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ABSTRACT
When subjected to automated decision-making, decision subjects

may strategically modify their observable features in ways they

believe will maximize their chances of receiving a favorable deci-

sion. In many practical situations, the underlying assessment rule is

deliberately kept secret to avoid gaming and maintain competitive

advantage. The resulting opacity forces the decision subjects to rely

on incomplete information when making strategic feature modifica-

tions. We capture such settings as a game of Bayesian persuasion, in
which the decision maker offers a form of recourse to the decision

subject by providing them with an action recommendation (or sig-
nal) to incentivize them to modify their features in desirable ways.

We show that when using persuasion, both the decision maker and

decision subject are never worse off in expectation, while the deci-

sionmaker can be significantly better off.While the decisionmaker’s

problem of finding the optimal Bayesian incentive-compatible (BIC)

signaling policy takes the form of optimization over infinitely-many

variables, we show that this optimization can be cast as a linear pro-

gram over finitely-many regions of the space of possible assessment

rules. While this reformulation simplifies the problem dramatically,

solving the linear program requires reasoning about exponentially-

many variables, even under relatively simple settings. Motivated

by this observation, we provide a polynomial-time approximation

scheme that recovers a near-optimal signaling policy. Finally, our

numerical simulations on semi-synthetic data empirically illustrate

the benefits of using persuasion in the algorithmic recourse setting.

KEYWORDS
Algorithmic Recourse, Bayesian Persuasion, Mechanism Design,

Strategic Learning

1 INTRODUCTION
High-stakes decision-making systems increasingly utilize data-

driven algorithms to assess individuals in such domains as edu-

cation [28], employment [7, 33], and lending [22]. Individuals sub-

jected to these assessments (henceforth, decision subjects) may

strategically modify their observable features in ways they believe

maximize their chances of receiving favorable decisions [9, 20]. The

decision subject often has a set of actions/interventions available

to them. Each of these actions leads to some measurable effect on
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part of the Workshops at the 21st International Conference on Autonomous Agents and
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their observable features, and subsequently, their decision. From

the decision maker’s perspective, some of these actions may be

more desirable than others. Consider credit scoring as an exam-

ple.
1
Credit scores predict how likely an individual applicant is

to pay back a loan on time. Financial institutions regularly utilize

credit scores to decide whether to offer applicants their financial

products and determine the terms and conditions of their offers

(e.g., by setting the interest rate or credit limit). Given their (partial)

knowledge of credit scoring instruments, applicants regularly at-

tempt to improve their scores. For instance, a business applying for

a loan may improve its score by paying off existing debt or cleverly

manipulating its financial records to appear more profitable. While

both of these interventions may improve credit score, the former

is more desirable than the latter from the perspective of the finan-

cial institution offering the loan. The question we are interested in

answering in this work is: how can the decision maker incentivize
decision subjects to take such beneficial actions while discouraging
manipulations?

The strategic interactions between decision-making algorithms

and decision subjects has motivated a growing literature known as

strategic learning (see e.g., [12, 18, 19, 27, 37]). While much of the

prior work in strategic learning operates under the assumption of

full transparency (i.e., the assessment rule is public knowledge), we

consider settings where the full disclosure of the assessment rule is

not a viable alternative. In many real-world situations, revealing

the exact logic of the decision rule is either infeasible or irrespon-

sible. For instance, credit scoring formulae are closely guarded

trade secrets, in part to prevent the risk of default rates surging

if applicants learn how to manipulate them. In such settings, the

decision maker may still have a vested interest in providing some
information about the decision rule to decision subjects to provide a

certain level of transparency and recourse. In particular, the decision

maker may be legally obliged, or economically motivated, to guide

decision subjects to take actions that improve their underlying qual-

ifications. To do so, the decision maker can recommend actions for
decision subjects to take. Of course, such recommendations need to

be chosen carefully and credibly; otherwise, self-interested decision

1
Other examples of strategic settings which arise as a result of decision-making include

college admissions, in which a college/university (decision maker) decides whether

or not to admit a prospective student (decision subject), hiring, in which a company

decides whether or not to hire a job applicant, and lending, in which a banking

institution decides to accept or reject someone applying for a loan. Oftentimes, the

decision maker is aided by automated decision-making tools in these situations (e.g.,

[22, 28, 35]).



subjects may not follow them or, even worse, they may utilize the

recommendations to find pathways for manipulation.

We study a model of strategic learning in which the underlying

assessment rule is not revealed to decision subjects. Our model

captures several key aspects of the setting described above: First,

even though the assessment rule is not revealed to the decision

subjects, they often have prior knowledge about what the rule may

be. Secondly, when the decision maker provides recommendations

to decision subjects on which action to take, the recommendations

should be compatible with the subjects’ incentives to ensure they

will follow the recommendation. Finally, our model assumes the

decision maker discloses how they generate recommendations for

recourse—an increasingly relevant requirement under recent regu-

lations (e.g., [10]).

Utilizing our model, we aim to design a mechanism for a decision

maker to provide recourse to a decision subject with incomplete

information about the underlying assessment rule. We assume the

assessment rule makes predictions about some future outcome of

the decision subject (e.g., whether they pay back the loan in time if

granted). Before the assessment rule is trained (i.e., before the model

parameters are fit), the decision maker and decision subject have

some prior belief about the realization of the assessment rule. This

prior represents the “common knowledge” about the importance of

various observable features for making accurate predictions. After

training, the assessment rule is revealed to the decision maker, who

then recommends an action for the decision subject to take, based

on their pre-determined signaling policy. Upon receiving this action

recommendation, the decision subject updates their belief about

the underlying assessment rule. They then take the action which

they believe (according to the update belief) will maximize their

expected utility (i.e., the benefit from the decision they receive,

minus the cost of taking their selected action). Finally, the decision

maker uses the assessment rule to make a prediction about the

decision subject.

The interaction described above is an instance of Bayesian per-
suasion, a game-theoretic model of information revelation originally

due to Kamenica and Gentzkow. For background on the general

Bayesian persuasion model, see Section 1.1. The specific instance

of Bayesian persuasion we consider in this work is summarized

below.

Interaction protocol for our setting

(1) Before training, the decision maker and decision subject

have some prior/belief about the true assessment rule.

(2) After training, the assessment rule is revealed to the deci-

sion maker.

(3) The decision maker then uses their signaling policy and

knowledge of the assessment rule to recommend an action

for the decision subject to take.

(4) The decision subject updates their belief given the recom-

mendation. They then take a (possibly different) action, and

receive a prediction through the assessment rule.

Our contributions. Our central conceptual contribution is to cast

the problem of offering recourse under partial transparency as a

game of Bayesian persuasion. Our key technical contributions con-

sist of comparing optimal action-recommendation policies in this

new setup with two natural alternatives: (1) fully revealing the

assessment rule to the decision subjects, or (2) revealing no infor-

mation at all about the assessment rule. We provide new insights

about the potentially significant advantages of action recommenda-

tion over these baselines, and offer efficient formulations to derive

the optimal recommendations. More specifically, our analysis offers

the following takeaways:

(1) Using tools from Bayesian persuasion, we show that it is pos-

sible for the decision maker to provide incentive-compatible

action recommendations that encourage rational decision

subjects to modify their features through beneficial interven-

tions. Perhaps most importantly, we show that the optimal

signaling policy is more effective than the above two base-

lines in encouraging positive interventions on the part of

the decision subjects (Section 3).

(2) While the decision maker and decision subjects are never

worse off in expectation fromusing optimal incentive-compatible

recommendations, we show that situations exist in which

the decision maker is significantly better off in expectation

utilizing the optimal signaling policy (as opposed to the two

baselines) (Section 3).

(3) We derive the optimal signaling policy for the decisionmaker.

While the decision maker’s optimal signaling policy ini-

tially appears challenging (as it involves optimizing over

continuously-many variables), we show that the problem can

naturally be cast as a linear program (Section 4).

(4) We show that even for relatively simple examples, solving

this linear program requires reasoning about exponentially-

many variables. Motivated by this observation, we provide

a polynomial-time algorithm to approximate the optimal

signaling policy up to additive terms (Section 5).

(5) Finally, we empirically evaluate our persuasion mechanism

on semi-synthetic data based on the Home Equity Line of

Credit (HELOC) dataset, and find that the optimal signaling

policy performs significantly better than the two natural

alternatives in practice (Appendix D).

1.1 Related Work
Bayesian Persuasion. In its most basic form, Bayesian persuasion

[25] is modeled as a game between a sender (with private informa-

tion) and a receiver. At the beginning of the game, the sender and

receiver share a prior over some unknown state of nature, which
will eventually be revealed to the sender. Before the state of nature

is revealed, the sender commits to a signaling policy, a (probabilis-
tic) mapping from states of nature to action recommendations.

2

After the sender commits to a signaling policy, the state of nature

is revealed to the sender, who then sends a signal (according to

their policy) to the receiver. The receiver uses this signal to form

a posterior over the possible states of nature, and then takes an

action which affects the payoffs of both players. Several extensions

to the original Bayesian persuasion model have been proposed,

2
Such commitment is especially possible when the sender is a software agent (as is

the case in our setting), since the agent is committed to playing the policy prescribed

by its code once it is deployed.



including persuasion with multiple receivers [3], persuasion with

multiple senders [29], and persuasion with heterogeneous priors

[2]. There has been growing interest in persuasion in the computer

science and machine learning communities in recent years. Dughmi

and Xu [13, 14] characterize the computational complexity of com-

puting the optimal signaling policy for several popular models

of persuasion. Castiglioni et al. [6] study the problem of learning

the receiver’s utilities through repeated interactions. Work in the

multi-arm bandit literature [8, 21, 30, 31, 36] leverages techniques

from Bayesian persuasion to incentivize agents to perform bandit

exploration.

