putting everything together, we have that

∥𝜽̂ − 𝜽 ∗∥2 ≤

2𝛽𝜎𝑔
√︁

2𝑚 log(𝑚/𝛿)
1

2
𝑐
√
𝑇𝜎2

𝜃
−𝑚𝛽2𝜎E

√︁
2 log(𝑚2/𝛿) − 2𝑚𝛽𝜎𝑧

√︁
2 log(𝑚2/𝛿)

with probability at least 1 − 6𝛿 .

C INDIVIDUAL FAIRNESS DERIVATIONS
C.1 Proof of Theorem 3.3

Proof.

|𝑦 − 𝑦′ | =

| (b − b′)⊤𝜽 ∗ + 𝜽 ∗⊤ (EE⊤ − E ′E
′⊤)𝜽 ∗ |

= | (bC − b′C)
⊤𝜽 ∗ + 𝜽 ∗⊤ ((EE⊤)C − (E ′E

′⊤)C)𝜽 ∗ |

≤ ∥bC − b′C ∥2∥𝜽 ∗∥2 + ∥𝜽 ∗∥2∥((EE⊤)C − (E ′E
′⊤)C)𝜽 ∗∥2

≤ ∥bC − b′C ∥2 + max

𝜽 , ∥𝜽 ∥2=1

∥((EE⊤)C − (E ′E
′⊤)C)𝜽 ∗∥2

≤ ∥bC − b′C ∥2 + ∥((EE⊤)C − (E ′E
′⊤)C)∥2

□

C.2 Proof of Theorem 3.4
Proof. Let

𝑏 C̃,𝑖 =

{
𝑏𝑖 if 𝑖 ∉ C
0 otherwise

,

(EE⊤) C̃,𝑖 𝑗 =
{
(EE⊤)𝑖 𝑗 if 𝑖, 𝑗 ∉ C
0 otherwise.

|𝑦 − 𝑦′ | = | (bC − b′C)
⊤𝜽 + 𝜽⊤ ((EE⊤)C − (E ′E

′⊤)C)𝜽

+ (bC̃ − b′
C̃
)⊤𝜽 + 𝜽⊤ ((EE⊤) C̃ − (E ′E

′⊤) C̃)𝜽 |

= | (bC̃ − b′
C̃
)⊤𝜽 + 𝜽⊤ ((EE⊤) C̃ − (E ′E

′⊤) C̃)𝜽 |

=

������∑︁𝑖∉C(𝑏𝑖 − 𝑏 ′𝑖 )𝜃𝑖 +
∑︁
𝑖∉C

∑︁
𝑗∉C

((EE⊤)𝑖 𝑗 − (E ′E
′⊤)𝑖 𝑗 )𝜃𝑖𝜃 𝑗

������
□

C.3 Example 3.5 Derivations
𝑑 (u, u′) = ∥𝑏C − 𝑏 ′C ∥2 + ∥(EE⊤)C − (E ′E ′⊤)C ∥2

= ∥(𝜹 − 𝜹 ′)C𝐼𝑛×𝑛 ∥2 = ∥0𝑛×𝑛 ∥2 = 0,

where

𝛿C,𝑖 =

{
𝛿𝑖 if 𝑖 ∈ C
0 otherwise.

|𝑦 − 𝑦′ | =

������0 + ∑︁
𝑖∉C

(𝑛 − 0)𝜃2

𝑖

������ = 𝑛

𝑛/2∑︁
𝑖=1

𝜃2

𝑖

D AGENT OUTCOME MAXIMIZATION
DERIVATIONS

D.1 Derivation of 𝜽𝐴𝑂

𝜽𝐴𝑂 = arg max

𝜽 ∈S
E[𝑦𝑡 ]

Substituting in for 𝑦𝑡 :

𝜽𝐴𝑂 = arg max

𝜽 ∈S
E[x⊤𝑡 𝜽 ∗ + 𝑜𝑡 ]

𝜽𝐴𝑂 = arg max

𝜽 ∈S
E[x⊤𝑡 𝜽 ∗] + E[𝑜𝑡 ]