Strategic responses to unknown predictive models. To the best
of our knowledge, our work is the first to use tools from persuasion

to model the strategic interaction between a decision maker and

strategic decision subjects when the underlying predictive model is

not public knowledge. Several prior articles have addressed similar

problems through different models and techniques. For example,

Akyol et al. [1] quantify the “price of transparency”, a quantity

which compares the decision maker’s utility when the predictive

model is fully known with their utility when the model is not

revealed to the decision subjects. Ghalme et al. [17] compare the

prediction error of a classifier when it is public knowledge with the

error when decision subjects must learn a version of it, and label

this difference the “price of opacity”. Bechavod et al. [4] study the

effects of information discrepancy across different sub-populations

of decision subjects on their ability to improve their observable

features in strategic learning settings. Like us, they do not assume

the predictive model is fully known to the decision subjects. Instead,

the authors model decision subjects as trying to infer the underlying

predictive model by learning from their social circle of family and

friends, which naturally causes different groups to form within

the population. Additionally, while the models proposed by [4, 17]

circumvent the assumption of full information about the deployed

model, they restrict the decision subjects’ knowledge to be obtained

only through past data.

Algorithmic recourse. Our work is closely related to recent work

on algorithmic recourse [26]. Algorithmic recourse is concerned

with providing explanations and recommendations to individuals

who are unfavorably treated by automated decision-making sys-

tems. A line of algorithmic recourse methods including [23, 39, 40]

focus on finding recourses that are actionable, or realistic, for de-
cision subjects to take to improve their decision. In contrast, our

action recommendations are “actionable” in the sense that they are

interventions which promote long-term desirable behaviors while

ensuring that the decision subject is not worse off in expectation. Fi-

nally, more recent work [38] shows that existing recourse methods

based on counterfactual approaches are not robust to manipula-

tions. Our approach to recourse is not counterfactual-based and

instead uses a Bayesian persuasion mechanism to ensure decision

subject compliance.

2 SETTING AND BACKGROUND
Consider a setting in which a decision maker assigns a predicted

label 𝑦 ∈ {−1, +1} (e.g., whether or not someone will repay a

loan if granted one) to a decision subject with observable features

x0 = (𝑥0,1, · · · , 𝑥0,𝑑−1, 1) ∈ R𝑑 (e.g., amount of current debt, bank

account balance, etc.).
3
We assume the decision maker uses a linear

decision rule to make predictions, i.e., 𝑦 = sign{x⊤
0
𝜽 }, where the

assessment rule 𝜽 ∈ 𝚯 ⊆ R𝑑 is chosen by the decision maker. The

goal of the decision subject is to receive a positive classification (e.g.,

get approved for a loan). Given this goal, the decision subject may

choose to take some action 𝑎 from some set of possible actionsA to

modify their observable features (for example, they may decide to

pay off a certain amount of existing debt, or redistribute their debt

to game the credit score). We assume that the decision subject has

𝑚 actions {𝑎1, 𝑎2, . . . 𝑎𝑚} ∈ A at their disposal in order to improve

their outcomes. For convenience, we add 𝑎∅ to A to denote taking

"no action". By taking action 𝑎, the decision subject incurs some cost
𝑐 (𝑎) ∈ R. This could be an actual monetary cost, but it can also rep-

resent non-monetary notions of cost such as opportunity cost or the

time/effort cost the decision subject may have to exert to take the

action. We assume taking an action 𝑎 changes a decision subject’s

observable feature values from x0 to x0 +Δx(𝑎), where Δx(𝑎) ∈ R𝑑 ,
and Δx𝑗 (𝑎) specifies the change in the 𝑗th observable feature as

the result of taking action 𝑎. For the special case of 𝑎∅ , we have
Δx(𝑎∅) = 0, 𝑐 (𝑎∅) = 0. As a result of taking action 𝑎, a decision

subject, ds, receives utility𝑢
ds
(𝑎, 𝜽 ) = sign{(x0 +Δx(𝑎))⊤𝜽 }−𝑐 (𝑎).

In other words, the decision subject receives some positive (nega-

tive) utility for a positive (negative) classification, subject to some

cost for taking said action.

If the decision subject had exact knowledge of the assessment

rule 𝜽 used by the decision maker, they could solve an optimization

problem to determine the best action to take in order to maximize

their utility. However, in many settings it is not realistic for a de-

cision subject to have perfect knowledge of 𝜽 . Instead, we model

the decision subject’s information through a prior Π over 𝜽 , which
can be thought of as “common knowledge” about the relative im-

portance of each observable feature to the classifier. We will use

𝜋 (·) to denote the probability density function of Π (so that 𝜋 (𝜽 )
denotes the probability of the deployed assessment rule being 𝜽 ).
We assume the decision subject is rational and risk-neutral. So at

any point during the interaction, if they hold a belief Π′
about

the underlying assessment rule, they would pick an action 𝑎∗ that
maximize their expected utility with respect to that belief. More

precisely, they solve 𝑎∗ ∈ argmax𝑎∈A E𝜽∼Π′ [𝑢ds (𝑎, 𝜽 ) ] .
From the decision maker’s perspective, some actions may be

more desirable than others. For example, a bank may prefer that

an applicant pay off more existing debt than less when apply-

ing for a loan. To formalize this notion of action preference, we

say that the decision maker receives some utility 𝑢𝑑𝑚 (𝑎) ∈ R
when the decision subject takes action 𝑎. In the loan example,

𝑢𝑑𝑚 (pay off more debt) > 𝑢𝑑𝑚 (pay off less debt).

2.1 Bayesian Persuasion in the Algorithmic
Recourse Setting

The decision maker has an information advantage over the decision
subject, due to the fact that they know the true assessment rule 𝜽 ,
whereas the decision subject does not. The decision maker may be

able to leverage this information advantage to incentivize the deci-

sion subject to take a more favorable action (compared to the one

they would have taken according to their prior) by recommending

3
We append a 1 to the decision subject’s feature vector for notational convenience.



an action to the decision subject according to a commonly known

signaling policy.

Definition 2.1 (Signaling Policy). A signaling policy S : 𝚯 →
A is a (possibly stochastic) mapping from assessment rules to actions.4

We use 𝜎 ∼ S(𝜽 ) to denote the action recommendation sampled

from signaling policy S, where 𝜎 is a realization from A.

The decision maker’s signaling policy is assumed to be fixed

and common knowledge. This is because in order for the decision

subject to perform a Bayesian update based on the observed rec-

ommendation, they must know the signaling policy. Additionally,

the decision maker must have the power of commitment, i.e., the
decision subject must believe that the decision maker will select ac-

tions according to their signaling policy. In our setting, this means

that the decision maker must commit to their signaling policy be-

fore training their assessment rule. This can be seen as a form

of transparency, as the decision maker is publicly committing to

how they will use their assessment rule to provide action recom-

mendations/recourse before they even train it. For simplicity, we

assume that the decision maker shares the same prior beliefs Π as

the decision subject over the observable features before the model is

trained. These assumptions are standard in the Bayesian persuasion

literature (see, e.g., [25, 30, 31]).

In order for the decision subject to be incentivized to follow the

actions recommended by the decision maker, the signaling policy

S needs to be Bayesian incentive-compatible.

Definition 2.2 (Bayesian incentive-compatibility). Consider
a decision subject ds with initial observable features x0 and prior Π.
A signaling policy S is Bayesian incentive-compatible (BIC) for ds if

E𝜽∼Π [𝑢𝑑𝑠 (𝑎, 𝜽 ) |𝜎 = 𝑎] ≥ E𝜽∼Π [𝑢𝑑𝑠 (𝑎′, 𝜽 ) |𝜎 = 𝑎], (1)

for all actions 𝑎, 𝑎′ ∈ A such that S(𝜽 ) had positive support on
𝜎 = 𝑎.

In other words, a signaling policy S is BIC if, given that the
decision maker recommends action 𝑎, the decision subject’s expected

utility is at least as high as the expected utility of taking any other

action 𝑎′ under the posterior.
We remark that while for the ease of exposition our model fo-

cuses the interactions between the decision maker and a single
decision subject, our results can be extended to a heterogeneous

population of decision subjects. Under such a heterogeneous set-

ting, the decision maker would publicly commit to a method of

computing the signaling policy, given a decision subject’s initial

observable features as input. Once a decision subject arrives, their

feature values are observed and the signaling policy is computed.

3 THE MOTIVATION BEHIND PERSUASION
As is the case in the Bayesian persuasion literature [14, 24, 25], the

decision maker can in general achieve a higher expected utility with

an optimized signaling policy than the utilities had they provided

no recommendation or fully disclosed the model. To characterize

how much leveraging the decision maker’s information advantage

(by recommending actions according to a BIC signaling policy) may

improve their expected utility, we study the following example.

4
Note that since our model is focused on the decision maker’s interactions with a single

decision subject, we drop the dependence of 𝜎 on the decision subject’s characteristics.

Consider a simple setting under which a single decision subject

has one observable feature 𝑥0 (e.g., credit score) and two possible

actions: 𝑎∅ = “do nothing” (i.e., Δ𝑥 (𝑎∅) = 0, 𝑐 (𝑎∅) = 0, 𝑢𝑑𝑚 (𝑎∅) =
0) and 𝑎1 = “pay off existing debt” (i.e., Δ𝑥 (𝑎1) > 0, 𝑐 (𝑎1) > 0,

𝑢𝑑𝑚 (𝑎1) = 1), which in turn raises their credit score. For the sake

of our illustration, we assume credit-worthiness to be a mutually

desirable trait, and credit scores to be a good measure of credit-

worthiness. We assume the decision maker would like to design

a signaling policy to maximize the chance of the decision subject

taking action 𝑎1, regardless of whether or not the applicant will

receive the loan. In this simple setting, the decisionmaker’s decision

rule can be characterized by a single threshold parameter \ , i.e., the

decision subject receives a positive classification if 𝑥 + \ ≥ 0 and

a negative classification otherwise. Note that while the decision

subject does not know the exact value of \ , they instead have some

prior over it, denoted by Π.
Given the true value of \ , the decision maker recommends an

action 𝜎 ∈ {𝑎∅, 𝑎1} for the decision subject to take. The decision

subject then takes a possibly different action 𝑎 ∈ {𝑎∅, 𝑎1}, which
changes their observable feature from 𝑥0 to 𝑥 = 𝑥0 + Δ𝑥 (𝑎). Re-
call that the decision subject’s utility takes the form 𝑢𝑑𝑠 (𝑎, \ ) =

sign{(𝑥0+Δ𝑥 (𝑎))+\ }−𝑐 (𝑎). Note that if 𝑐 (𝑎1) > 2, then𝑢𝑑𝑠 (𝑎∅, \ ) >
𝑢𝑑𝑠 (𝑎1, \ ) holds for any value of \ , meaning that it is impossible to

incentivize any rational decision subject to play action 𝑎1. There-

fore, in order to give the decision maker a “fighting chance” at

incentivizing action 𝑎1, we assume the cost of action 𝑎1 is such that

𝑐 (𝑎1) < 2.