𝜽𝐴𝑂 = arg max

𝜽 ∈S
E[x⊤𝑡 𝜽 ∗]

Substitute in for x𝑡 :

𝜽𝐴𝑂 = arg max

𝜽 ∈S
E[(b⊤𝑡 + 𝜽⊤E𝑡E⊤

𝑡 )𝜽 ∗]

𝜽𝐴𝑂 = arg max

𝜽 ∈S
E[b⊤𝑡 𝜽 ∗] + E[𝜽⊤E𝑡E⊤

𝑡 𝜽
∗]

𝜽𝐴𝑂 = arg max

𝜽 ∈S
E[𝜽⊤E𝑡E⊤

𝑡 𝜽
∗]

𝜽𝐴𝑂 = arg max

𝜽 ∈S
𝜽⊤E[E𝑡E⊤

𝑡 ]𝜽 ∗

= arg max

𝜽 ∈S

∑︁
𝑖∈C

∑︁
𝑗 ∈C

𝑑∑︁
𝑘=1

E[𝑤𝑖𝑘𝑤 𝑗𝑘 ]𝜃𝑖𝜃∗𝑗

+
∑︁
𝑖∉C

∑︁
𝑗 ∈C

𝑑∑︁
𝑘=1

E[𝑤𝑖𝑘𝑤 𝑗𝑘 ]𝜃𝑖𝜃∗𝑗

E PREDICTIVE RISK MINIMIZATION
DERIVATIONS

E.1 Population gradient derivation
The gradient of the population risk function 𝑓 (𝜽 𝑡 ) = E[(𝑦𝑡 −𝑦𝑡 )2]
can be derived as follows

∇𝜽 𝑡
𝑓 (𝜽 𝑡 ) = E[∇𝜽 𝑡

(𝑦𝑡 − 𝑦𝑡 )2]
= 2E[(𝑦𝑡 − 𝑦𝑡 )∇𝜽 𝑡

(𝑦𝑡 − 𝑦𝑡 )]
= 2E[(𝑦𝑡 − 𝑦𝑡 )∇𝜽 𝑡

(x⊤𝑡 𝜽 𝑡 − x⊤𝑡 𝜽
∗ − 𝑜𝑡 )]

= 2E[(𝑦𝑡 − 𝑦𝑡 )∇𝜽 𝑡
(x⊤𝑡 (𝜽 𝑡 − 𝜽 ∗))]

= 2E[(𝑦𝑡 − 𝑦𝑡 )∇𝜽 𝑡
((b⊤𝑡 + 𝜽 𝑡E𝑡E⊤

𝑡 ) (𝜽 𝑡 − 𝜽 ∗))]
= 2E[(𝑦𝑡 − 𝑦𝑡 ) (b𝑡 + E𝑡E⊤

𝑡 (2𝜽 𝑡 − 𝜽 ∗))]
= 2E[(𝑦𝑡 − 𝑦𝑡 ) (x𝑡 + E𝑡E⊤

𝑡 (𝜽 𝑡 − 𝜽 ∗))]

F OMITTED EXPERIMENTS
In this section, we present additional details for our experiments in

Section 5. At the end, we provide more information regarding the

dataset and computation resources used.

F.1 University admissions full experimental
description

We construct a semi-synthetic dataset based on an example of uni-

versity admissions with disadvantaged and advantaged students

from Hu et al. [21]. From a real dataset of the high school (HS) GPA,

SAT score, and college GPA of 1000 college students, we estimate

the causal effect of observed features [SAT,HS GPA] on college

GPA to be 𝜽 ∗ = [0.00085, 0.49262]⊤ using OLS (which is assumed

to be consistent, since we have yet to modify the data to include

confounding). We then use this dataset to construct synthetic data

which looks similar, yet incorporates confounding factors. For sim-

plicity, we let the true causal effect parameters 𝜽 ∗ = [0, 0.5]⊤. That

Figure 5: Distributions of unobserved features b (in lighter
colors), i.e. initial HS GPA (two left figures) and SAT (two
right figures), and observed features x (darker colors) for
disadvantaged (two top figures in yellow and orange) and
advantaged students (two bottom figures in green).