We observe that in this simple setting, we can bin values of \

into three different “regions”, based on the outcome the decision

subject would receive if \ were actually in that region. First, if

𝑥0 + Δ𝑥 (𝑎1) + \ < 0, the decision subject will not receive a positive

classification, even if they take action 𝑎1. In this region, the decision

subject’s initial feature value 𝑥0 is “too low” for taking the desired

action to make a difference in their classification. We refer to this

region as region 𝐿. Second, if 𝑥0 + \ ≥ 0, the decision subject will

receive a positive classification no matter what action they take. In

this region, 𝑥0 is “too high” for the action they take to make any

difference on their classification. We refer to this region as region

𝐻 . Third, if 𝑥0 +\ < 0 and 𝑥0 +Δ𝑥 (𝑎1) +\ ≥ 0, the decision subject

will receive a positive classification if they take action 𝑎1 and a

negative classification if they take action 𝑎∅ . We refer to this region

as region𝑀 . Consider the following signaling policy.

Signaling policy S(\ )

Case 1: \ ∈ 𝐿. Recommend action 𝑎1 with probability 𝑞 and

action 𝑎∅ with probability 1 − 𝑞
Case 2: \ ∈ 𝑀 . Recommend action 𝑎1 with probability 1

Case 3: \ ∈ 𝐻 . Recommend action 𝑎1 with probability 𝑞 and

action 𝑎∅ with probability 1 − 𝑞

In Case 2,S recommends the action (𝑎1) that the decision subject

would have taken had they known the true \ , with probability 1.

However, in Case 1 and Case 3, the decision maker recommends,

with probability 𝑞, an action (𝑎1) that the decision subject would

not have taken knowing \ , leveraging the fact that the decision

subject does not know exactly which case they are currently in. If
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Figure 1: Illustration of how 𝑞 (the probability of recommend-
ing action 𝑎1 when \ ∉ 𝑀 , left) and 𝑢 (the expected decision
maker utility, right) change as a function of 𝜋 (𝑀) and 𝑐 (𝑎1).
As 𝜋 (𝑀) increases, 𝑞 and expected utility increase until 𝜋 (𝑀),
at which point they remain constant. As 𝑐 (𝑎1) increases, 𝑞
and 𝑢 remain constant until taking action 𝑎1 becomes pro-
hibitively expensive, at which point both start to decay.

the decision subject follows the decision maker’s recommendation

from S, then the decision maker expected utility will increase from

0 to 𝑞 if the realized \ ∈ 𝐿 or \ ∈ 𝐻 , and will remain the same

otherwise. Intuitively, if 𝑞 is “small enough” (where the precise

definition of “small” depends on the prior over \ and the cost of

taking action𝑎1), then it will be in the decision subject’s best interest

to follow the decision maker’s recommendation, even though they
know that the decision maker may sometimes recommend taking
action 𝑎1 when it is not in their best interest to take that action! That
is, the decision maker may recommend that a decision subject pay

off existing debt with probability 𝑞 when it is unnecessary for them

to do so in order to secure a loan. We now give a criteria on 𝑞 which

ensures the signaling policy S is BIC.

Proposition 3.1. Signaling policyS is Bayesian incentive-compatible
if 𝑞 = min{ 𝜋 (𝑀) (2−𝑐 (𝑎1))

𝑐 (𝑎1) (1−𝜋 (𝑀)) , 1}, where 𝜋 (𝑀) = 𝜋 (𝑥0 + \ < 0 and 𝑥0 +
Δ𝑥 (𝑎1) + \ ≥ 0).

Proof Sketch. We show that

E\∼Π [𝑢𝑑𝑠 (𝑎∅, \ ) |𝜎 = 𝑎∅] ≥ E\∼Π [𝑢𝑑𝑠 (𝑎1, \ ) |𝜎 = 𝑎∅]

and

E\∼Π [𝑢𝑑𝑠 (𝑎1, \ ) |𝜎 = 𝑎1] ≥ E\∼Π [𝑢𝑑𝑠 (𝑎∅, \ ) |𝜎 = 𝑎1] .

Since these conditions are satisfied, S is BIC. See Appendix A for

the full proof.

Under this setting, the decision maker will achieve expected

utility 𝑢 = 𝜋 (𝑀) + 𝑞(1 − 𝜋 (𝑀)). See Figure 1 for an illustration of

how 𝑞 and 𝑢 vary with 𝜋 (𝑀) and 𝑐 (𝑎1).
As we will see in Section 4, the expected utility of the decision

maker when recommending actions via the optimal (BIC) signaling

policy is trivially no worse than their expected utility if they had

revealed full information about the assessment rule to the decision

subject, or if they had revealed no information and let the decision

subject act according to the prior. We now show that the decision

maker’s expected utility when recommending actions according

to the optimal signaling policy can be arbitrarily higher than their

expected utility from revealing full information or no information.

Theorem 3.2. For any 𝜖 > 0, there exists a problem instance such
that the expected decision maker utility from recommending actions
according to the optimal signaling policy is 1 − 𝜖 and the expected
decision maker utility for revealing full information or revealing no
information is at most 𝜖 .

See Appendix B for the proof. The decision maker’s expected

utility as a function of their possible strategies is summarized in

Table 1. Note that when 1{𝜋 (𝑀) ≥ 𝑐 (𝑎1)
2

} = 1, 𝑞 = 1. Therefore,

the decision maker’s expected utility is always as least as good as

the two natural alternatives of revealing no information about the

assessment rule, or revealing full information about the rule.

No information Signaling with S Full information

Decision maker utility 1{𝜋 (𝑀) ≥ 𝑐 (𝑎1)
2

} 𝜋 (𝑀) + 𝑞(1 − 𝜋 (𝑀)) 𝜋 (𝑀)
Table 1: Decision maker’s expected utility when (1) revealing
no information about the model, (2) recommending actions
according to S, and (3) revealing full information about the
model.

4 OPTIMAL SIGNALING POLICY
In Section 3, we show a one-dimensional setting, where a signaling

policy can obtain unbounded better utilities compared to revealing

full information and revealing no information. We now derive the

decision maker’s optimal signaling policy for the general setting

with arbitrary numbers of observable features and actions described

in Section 2. Under the general setting, the decision maker’s optimal

signaling policy can be described by the following optimization:

max

𝑝 (𝜎=𝑎 |𝜽 ),∀𝑎∈A
E𝜎∼S,𝜽∼Π [𝑢𝑑𝑚 (𝜎)]

s.t. E𝜽∼Π [𝑢𝑑𝑠 (𝑎, 𝜽 ) − 𝑢𝑑𝑠 (𝑎′, 𝜽 ) |𝜎 = 𝑎] ≥ 0, ∀𝑎, 𝑎′ ∈ A,
(2)

where we omit the valid probability constraints over 𝑝 (𝜎 =

𝑎 |𝜽 ), 𝑎 ∈ A for brevity. In words, the decision maker wants to

design a signaling policy S in order to maximize their expected

utility, subject to the constraint that the signaling policy is BIC. At

first glance, the optimization may initially seem hopeless as there

are infinitely many values of 𝑝 (𝜎 = 𝑎 |𝜽 ) (one for every possible

𝜽 ∈ 𝚯) that the decision maker’s optimal policy must optimize

over. However, we will show that the decision maker’s optimal

policy can actually be recovered by optimizing over finitely many

equivalence regions.
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Figure 2: An illustration of the equivalence regions for a
two action (𝑎1, 𝑎2) and two observable feature (𝑥1, 𝑥2) setting,
where 𝚯 = [0, 2] × [0, 1] × { 1

2
}. Consider an individual with

x0 = [0, 0, 1]⊤, Δx(𝑎1) = [1, 0, 0]⊤, and Δx(𝑎2) = [0, 1, 0]⊤. The
equivalence regions of 𝚯 are quadrants described the set of
actions the decision subject could take in order to receive
a positive classification. Region 𝑅0 contains the bottom-left
and top-right quadrants of 𝚯, region 𝑅1 contains the bottom-
right quadrant of 𝚯, and region 𝑅2 contains the top-left quad-
rant of 𝚯.

Definition 4.1 (Eqivalence Region). Two assignments \, \ ′

are equivalent (w.r.t. 𝑢𝑑𝑠 ) if 𝑢𝑑𝑠 (𝑎, 𝜽 ) − 𝑢𝑑𝑠 (𝑎′, 𝜽 ) = 𝑢𝑑𝑠 (𝑎, 𝜽 ′) −
𝑢𝑑𝑠 (𝑎′, 𝜽 ′), ∀𝑎, 𝑎′ ∈ A. An equivalence region 𝑅 is a subset of 𝚯
such that for any \ ∈ 𝑅, all \ ′ equivalent to \ are also in 𝑅. We denote
the set of all equivalence regions by R.

In Figure 2, we show an example of how different equivalence

regions might partition the space of possible assessment rules 𝚯.

In this example, there are two actions and two observable features,

and the space of 𝚯 is partitioned into three different equivalence

regions. Note that as long as the set of actions A is finite, |R | < ∞.

Using the definition of equivalence region, we are able to simplify

the optimization into the following form, where 𝑝 (𝑅) is the proba-
bility under Π that 𝜽 is in equivalence region 𝑅 and 𝑢𝑑𝑠 (𝑎, 𝑅) is the
decision subject’s utility of taking action 𝑎 in equivalence region 𝑅.

Theorem 4.2 (Optimal signaling policy). The decision maker’s
optimal signaling policy can be characterized by the following linear
program OPT-LP:

max

𝑝 (𝜎=𝑎 |𝑅),∀𝑎∈A,𝑅∈R

∑︁
𝑎∈A

∑︁
𝑅∈R

𝑝 (𝑅)𝑝 (𝜎 = 𝑎 |𝑅)𝑢𝑑𝑚 (𝑎)

s.t.
∑︁
𝑅∈R

𝑝 (𝜎 = 𝑎 |𝑅)𝑝 (𝑅) (𝑢𝑑𝑠 (𝑎, 𝑅) − 𝑢𝑑𝑠 (𝑎′, 𝑅)) ≥ 0,

∀𝑎, 𝑎′ ∈ A∑︁
𝑎∈A

𝑝 (𝜎 = 𝑎 |𝑅) = 1, ∀𝑅, 𝑝 (𝜎 = 𝑎 |𝑅) ≥ 0,

∀𝑅 ∈ R, 𝑎 ∈ A,
(OPT-LP)

where 𝑝 (𝜎 = 𝑎 |𝑅) denotes the probability of sending recommen-

dation 𝜎 = 𝑎 if 𝜽 ∈ 𝑅. For the full proof, see Appendix C. Note that
the linear program OPT-LP is always feasible, as the decision maker

ALGORITHM 1: Approximation Algorithm for (OPT-LP)

Input: 𝜽 ∈ 𝚯, 𝜖 > 0, 𝛿 > 0

Output: Signaling policy Ŝ := {𝑝 (𝜎 = 𝑎 |𝑅𝜽 ) }∀𝑎∈A (where region 𝑅𝜽
contains 𝜽 )

Set 𝐾 =

⌈
2

𝜖2
log

(
2(𝑚2+1)

𝛿

)⌉
Pick ℓ ∈ {1, . . . , 𝐾 } uniformly at random. Set 𝜽 ℓ = 𝜽 .

Sample �̃� = {𝜽 1, . . . , 𝜽 ℓ−1, 𝜽 ℓ+1, . . . , 𝜽𝐾 } ∼ 𝜋 (𝜽 ) .
Let R̃ denote the set of observed regions. Compute �̃� (𝑅) , ∀𝑅 ∈ R̃,
where �̃� (𝑅) is the empirical probability of 𝜽 ′ ∈ 𝑅.

Solve (APPROX-LP) and return signaling policy

Ŝ := {𝑝 (𝜎 = 𝑎 |𝑅𝜽 ) }∀𝑎∈A .

can always recommend the action the decision subject would play

according to the prior, which is BIC.

5 COMPUTING THE OPTIMAL SIGNALING
POLICY

In Section 4, we show that the problem of determining the deci-

sion maker’s optimal signaling policy can be transformed from an

optimization over infinitely many variables into an optimization

over the set of finitely many equivalence regions R (Theorem 4.2).

However, computing the decision maker’s optimal signaling policy

by solving (OPT-LP) requires reasoning over exponentially-many
variables, even in relatively simple settings (see Appendix C.1). Mo-

tivated by this result, we aim to design a computationally efficient

approximation scheme to compute an approximately optimal sig-

naling policy for the decision maker. In particular, we adapt the

sampling-based approximation algorithm of Dughmi and Xu to

our setting in order to compute an 𝜖-optimal and 𝜖-approximate

signaling policy in polynomial time, as shown in Algorithm 1. At

a high level, Algorithm 1 samples polynomially-many times from

the prior distribution over the space of assessment rules, and solves

an empirical analogue of (OPT-LP) ((APPROX-LP), see Appendix

E). We show that the resulting signaling policy is 𝜖-BIC, and is

𝜖-optimal with high probability, for any 𝜖 > 0.

Theorem 5.1. Algorithm 1 runs in poly(𝑚, 1𝜖 ) time (where𝑚 =

|A|), and implements an 𝜖-BIC signaling policy that is 𝜖-optimal
with probability at least 1 − 𝛿 .

See Appendix E for the proof.

Bi-criteria approximation. It is important to note that the sig-

naling policy from Algorithm 1 is both 𝜖-optimal and 𝜖-incentive

compatible. While one may wonder whether (i) an 𝜖-optimal and ex-

actly incentive compatible signaling policy exists, or (ii) an exactly

optimal and 𝜖-incentive compatible signaling policy exists, Dughmi

and Xu show that this is generally not possible for sampling-based

approximation algorithms for Bayesian persuasion (see Theorem

27 in Dughmi and Xu [14]). Note that unlike the other results in

Dughmi and Xu [14], these results directly apply to the setting we

consider.

Computational complexity. Recall that the algorithm for com-

puting the optimal policy runs in time polynomial in the number

of equivalence regions |R |, which can scale exponentially in the

number of actions 𝑚. However, without any structural assump-

tions, the input prior over the space of assessment rules 𝚯 can

scale exponentially in the number of features 𝑑 . When 𝑚 and 𝑑



are comparable, our algorithm runs in time polynomial in the in-

put size. We leave open the question of whether there are classes

of succinctly represented prior distributions that permit efficient

algorithms for computing the optimal policy in time polynomial

in 𝑑 and𝑚. It is also plausible to design efficient algorithms that

only require some form of query access to the prior distribution.

However, information-theoretic lower bounds of [14] rule out the

query access through sampling, as they show that no sampling-

based algorithm can compute the optimal signaling policy with

finite samples across all problem instances.

6 CONCLUSION
In this work, we investigated the problem of offering algorithmic

recourse without requiring full transparency (i.e., revealing the

assessment rule). We cast this problem as a game of Bayesian per-

suasion, and offered several new insights regarding how a decision

maker can leverage their information advantage over decision sub-

jects to incentivize mutually beneficial actions. Our stylized model

relies on several simplifying assumptions, which suggest important

directions for future work:

Alternative models of information design. Cheap talk [11] and

verifiable disclosure [15] are two alternative models of information

disclosure which may be applicable whenever the sender does not
have the power to commit to a signaling policy before the state

of nature is revealed. As a consequence, the resulting equilibria

are often difficult to characterize, and the players may face an

equilibrium selection problem. Nevertheless, it may be worthwhile

to analyze these alternative games in the algorithmic recourse

setting to capture situations in which the decision maker cannot

commit to a signaling policy.

Beyond linear decision rules. Finally, we focus on settings with

linear decision rules and assume all decision subject parameters

(e.g., cost function, initial observable features, etc.) are known to the

decision maker. We leave it for future work to extend our findings to

non-linear decision rules, or settings in which some of the decision

subjects’ parameters are unknown to the decision maker.
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A PROOF OF PROPOSITION 3.1
Proof. Based on the decision subject’s prior over \ , they can

calculate

(1) 𝜋 (𝐿) = 𝜋 (𝑥0 + Δ𝑥 (𝑎1) + \ < 0), i.e., the probability the

decision subject is in region 𝐿 according to the prior

(2) 𝜋 (𝑀) = 𝜋 (𝑥0 + \ < 0 and 𝑥0 + Δ𝑥 (𝑎1) + \ ≥ 0), i.e., the
probability the decision subject is in region𝑀 according to

the prior

(3) 𝜋 (𝐻 ) = 𝜋 (𝑥0 + \ ≥ 0), i.e., the probability the decision

subject is in region 𝐻 according to the prior

Case 1: 𝜎 = 𝑎0. Given the signal 𝜎 = 𝑎∅ , the decision subject’s

posterior probability density function 𝜋 (·|𝜎 = 𝑎∅) over 𝐿, 𝑀 , and

𝐻 will take the form

𝜋 (𝐿 |𝜎 = 𝑎∅) =
𝑝 (𝜎=𝑎∅ |𝐿)𝜋 (𝐿)

𝑝 (𝜎=𝑎∅) =
𝜋 (𝐿)

𝜋 (𝐿)+𝜋 (𝐻 )
𝜋 (𝑀 |𝜎 = 𝑎∅) =

𝑝 (𝜎=𝑎∅ |𝑀)𝜋 (𝑀)
𝑝 (𝜎=𝑎∅) = 0

𝜋 (𝐻 |𝜎 = 𝑎∅) =
𝑝 (𝜎=𝑎∅ |𝐻 )𝜋 (𝐻 )

𝑝 (𝜎=𝑎∅) =
𝜋 (𝐻 )

𝜋 (𝐿)+𝜋 (𝐻 )
If the decision subject receives signal 𝜎 = 𝑎0, they know with

probability 1 that they are not in region𝑀 with probability 1. There-

fore, they know that taking action 𝑎1 will not change their classifi-

cation, so they will follow the decision maker’s recommendation

and take action 𝑎∅ .
Case 2: 𝜎 = 𝑎1. Given the signal 𝜎 = 𝑎1, the decision subject’s

posterior density over 𝐿,𝑀 , and 𝐻 will take the form

𝜋 (𝐿 |𝜎 = 𝑎1) =
𝑝 (𝜎=𝑎1 |𝐿)𝜋 (𝐿)

𝑝 (𝜎=𝑎1) =
𝑞𝜋 (𝐿)