Figure 6: Distribution of college GPAs (outcomes 𝑦) for dis-
advantaged students (orange), advantaged students (green),
and both combined (blue).

is, we assume there is a significant causal relationship between col-

lege performance and HS GPA, but not SAT score.
6
We consider two

types of student backgrounds, those from a disadvantaged group
and those from an advantaged group. We assume disadvantaged

applicants have, on average, lower HS GPA and SAT b𝑡 , lower base-
line college GPA 𝑜𝑡 , and require more effort to improve observable

features (reflected in E𝑡 ): this could be due to disadvantaged groups

6
Though this assumption may be contentious, it is based on existing research [1].



Figure 7: OLS versus 2SLS estimates for high school GPA ef-
fect on college GPA over 5000 rounds. Results are averaged
over 10 runs, with the error bars (in lighter colors) represent-
ing one standard deviation. The red dashed line is the true
causal effect of each high school GPA on college GPA.

being systemically underserved, marginalized, or abjectly discrim-

inated against (and the converse for advantaged groups). Initial

features b𝑡 are constructed as such: For any disadvantaged appli-

cant 𝑡 , their initial SAT features 𝑧SAT𝑡 ∼ N(800, 200) and initial HS

GPA 𝑧HS GPA𝑡 ∼ N(1.8, 0.5). For any advantaged applicant 𝑡 , 𝑧SAT𝑡 ∼
N(1000, 200) and 𝑧HS GPA𝑡 ∼ N(2.2, 0.5). We truncate SAT scores

between 400 to 1600 and HS GPA between 0 to 4. For any appli-

cant 𝑡 , we randomly deploy assessment rule 𝜽 𝑡 = [𝜃SAT𝑡 , 𝜃HS GPA𝑡 ]⊤
where 𝜃SAT𝑡 ∼ N(1, 10) and 𝜃HS GPA𝑡 ∼ N(1, 2). 𝜽 𝑡 need not be

zero-mean, so universities can play a reasonable assessment rule

with slight perturbations while still being able to perform unbiased

causal estimation. Components of the average effort conversion ma-

trix E[E𝑡 ] are smaller for disadvantaged applicants, which makes

their mean improvement worse (see Figure 5). We set the expected

effort conversion term E[E𝑡 ] =
(
10 0

0 1

)
for simplicity. Each row

of E[E𝑡 ] corresponds to effort expended to change a specific fea-

ture. For example, entries in the first row of E[E𝑡 ] correspond to

effort expended to change one’s SAT score. For each applicant 𝑡 , we

perturb E[E𝑡 ] with random noise drawn from N(0.5, 0.25) to the

top left entry and noise drawn from N(0.1, 0.01) the bottom right

entry to produce E𝑡 . We add this noise to E[E𝑡 ] to produce E𝑡 for
advantaged applicants and subtract for disadvantaged applicants:

thus, it takes more effort, on average, for members of disadvantaged

groups to improve their HS GPA and SAT scores than members of

advantaged groups. Finally, we construct college GPA (true outcome

𝑦𝑡 ) by multiplying observed features x𝑡 by the true effect parame-

ters 𝜽 ∗. We then add confounding error 𝑜𝑡 where 𝑜𝑡 ∼ N(0.5, 0.2)
for disadvantaged applicants and 𝑜𝑡 ∼ N(1.5, 0.2) for advantaged
applicants. Disadvantage applicants could have lower baseline out-

comes, e.g. due to institutional barriers or discrimination. While

the setting we consider is simplistic, Figures 5 and 6 demonstrate

that our semi-synthetic admissions data behaves reasonably.
7

7
For example, the mean shift in SAT scores from the first to second exam is 46 points

[17]. In our data, the mean shift for disadvantaged and advantaged applicants is about

36 points and 91 points, respectively.