𝜋 (𝑀)+𝑞 (𝜋 (𝐿)+𝜋 (𝐻 )) =

𝑞𝜋 (𝐿)
𝜋 (𝑀)+𝑞 (1−𝜋 (𝑀))
𝜋 (𝑀 |𝜎 = 𝑎1) =

𝑝 (𝜎=𝑎1 |𝑀)𝜋 (𝑀)
𝑝 (𝜎=𝑎1) =

𝜋 (𝑀)
𝜋 (𝑀)+𝑞 (𝜋 (𝐿)+𝜋 (𝐻 )) =

𝜋 (𝑀)
𝜋 (𝑀)+𝑞 (1−𝜋 (𝑀))
𝜋 (𝐻 |𝜎 = 𝑎1) =

𝑝 (𝜎=𝑎1 |𝐻 )𝜋 (𝐻 )
𝑝 (𝜎=𝑎1) =

𝑞𝜋 (𝐻 )
𝜋 (𝑀)+𝑞 (𝜋 (𝐿)+𝜋 (𝐻 )) =

𝑞𝜋 (𝐻 )
𝜋 (𝑀)+𝑞 (1−𝜋 (𝑀))

The decision subject’s expected utility of taking actions 𝑎∅ and 𝑎1
under the posterior induced by 𝜎 = 𝑎1 are

E𝜽∼Π [𝑢𝑑𝑠 (𝑎∅, \ ) |𝜎 = 𝑎1]
= 𝜋 (𝐻 |𝜎 = 𝑎1) · (1 − 0) + 𝜋 (𝑀 |𝜎 = 𝑎1) · (−1 − 0) + 𝜋 (𝐿 |𝜎 = 𝑎1) · (−1 − 0)
= 𝜋 (𝐻 |𝜎 = 𝑎1) − 𝜋 (𝑀 |𝜎 = 𝑎1) − 𝜋 (𝐿 |𝜎 = 𝑎1)

and

E𝜽∼Π [𝑢𝑑𝑠 (𝑎1, \ ) |𝜎 = 𝑎1]
= 𝜋 (𝐻 |𝜎 = 𝑎1) · (1 − 𝑐 (𝑎1))
+ 𝜋 (𝑀 |𝜎 = 𝑎1) · (1 − 𝑐 (𝑎1)) + 𝜋 (𝐿 |𝜎 = 𝑎1) · (−1 − 𝑐 (𝑎1))

In order for S to be BIC,

E𝜽∼Π [𝑢𝑑𝑠 (𝑎1, \ ) |𝜎 = 𝑎1] ≥ E𝜽∼Π [𝑢𝑑𝑠 (𝑎∅, \ ) |𝜎 = 𝑎1] .

Plugging in our expressions for E𝜽∼Π [𝑢𝑑𝑠 (𝑎1, \ ) |𝜎 = 𝑎1]
and E𝜽∼Π [𝑢𝑑𝑠 (𝑎∅, \ ) |𝜎 = 𝑎1], we see that

𝜋 (𝐻 |𝜎 = 𝑎1) · (1 − 𝑐 (𝑎1))+
𝜋 (𝑀 |𝜎 = 𝑎1) · (1 − 𝑐 (𝑎1)) + 𝜋 (𝐿 |𝜎 = 𝑎1) · (−1 − 𝑐 (𝑎1))
≥ 𝜋 (𝐻 |𝜎 = 𝑎1) − 𝜋 (𝑀 |𝜎 = 𝑎1) − 𝜋 (𝐿 |𝜎 = 𝑎1)

https://doi.org/10.1145/2940716.2940755


After canceling terms and simplifying, we see that

−(𝜋 (𝐿 |𝜎 = 𝑎1) + 𝜋 (𝐻 |𝜎 = 𝑎1))𝑐 (𝑎1) + 𝜋 (𝑀 |𝜎 = 𝑎1) (2− 𝑐 (𝑎1)) ≥ 0

Next, we plug in for 𝜋 (𝐿 |𝜎 = 𝑎1), 𝜋 (𝑀 |𝜎 = 𝑎1), and 𝜋 (𝐻 |𝜎 = 𝑎1).
Note that the denominators of 𝜋 (𝐿 |𝜎 = 𝑎1), 𝜋 (𝑀 |𝜎 = 𝑎1), and
𝜋 (𝐻 |𝜎 = 𝑎1) cancel out.

− 𝑞(𝜋 (𝐿) + 𝜋 (𝐻 ))𝑐 (𝑎1) + 𝜋 (𝑀) (2 − 𝑐 (𝑎1))
= −𝑞(1 − 𝜋 (𝑀))𝑐 (𝑎1) + 𝜋 (𝑀) (2 − 𝑐 (𝑎1)) ≥ 0

Solving for 𝑞, we see that

𝑞 ≤ 𝜋 (𝑀) (2 − 𝑐 (𝑎1))
𝑐 (𝑎1) (1 − 𝜋 (𝑀)) .

Note that 𝑞 ≥ 0 always. Finally, in order for 𝑞 to be a valid proba-

bility, we restrict 𝑞 such that

𝑞 = min{𝜋 (𝑀) (2 − 𝑐 (𝑎1))
𝑐 (𝑎1) (1 − 𝜋 (𝑀)) , 1}.

This completes the proof. □

B PROOF OF THEOREM 3.2
Proof. Consider the example in Section 3.

Expected utility from revealing no information. If the decision
subject acts exclusively according to the prior, they will select ac-

tion 𝑎1 with probability 1 if E𝜽∼Π [𝑢𝑑𝑠 (𝑎1, \ )] ≥ E𝜽∼Π [𝑢𝑑𝑠 (𝑎∅, \ )]
and with probability 0 otherwise. Plugging in our expressions for

E𝜽∼Π [𝑢𝑑𝑠 (𝑎1, \ )] and E𝜽∼Π [𝑢𝑑𝑠 (𝑎∅, \ )], we see that the decision
subject will select action 𝑎1 only if

𝜋 (𝐿) (−1 − 𝑐 (𝑎1)) + 𝜋 (𝑀) (1 − 𝑐 (𝑎1)) + 𝜋 (𝐻 ) (1 − 𝑐 (𝑎1))
≥ 𝜋 (𝐿) (−1 − 0) + 𝜋 (𝑀) (−1 − 0) + 𝜋 (𝐻 ) (1 − 0)

Canceling terms and simplifying, we see that

−𝑐 (𝑎1) (𝜋 (𝐿) + 𝜋 (𝐻 )) + 𝜋 (𝑀) (2 − 𝑐 (𝑎1)) ≥ 0

must hold for the decision subject to select action 𝑎1. Finally, sub-

stituting 𝜋 (𝐿) + 𝜋 (𝐻 ) = 1 − 𝜋 (𝑀) gives us the condition 2𝜋 (𝑀) −
𝑐 (𝑎1) ≥ 0. Alternatively, if

𝜋 (𝑀)
𝑐 (𝑎1) < 1

2
, the decision subject will

select action 𝑎∅ with probability 1. Intuitively, this means that a

rational decision subject would take action 𝑎1 if the ratio of 𝜋 (𝑀)
(the probability according to the prior that taking action 𝑎1 is in the

decision subject’s best interest) to 𝑐 (𝑎1) (the cost of taking action
𝑎1) is high, and would take action 𝑎∅ otherwise.

Expected utility from revealing full information. If the deci-
sion maker reveals the assessment rule to the decision subject, they

will select action 𝑎1 when \ ∈ 𝑀 and action 𝑎∅ otherwise. Therefore
since 𝑢𝑑𝑚 (𝑎1) = 1 and 𝑢𝑑𝑚 (𝑎∅) = 0, the decision maker’s expected

utility if they reveal full information is 𝜋 (𝑀).
Expected utility from S. Recall that the decision maker’s signal-

ing policy S from Section 3 sets 𝑞 = min{ 𝜋 (𝑀) (2−𝑐 (𝑎1))
𝑐 (𝑎1) (1−𝜋 (𝑀)) , 1}. Under

this setting, the decisionmaker’s expected utility ismin{1·𝜋 (𝑀)+𝑞 ·
(1−𝜋 (𝑀)), 1}. Substituting in our expression for 𝑞 and simplifying,

we see that the decision maker’s expected utility for recommending

actions via S is min{ 2𝜋 (𝑀)
𝑐 (𝑎1) , 1}.

Suppose that 2𝜋 (𝑀) = 𝑐 (𝑎1) (1 − 𝜖) and 𝑐 (𝑎1) = 2𝜖 , for some

small 𝜖 > 0. The decision maker’s expected utility will always be

0 from revealing no information because
2𝜋 (𝑀)
𝑐 (𝑎1) = 1 − 𝜖 < 1. The

decision maker’s expected utility from recommending actions via

S will be
2𝜋 (𝑀)
𝑐 (𝑎1) = 1 − 𝜖 . Since 𝜋 (𝑀) = 𝜖 (1 − 𝜖) < 𝜖 , the decision

maker’s expected utility from revealing full information will be

less than 𝜖 . Therefore, as 𝜖 approaches 0, the decision maker’s

expected utility from revealing full information approaches 0 (the

smallest value possible), and the decision maker’s expected utility

from S approaches 1 (the highest value possible). This completes

the proof. □

C PROOF OF THEOREM 4.2
By rewriting the BIC constraints as integrals over 𝚯 and applying

Bayes’ rule, our optimization over 𝑝 (𝜎 = 𝑎 |𝜽 ), 𝑎 ∈ A takes the

following form

max

𝑝 (𝜎=𝑎 |𝜽 ),∀𝑎∈A
E𝜎∼S,𝜽∼Π [𝑢𝑑𝑚 (𝜎)]

s.t.

∫
𝚯

𝑝 (𝜎 = 𝑎 |𝜽 )𝜋 (𝜽 ) (𝑢𝑑𝑠 (𝑎, 𝜽 ) − 𝑢𝑑𝑠 (𝑎′, 𝜽 ))𝑑𝜽 ≥ 0, ∀𝑎, 𝑎′ ∈ A .

Note that if 𝑢𝑑𝑠 (𝑎, 𝜽 ) − 𝑢𝑑𝑠 (𝑎′, 𝜽 ) is the same for some “equiva-

lence region” 𝑅 ⊆ 𝚯 (which we formally define below), we can pull

𝑢𝑑𝑠 (𝑎, 𝜽 ) − 𝑢𝑑𝑠 (𝑎′, 𝜽 ) out of the integral and instead sum over the

different equivalence regions. Intuitively, an equivalence region can

be thought of as the set of all 𝜽 ∈ 𝚯 pairs that are indistinguishable

from a decision subject’s perspective because they lead to the exact

same utility for any possible action the decision subject could take.

Based on this idea, we formally define a region of 𝚯 as follows.

After pulling the decision subject utility function out of the

integral, our optimization takes the following form:

max

𝑝 (𝜎=𝑎 |𝜽 ),∀𝑎∈A
E𝜎∼S,𝜽∼Π [𝑢𝑑𝑚 (𝜎)]

s.t.

∑︁
𝑅∈R

(𝑢𝑑𝑠 (𝑎, 𝑅) − 𝑢𝑑𝑠 (𝑎′, 𝑅))·∫
𝜽 ∈𝑅

𝑝 (𝜎 = 𝑎 |𝜽 )𝜋 (𝜽 )𝑑𝜽 ≥ 0, ∀𝑎, 𝑎′ ∈ A .

Now that the decision subject’s utility 𝑢𝑑𝑠 (·) no longer depends

on 𝜽 , we can integrate 𝑝 (𝜎 = 𝑎 |𝜽 )𝜋 (𝜽 ) over each equivalence

region 𝑅. We denote 𝑝 (𝑅) as the probability that the true 𝜽 ∈ 𝑅
according to the prior.

max

𝑝 (𝜎=𝑎 |𝑅),∀𝑎∈A,𝑅∈R
E𝜎∼S,\∼Π [𝑢𝑑𝑚 (𝜎)]

s.t.

∑︁
𝑅∈R

𝑝 (𝜎 = 𝑎 |𝑅)𝜋 (𝑅) (𝑢𝑑𝑠 (𝑎, 𝑅) − 𝑢𝑑𝑠 (𝑎, 𝑅)) ≥ 0,

∀𝑎, 𝑎′ ∈ A .

Since it is possible to write the constraints in terms of 𝑝 (𝜎 = 𝑎 |𝑅),
∀𝑎 ∈ A, 𝑅 ∈ R, it suffices to optimize directly over these quantities.

The final step is to rewrite the objective. For completeness, we

include the constraints which make each {𝑝 (𝜎 = 𝑎1 |𝑅), 𝑝 (𝜎 =

𝑎2 |𝑅), . . . , 𝑝 (𝜎 = 𝑎𝑚 |𝑅)}, ∀𝑅 a valid probability distribution.

C.1 Computational Barriers
In this section, we show that even in the setting where each action

only affects one observable feature (e.g., as shown in Figure 3), the

number of equivalence regions in (OPT-LP) is still exponential in the

size of the input. While somewhat simplistic, we believe this action



𝑎𝑖,1

𝑎𝑑,1

𝑎∅

𝑎1,1 ... 𝑎1,𝑚1

... 𝑎𝑖,𝑚𝑖

... 𝑎𝑑,𝑚𝑑

..
.

..
.

Figure 3: Graphical representation of special ordering over
the actions available to each decision subject. Each branch
corresponds to an observable feature and each node corre-
sponds to a possible action the decision subject may take.
The root corresponds to taking no action (denoted by 𝑎∅).
Nodes further away from the root on branch 𝑖 correspond to
higher Δx𝑖 , i.e., Δx𝑖 (𝑎∅) ≺ Δx𝑖 (𝑎𝑖,1) ≺ . . . ≺ x𝑖 (𝑎𝑖,𝑚𝑖 ).

scheme reasonably reflects real-world settings in which the decision

subjects are under time or resource constraints when deciding

which action to take. For example, the decision subject may need

to choose between paying off some amount of debt and opening

a new credit card when strategically modifying their observable

features before applying for a loan.

Under this setting, (OPT-LP) optimizes over Θ(𝑚 |R |) variables,
where𝑚 is the number of actions available to each agent and |R |
is the number of equivalence regions. In order to determine the

size of R, we note that an equivalence region can be alternatively

characterized by observing that assessment rules 𝜽 and 𝜽 ′
belong

to the same equivalence region if the difference in their predic-

tions for any two actions 𝑎 and 𝑎′ is the same. (This follows from

straightforward algebraic manipulation of Definition 4.1.) As such,

an equivalence region 𝑅 can essentially be characterized by the set

of actions 𝐴𝑅 ⊆ A which receive a positive classification when

𝜽 ∈ 𝑅.5
Armed with this new characterization of an equivalence region,

we are now ready to show the scale of |R | for the setting described

in Figure 3.

Proposition C.1. For the setting described in Figure 3, there are
|R | = Π𝑑

𝑖=1
𝑚𝑖 − 1 equivalence regions, where 𝑑 is the number of

observable features of the decision subject and𝑚𝑖 (∀𝑖 ∈ [𝑑]) is the
number of actions the decision subject has at their disposal to improve
observable feature 𝑖 .

Proof. In order to characterize the number of equivalence re-

gions |R |, we define the notion of a dominated action 𝑎, where an

action 𝑎 is dominated by some other action 𝑎′ if Δx(𝑎) ⪯ Δx(𝑎′),
with strict inequality holding for at least one index. Using this no-

tion of dominated actions and our refined characterization of an

equivalence region, it is straightforward to see that if action 𝑎 is

5
Specifically, if taking action 𝑎 results in a positive classification for some 𝜽 ∈ 𝚯

and a negative classification for 𝜽 ∈ 𝚯, the only way for 𝜽 and 𝜽 ′
to be in the same

equivalence region is if taking any action in A results in a positive classification for

𝜽 and a negative classification for 𝜽 ′
. Besides this special case, if 𝜽 and 𝜽 ′

result in

different classifications for the same action, they are in different equivalence regions.

dominated by action 𝑎′, then 𝑎′ ∈ 𝐴𝑅 for any equivalence region 𝑅

where 𝑎 ∈ 𝐴𝑅 . Proposition C.1 then follows directly from the fact

that each action only affects one observable feature. □

Proposition C.1 shows that the computation of (OPT-LP) quickly

becomes intractable as the number of observable features grows

large, even in this relatively simple setting. This motivates the need

for an approximation algorithm for (OPT-LP).

D EXPERIMENTS
In this section, we provide experimental results that validate our

findings using a semi-synthetic setting where decision subjects are

based on individuals in the Home Equity Line of Credit (HELOC)

dataset [16]. We compare the decision maker utility for different

models of information revelation: our optimal signaling, reveal-

ing full information, revealing no information. To do so, we first

estimate agent costs using the Bradley-Terry model [5] and com-

pute the decision maker’s expected utility for each information

revelation scheme we consider. We find that the expected decision

maker utility when recommending actions according to the optimal

signaling policy either matches or exceeds the expected utility from

revealing full information or no information about the assessment

rule across all problem instances. Moreover, the expected decision

maker utility from signaling is significantly higher on average. Next,
we explore how the decision maker’s expected utility changes when

action costs and changes in observable features are varied jointly.

Our results are summarized in Figures 4, 5, and 6.

The HELOC dataset contains information about 9,282 customers

who received a Home Equity Line of Credit. Each individual in

the dataset has 23 observable features related to an applicant’s fi-

nancial history (e.g., percentage of previous payments that were

delinquent) and a label which characterizes their loan repayment

status (repaid/defaulted). In order to adapt the HELOC dataset to

our strategic setting, we select four features from the original 23

and define five hypothetical actions A = {𝑎∅, 𝑎1, 𝑎2, 𝑎3, 𝑎4} that
decision subjects may take in order to improve their observable

features. Actions {𝑎1, 𝑎2, 𝑎3, 𝑎4} result in changes to each of the

decision subject’s four observable features, whereas action 𝑎∅ does

not. For simplicity, we view actions {𝑎1, 𝑎2, 𝑎3, 𝑎4} as equally desir-

able to the decision maker, and assume they are all more desirable

than 𝑎∅ . See Table 2 for details about the observable features and
actions we consider. Using these four features, we train a logistic

regression model that predicts whether an individual is likely to pay

back a loan if given one, which will serve as the decision maker’s

realized assessment rule.

Common prior. We assume the common prior over the real-

ized assessment rule 𝜽 takes the form of a multivariate Gaussian

N(𝜽 , 𝜎2𝐼4×4) before training. This captures the setting in which

both the decision maker and decision subjects have a good estimate

of what the true model will be, but are somewhat uncertain about

their estimate. We note that our methods extend to more compli-

cated priors beyond the isotropic Gaussian prior we consider in

this setting.

Changes in observable features. In order to examine the effects

that different Δx(𝑎𝑖 ) (𝑖 ∈ {1, 2, 3, 4}) have on the decision maker’s

expected utility, we consider settings in which each Δx(𝑎𝑖 ) takes a
value in {0, 0.25, 0.5, 0.75, 1}.



Pair Feature (𝑥𝑖 ) Action (𝑎𝑖 )

(𝑥1, 𝑎1) # payments with high-utilization ratio decrease this value

(𝑥2, 𝑎2) # satisfactory payments increase this value

(𝑥3, 𝑎3) % payments that were not delinquent increase this value

(𝑥4, 𝑎4) revolving balance to credit limit ratio decrease this value

Table 2: Decision subject’s observable features from the HE-
LOC dataset and corresponding actions to improve each fea-
ture. For simplicity, we assume that each action only affects
one observable feature, although our model generally allows
for more intricate relationships between actions and changes
in observable features.

2 = 0.1 2 = 0.4 2 = 1.0
0

200

400

600

800

1000

1200

Ut
ilit

y

Average Total Desicion-maker Utility
Across Different  and Cost

BIC
Full
None

Figure 4: Total decision maker utility averaged across all cost
and Δx(𝑎) configurations for three different prior variances
(𝜎2 = 0.1, 0.4, 1.0). See Figure 8 to view individual plots of the
settings which were averaged in order to generate this plot.
The optimal signaling policy (red) consistently yields higher
utility compared to the two baselines: revealing full infor-
mation (blue) and no information (green). This gap increases
when the decision subjects are less certain about the model
parameters being used (higher 𝜎2).