F.2 Experimental Details
We evaluate our model on a semi-synthetic dataset based on our

running university admission example [15]. The dataset we base our

experiments off of is publicly available at www.openintro.org/data/

index.php?data=satgpa. This dataset does not contain personally

identifiable information or offensive content. Since this is a publicly

available dataset, no consent from the people whose data we are

using was required. We ran our experiments on a 2020 MacBook

Air laptop with 16GB of RAM.

G COMPARISONWITH SHAVIT ET AL.
The setting most similar to ours is that of Shavit et al.. They con-

sider a strategic classification setting in which an agent’s outcome

is a linear function of features –some observable and some not (see

Figure 8 for a graphical representation of their model). While they

assume that an agent’s hidden attributes can be modified strate-

gically, we choose to model the agent as having an unmodifiable

private type. Both of these assumptions are reasonable, and some

domains may be better described by one model than the other. For

example, the model of Shavit et al. may be useful in a setting such

as car insurance pricing, where some unobservable factors which

lead to safe driving are modifiable. On the other hand, settings like

our college admissions example in which the unobservable features

which contribute to college success (i.e. socioeconomic status, lack

of resources, etc., captured in 𝑜𝑡 ) are not easily modifiable.

One benefit of our setting is that we are able to use 𝜽 𝑡 as a valid
instrument to recover the true relationship 𝜽 ∗ between observable

features and outcomes. This is generally not possible in the model

of [45], since 𝜽 𝑡 violates the backdoor criterion as long as there

exists any hidden features h𝑡 and is therefore not a valid instru-

ment. Another difference between our setting and theirs is that we

allow for a heterogeneous population of agents, while they do not.

Specifically, they assume that each agent’s mapping from actions

to features is the same, while our model is capable of handling

mappings which vary from agent-to-agent.

A natural question is whether or not there exists a general model

which captures the setting of both Shavit et al. and ours. We pro-

vide such a model in Figure 9. In this setting, an agent has both

observable and unobservable features, both of which are affected

by the assessment rule 𝜽 𝑡 deployed and the agent’s private type

𝑢𝑡 . However, much like the setting of Shavit et al., 𝜽 𝑡 violates the
backdoor criterion, so it cannot be used as a valid instrument in

order to recover the true relationship between observable features

and outcomes. Moreover, the following toy example illustrates that

no form of true parameter recovery can be performed when an

agent’s unobservable features are modifiable.

Example G.1. Consider the one-dimensional setting

𝑦𝑡 = 𝜃∗𝑥𝑡 + 𝛽∗ℎ𝑡 ,

where 𝑥𝑡 is an agent’s observable, modifiable feature and ℎ𝑡 is an

unobservable, modifiable feature. If the relationship between 𝑥𝑡 and

ℎ𝑡 is unknown, then it is generally impossible to recover the true

relationship between 𝑥𝑡 , ℎ𝑡 , and outcome 𝑦𝑡 . To see this, consider

the setting where ℎ𝑡 and 𝑥𝑡 are highly correlated. In the extreme

case, take ℎ𝑡 = 𝑥𝑡 , ∀𝑡 . (Note we use equality to indicate identical

feature values, not a causal relationship.) In this setting, the models

www.openintro.org/data/index.php?data=satgpa
www.openintro.org/data/index.php?data=satgpa


𝜽 𝑡

x𝑡

h𝑡

𝑦𝑡

a𝑡 , E𝑡

a𝑡 , E𝑡 𝜽 ∗

𝜽 ∗

Figure 8: Graphicalmodel of Shavit et al.. Observable features
x𝑡 (e.g. the type of car a person drives) and unobservable
features h𝑡 (e.g. how defensive of a diver someone is) are
affected by 𝜽 𝑡 through action a𝑡 (e.g. buying a new car) and
common action conversion matrix E (representing, in part,
the cost to a person of buying a new car). Outcome 𝑦𝑡 (in this
example, the person’s chance of getting in an accident) is
affected by x𝑡 and h𝑡 through the true causal relationship 𝜽 𝑡 .
Note that causal parameter recovery is not possible in this
setting unless all features are observable.