Utilities and costs of actions.As the decisionmaker views actions

{𝑎1, 𝑎2, 𝑎3, 𝑎4} as equally desirable, we define 𝑢𝑑𝑚 (𝑎𝑖 ) = 1, 𝑖 ∈
{1, 2, 3, 4} and 𝑢𝑑𝑚 (𝑎∅) = 0.

6
Since there are 1,320 individuals in

our test dataset, the maximum utility the decision maker can obtain

is 1,320. As proposed in [34], we use the Bradley-Terry model [5]

to generate the decision subject’s cost 𝑐 (𝑎𝑖 ) of taking action 𝑎𝑖 , for

𝑖 = 1, 2, 3, 4. See Appendix G.2 for details on our exact generation

methods.

Results. Given a {(𝑐 (𝑎𝑖 ),Δx(𝑎𝑖 ))}4𝑖=1 instance and information

revelation scheme, we calculate the decision maker’s total expected

utility by summing their expected utility for each applicant. Fig-

ure 4 shows the average total expected decision maker utility across

different Δx(𝑎) and cost configurations for priors with varying

amounts of uncertainty. See Figure 8 in Appendix G.3 for plots of

all instances which were used to generate Figure 4. Across all in-

stances, the optimal signaling policy (red) achieves higher average

6
We set 𝑢𝑑𝑚 (𝑎1) = 𝑢𝑑𝑚 (𝑎2) = 𝑢𝑑𝑚 (𝑎3) = 𝑢𝑑𝑚 (𝑎4) for ease of exposition — in

general, actions can have different utility values based on their relative importance.
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Figure 5: Utility surface across different 𝑐 (𝑎) and Δx(𝑎) pairs
for 𝜎2 = 0.4. Optimal signaling policy (red) effectively upper-
bounds the two baselines, revealing everything (blue) and
revealing nothing (green) in all settings.

total utility compared to the other information revelation schemes

(blue and green). The difference is further amplified whenever the

decision subjects are less certain about the true assessment rule

(i.e., when 𝜎 is large). Intuitively, this is because the decision maker

leverages the decision subjects’ uncertainty about the true assess-

ment rule in order to incentivize them to take desirable actions, and

as the uncertainty increases, so does their ability of persuasion.

D.1 Patterns under different Δx(𝑎) and 𝑐 (𝑎)
To better understand how the decision maker’s expected utility

changes as a function of 𝑐 (𝑎) and Δx(𝑎), we sweep throughmultiple

{(𝑐 (𝑎𝑖 ),Δx(𝑎𝑖 ))}4𝑖=1 tuples on a grid of (𝑐 (𝑎𝑖 ),Δx(𝑎𝑖 )) ∈ {0, 0.25, 0.5}×
{0, 0.5, 1.0} for 𝑖 ∈ {1, 2, 3, 4} and measure the effectiveness of the

three information revelation schemes. Figure 5 shows the surface

of the decision maker utility as a function of (𝑐 (𝑎𝑖 ),Δx(𝑎𝑖 )) for the
optimal signaling policy (red), revealing full information (blue), and

revealing no information (green). When 𝑐 (𝑎𝑖 ) is high and Δx(𝑎𝑖 ) is
low, the total expected decision maker utility is low as there is less

incentive for the decision subject to take actions (although even

under this setting, the optimal signaling policy outperforms the

other two baselines). As 𝑐 (𝑎𝑖 ) decreases and Δx(𝑎𝑖 ) increases, the
total expected decision maker utility increases.

In Figure 6, we show 2-D slices of Figure 5 along the 𝑐 (𝑎) axis
(left) and Δx(𝑎) axis (right). As is expected, with small cost and

sufficiently largeΔx(𝑎) (top row, right), the two baselines become as

effective as the optimal signaling policy. Interestingly, we note that

changes in different (𝑐 (𝑎𝑖 ),Δx(𝑎𝑖 )) result in significantly different

rates of change in decision maker utility. For example, the optimal

signaling policy (red) and revealing full information (blue) are more

resistant to the increase in 𝑐 (𝑎4) in range [0, 0.25] than they are for

the increase in other 𝑐 (𝑎𝑖 ), 𝑖 ≠ 4, showing a concave drop in utility

rather than a convex one (bottom row, left). Such behavior can

be attributed to the relative weight of each feature on the learned

assessment rule, where |\4 | > |\3 | > |\1 | > |\2 |. Because the fourth
feature has the largest weight, taking action 𝑎4 will have the largest

effect on an individual’s prediction. As a result, the decision maker

utility is the least sensitive to increases in the cost of taking that

action. Similarly, we observe that the degree to which changes in

Δx(𝑎) affect the expected utility is more drastic for 𝑎4 compared to

other actions (middle row, right).
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Figure 6: 2-D slices of Figure 5 across 𝑐 (𝑎) (left) and Δx(𝑎)
(right). Across these two axes, the optimal signaling policy
(red) dominates the revealing full information (blue) and
revealing no information (green), though it may be possible
for (blue) and (green) to vary in terms of which provides
higher decision maker utility.

E COMPUTING THE OPTIMAL SIGNALING
POLICY
max

𝑝 (𝜎=𝑎 |𝑅),∀𝑎∈A,𝑅∈R̃

∑︁
𝑎∈A

∑︁
𝑅∈R̃

�̃� (𝑅)𝑝 (𝜎 = 𝑎 |𝑅)𝑢𝑑𝑚 (𝑎)

s.t.

∑︁
𝑅∈R̃

𝑝 (𝜎 = 𝑎 |𝑅)�̃� (𝑅) (𝑢𝑑𝑠 (𝑎, 𝑅) −𝑢𝑑𝑠 (𝑎′, 𝑅) + 𝜖) ≥ 0,

∀𝑎, 𝑎′ ∈ A∑︁
𝑎∈A

𝑝 (𝜎 = 𝑎 |𝑅) = 1, ∀𝑅 ∈ R̃, 𝑝 (𝜎 = 𝑎 |𝑅) ≥ 0, ∀𝑅 ∈ R̃,

𝑎 ∈ A.
(APPROX-LP)

Proof of Theorem 5.1

Proof. Our proof is similar to the approximation algorithm

proof in Dughmi and Xu [14], and follows directly from the fol-

lowing lemmas, whose proofs are in Appendix E. First, since the

approximation algorithm solves an approximation LP (APPROX-LP)

of polynomial size, it runs in polynomial time.

Lemma E.1. Algorithm 1 runs in poly(𝑚, 1𝜖 ) time.

By bounding the approximation error in the BIC constraints of

(APPROX-LP), we show that the resulting policy satisfies approxi-

mate BIC.

Lemma E.2. Algorithm 1 implements an 𝜖-BIC signaling policy.

Next, we show that a feasible solution to (APPROX-LP) exists

which achieves expected decision maker utility at least OPT - 𝜖

with probability at least 1 − 𝛿 . In order to do so, we first show that

there exists an approximately optimal solution S̃ to (OPT-LP) such

that each signal is either (i) large (i.e., output with probability above

a certain threshold), or (ii) honest (i.e., the signal recommends the

action the decision subject would take, had they known the true

assessment rule 𝜽 ). Next, we show that S̃ is a feasible solution

to (APPROX-LP) with high probability by applying McDiarmid’s

inequality [32] and a union bound.

Lemma E.3. There exists an 𝜖
2
-optimal signaling policy S̃ that is

large or honest.

Lemma E.4. With probability at least 1−𝛿 , S̃ is a feasible solution
to (APPROX-LP) and the expected decision maker utility from playing
S̃ is at least OPT - 𝜖 .

By Lemmas E.3 and E.4, the decision maker’s expected utility

will be at least OPT - 𝜖 with probability at least 1 − 𝛿 . □

Proof of Lemma E.1.

Proof. Lines 1-3 trivially run in poly(𝑚, 1𝜖 ) time. 𝑝 (𝑅), ∀𝑅 ∈
R̃ can be computed in poly(𝑚, 1𝜖 ) time in an online manner as

follows: for each 𝑘 ∈ {1, . . . , 𝐾}, check if 𝜽𝑘 belongs to an existing

region. (Note that this can be done in O(𝑚) time for each region.)

If 𝜽𝑘 belongs to an existing region, update the existing empirical

probabilities. Otherwise, create a new region. Finally, note that LP

(APPROX-LP) has poly(𝑚, 1𝜖 ) variables and constraints, and can

therefore be solved in poly(𝑚, 1𝜖 ) time using, e.g., the Ellipsoid

Algorithm. □

Proof of Lemma E.2.



Proof. By the principle of deferred decisions, 𝜽 ∼ Π′
, where Π′

is the uniform distribution over �̃�. (APPROX-LP) implements an

𝜖-BIC signaling policy for Π′
by definition, so

E𝜽∼Π′ [𝑢𝑑𝑠 (𝑎, 𝑅) − 𝑢𝑑𝑠 (𝑎′, 𝑅) |𝜎 = 𝑎] ≥ −𝜖,∀𝑎, 𝑎′ ∈ A .

Finally, apply the law of iterated expectation with respect to �̃� to

obtain the desired result. □

Proof of Lemma E.3. In order to prove Lemma E.3, we make

use of the following definitions.

Definition E.5 (Large signal). A signal 𝜎 = 𝑎 is large if 𝑝 (𝜎 =

𝑎) = ∑
𝑅∈R 𝑝 (𝜎 = 𝑎 |𝑅)𝑝 (𝑅) > 𝜖

2𝑚 .

Definition E.6 (Honest signal). A signal 𝜎 = 𝑎 is honest if
𝑎 ∈ argmax𝑎′∈A 𝑢𝑑𝑠 (𝑎′, 𝑅).