𝜽 𝑡 x𝑡

𝑦𝑡

𝑢𝑡 h𝑡

a𝑡

𝜽 ∗a𝑡

b𝑡 , E𝑡
𝜽 ∗

𝑜𝑡

b𝑡 , E𝑡

Figure 9: Graphical model which captures both our setting
and that of Shavit et al.. In this setting, observable features
x𝑡 and unobservable features h𝑡 are affected by 𝜽 𝑡 through
action a𝑡 . The agent’s private type𝑢𝑡 affects x𝑡 and h𝑡 through
initial feature values b𝑡 and action conversion matrix E𝑡 .
The agent’s outcome 𝑦𝑡 depends on x𝑡 and h𝑡 through the
causal relationship 𝜽 ∗ and 𝑢𝑡 through confounding term 𝑜𝑡 .
Note that much like the setting of [45], causal parameter
recovery is not possible in this setting unless all features are
observable.

𝜃∗ = 1, 𝛽∗ = 1 and 𝜃∗ = 2, 𝛽∗ = 0 produce the same outcome 𝑦𝑡
for all 𝑥 ∈ R, making it impossible to distinguish between the two

models, even in the limit of infinite data.

H SETTING OF SGD COMPARISON
In 1D, the derivative of E[(𝑦𝑡 − 𝑦𝑡 )]2

which accounts for 𝑥𝑡 and

𝑦𝑡 ’s dependence on 𝜽 𝑡 takes the form

Δ = 2(E[(𝑦𝑡 − 𝑦𝑡 )𝑥𝑡 ] + E𝑥𝑡 [𝑦𝑡 − 𝑦𝑡 ]E2 (𝜃𝑡 − 𝜃∗)).

By plugging in for 𝑥𝑡 , 𝑦𝑡 , 𝑦𝑡 and simplifying, we can write the

derivative as

Δ = 2

(
E[𝑏2

𝑡 ] + E4𝜃2

𝑡 (𝜃𝑡 − 𝜃∗) − E[𝑜𝑡𝑏𝑡 ] + E4𝜃𝑡 (𝜃𝑡 − 𝜃∗)2

)
.

The derivative of E[(𝑦𝑡 − 𝑦𝑡 )]2
which does not account for 𝑥𝑡

and 𝑦𝑡 ’s dependence on 𝜽 𝑡 can be written as

Figure 10: SGD with invex function

Figure 11: Convergence rate of Stochastic Gradient Descent
vs Simple Stochastic Gradient Descent for simple 1D setting.
Even when SSGD converges, it may do so at a much slower
rate, due to the inexact measure of the gradient. We ran both
methods for 10, 00 time-steps with a decaying learning rate of
0.001√

𝑇
. Results are averaged over 10 runs, with the error bars

(in lighter colors) representing one standard deviation.

Δ′ = 2 (E[(𝑦𝑡 − 𝑦𝑡 )𝑥𝑡 ])

= 2

(
E[𝑏2

𝑡 ] + E4𝜃2

𝑡 (𝜃𝑡 − 𝜃∗) − E[𝑜𝑡𝑏𝑡 ]
)
.

As can be seen by comparing the two equations, there is an extra

E4𝜃𝑡 (𝜃𝑡 − 𝜃∗)2
term present in Δ that is not in Δ′

. This can cause

Δ and Δ′
to have opposite signs under certain scenarios, e.g. when

E[𝑏2

𝑡 ] + E4𝜃2

𝑡 (𝜃𝑡 − 𝜃∗) − E[𝑜𝑡𝑏𝑡 ] is negative and E4𝜃𝑡 (𝜃𝑡 − 𝜃∗)2
is

sufficiently large. To generate Figure 4, we set E[𝑏𝑡 ] = 0, E[𝑏2

𝑡 ] =
0.3, E[𝑜𝑡 ] = 0, E[𝑔2

𝑡 ] = 15, E[𝑜𝑡𝑏𝑡 ] = −6.5, E = 3, 𝜃∗ = 1, and

𝜃0 = 0.5. To generate Figure 10 , we changed 𝜃∗ to be 0.7.
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