Proof. We proceed via proof by construction. Let S∗
be the

optimal BIC signaling policy. Define the signaling policy S̃ as fol-

lows: for a given 𝜽 , it first samples a signal 𝑎 ∼ S∗ (𝜽 ). If the
signal is large, output signal 𝜎 = 𝑎. Otherwise, output signal

𝜎 = 𝑎 ∈ argmax𝑎′∈A 𝑢𝑑𝑠 (𝑎′, 𝑅𝜽 ). Every signal of S̃ is trivially

large or honest. S̃ is BIC since S∗
is BIC and S̃ only replaces rec-

ommendations of S∗
with honest recommendations. Finally, since

the total probability of signals that are not large is at most
𝜖
2
, and

the decision maker’s utilities are in [0, 1], their expected utility is

no worse than
𝜖
2
smaller than their expected utility from S∗

. □

Proof of Lemma E.4.
The following claim will be useful when proving Lemma E.4.

Claim E.7. The expected decision maker utility from playing Ŝ is∑
𝑎∈A

∑
𝑅∈R 𝑝 (𝑅)𝑝 (𝜎 = 𝑎 |𝑅)𝑢𝑑𝑚 (𝑎).

Proof. The expected decision maker utility from playing Ŝ is

E𝜽∼Π [
∑︁
𝑎∈A

∑︁
𝑅∈R̃

𝑝 (𝑅)𝑝 (𝜎 = 𝑎 |𝑅)𝑢𝑑𝑚 (𝑎)]

= E𝜽∼Π [
∑︁
𝑎∈A

∑︁
𝑅∈R

𝑝 (𝑅)𝑝 (𝜎 = 𝑎 |𝑅)𝑢𝑑𝑚 (𝑎)],

by the principle of deferred decisions. Apply the law of iterated

expectation with respect to �̃� to obtain the desired result. □

Additionally, we will make use of McDiarmid’s inequality [32],

stated for completeness below.

Lemma E.8 (McDiarmid’s Ineqality [32]). Let 𝑋1, . . . , 𝑋𝑛 be
independent random variables, with 𝑋𝑘 taking values in a set 𝐴𝑘 for
each 𝑘 . Suppose that the (measurable) function 𝑓 : Π𝐴𝑘 → R satisfies

|𝑓 (x) − 𝑓 (x′) | ≤ 𝑐𝑘
whenever the vectors x and x′ differ only in the kth coordinate. Let 𝑌
be the random variable 𝑓 (𝑋1, . . . , 𝑋𝑛). Then for any 𝑡 > 0.

P( |𝑌 − E[𝑌 ] | ≥ 𝑡) ≤ 2 exp

(
−2𝑡2/

∑︁
𝑘

𝑐2
𝑘

)
.

We are now ready to prove Lemma E.4.

Proof. First, note that the 𝜖-BIC constraints can be rewritten

using the observed decision rules as

1

𝐾

𝐾∑︁
𝑘=1

𝑝 (𝜎 = 𝑎 |𝑅𝑘 ) (𝑢𝑑𝑠 (𝑎, 𝑅𝑘 ) − 𝑢𝑑𝑠 (𝑎′, 𝑅𝑘 )) ≥ −𝜖, ∀𝑎, 𝑎′ ∈ A,

where 𝜽𝑘 ∈ 𝑅𝑘 . Note that this is a bounded function of 𝜽 1, . . . , 𝜽𝐾 .
Let 𝑌 (𝑎, 𝑎′) = 1

𝐾

∑𝐾
𝑘=1

𝑝 (𝜎 = 𝑎 |𝑅𝑘 ) (𝑢𝑑𝑠 (𝑎, 𝑅𝑘 ) −𝑢𝑑𝑠 (𝑎′, 𝑅𝑘 )). Note
that E[𝑌 (𝑎, 𝑎′)] = ∑

𝑅∈R 𝑝 (𝜎 = 𝑎 |𝑅)𝑝 (𝑅) (𝑢𝑑𝑠 (𝑎, 𝑅) − 𝑢𝑑𝑠 (𝑎′, 𝑅)).
Applying Lemma E.8, we see that ∀𝑎, 𝑎′ ∈ A,

P( |𝑌 (𝑎, 𝑎′) − E[𝑌 (𝑎, 𝑎′)] | ≥ 𝜖) ≤ 2 exp

(
−𝐾𝜖2/2

)
.

Similarly, let

𝑍 =
∑︁
𝑎∈A

∑︁
𝑅∈R̃

𝑝 (𝑅)𝑝 (𝜎 = 𝑎 |𝑅)𝑢𝑑𝑚 (𝑎)

=
1

𝐾

𝐾∑︁
𝑘=1

∑︁
𝑎∈A

𝑝 (𝜎 = 𝑎 |𝑅𝑘 )𝑢𝑑𝑚 (𝑎)

(where𝑅𝑘 contains𝜽
′
𝑘
). By Claim E.7,E[𝑍 ] = ∑

𝑎∈A
∑
𝑅∈R 𝑝 (𝑅)𝑝 (𝜎 =

𝑎 |𝑅)𝑢𝑑𝑚 (𝑎). Applying Lemma E.8,

P( |𝑍 − E[𝑍 ] | ≥ 𝜖/2) ≤ 2 exp

(
−𝐾𝜖2/2

)
.

Applying the union bound, we see that the probability that all
𝑚2 +1 above inequalities hold is at least 2(𝑚2 +1) exp

(
−𝐾𝜖2/2

)
. By

inverting the tail bound and picking 𝐾 = 2

𝜖2
log

(
2(𝑚2+1)

𝛿

)
, we get

that |𝑍 − E[𝑍 ] | ≤ 𝜖/2 and |𝑌 (𝑎, 𝑎′) − E[𝑌 (𝑎, 𝑎′)] | ≤ 𝜖 , ∀𝑎, 𝑎′ ∈ A,

with probability at least 1 − 𝛿 . Therefore, with probability at least

1−𝛿 , S̃ is a feasible solution for LP (APPROX-LP) and the objective

value is at most OPT −𝜖
2
− 𝜖

2
= OPT −𝜖 . □

F INSTANTIATING 1-DIMENSIONAL
SCENARIO

In this section we instantiate the example introduced in Section 3

and demonstrate the decision maker’s gain in utility from the op-

timal signaling policy over other baselines. To contextualize this

simple synthetic setup, consider a banking institution deciding

whether approve a loan application from an applicant based on

credit score x0 ∈ [300, 850] with a simple threshold classifier. The

bank approves the application (𝑦 = 1) if x0 + \ > 0 and rejects

(𝑦 = −1) otherwise. Here, we assume the ground-truth threshold

value used by the decision maker to be 670 (i.e. \ = −670), which
is typically considered as a decent credit score. Recall that 𝑎∅ =

“do nothing” and 𝑎1 = “pay off existing debt” and set the utility

of the decision maker to be 𝑢𝑑𝑚 (𝑎1) = 1, 𝑢𝑑𝑚 (𝑎∅) = 0, as, for

the sake of our illustration, we assume credit score to be a good

measure of credit-worthiness. Finally, we assume the prior to be

𝜋 (\ ) ∼ N (`\ , 𝜎2\ ).
In Figure 7, we verify that our optimal signaling policy (BIC, red)

yields higher decision maker utility compared to the two baselines:

revealing full information (Full, blue) and revealing no information

(None, green)7. To measure the total amount of decision maker’s

7
We set the decision subject cost of taking action 𝑎1 to 𝑐 (𝑎1) = 0.5, and Δx(𝑎1) = 40

(i.e., action 𝑎1 improves an applicant’s credit score by 40 points).
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(b) Total expected decision maker utility
under different 𝑐 (𝑎1) (top) and Δx (bottom)

Figure 7: (a) Total expected decision maker utility summed
across difference x0 for our optimal signaling policy (BIC,
red), against the two baselines: revealing full information
about the assessment rule (Full, blue), and revealing no infor-
mation (None, green). As the decision subject’s uncertainty
about the true threshold \ (measured by 𝜎\ ) increases, the
advantage of the optimal signaling policy becomes more visi-
ble. (c) When taking action 𝑎1 becomes cost-prohibitive (high
𝑐 (𝑎1)) or less effective (small Δx(𝑎1)), the decision maker’s
utility decreases as there is less incentive for the decision
subject to take the action. Nevertheless, the optimal signal-
ing policy yields consistently higher decision maker utility
compared to the baselines.

expected utility yielded by each policy, we assume a uniform distri-

bution of the decision subjects’ credit scores x0 in the population

and take the sum of expected decision maker utility values across

different scores. We plot these total utility values in Figure 7a, and

as expected, the larger the 𝜎\ is, the more comparative advantage

our method has over the baselines. As the decision subjects’ un-

certainty about the true \ increases (i.e., the standard deviation of

the prior distribution increases from 10 to 50), the decision maker

benefits from our optimal signaling policy even more.

When action 𝑎1 becomes more cost-prohibitive (or less effective),

as there is less incentive for the decision subjects to take the action,

we expect the decision maker’s utility to decrease
8
. As shown in

Figure 7b, we indeed observe such a trend as 𝑐 (𝑎1) increases (top)
and Δx(𝑎1) decreases (bottom). Nevertheless, our optimal signal-

ing policy yields consistently higher total decision maker utility

compared to the baselines across all conditions.

G EXPERIMENT DETAILS AND ADDITIONAL
RESULTS

G.1 Remark on the decision maker’s
assessment rule for HELOC dataset

To simulate a setting in which the decision maker employs a ma-

chine learning model for making decisions about the decision

subjects, we train a simple logistic regression model on the sub-

set of HELOC dataset. We specifically work on four features se-

lected in Table 2, and split the dataset into train/test set (7425,

1857 data points respectively). The test accuracy of the model

was 71.08 percent, and the corresponding model coefficients were

𝜽 = [−0.22974527, 0.15633134, 0.52023116,−0.61600619] with the

bias term −0.08242841. Note that each coefficient term has the sign

that is aligned with how the desired action was defined in Table 2

(i.e., for features where increasing the value is desirable, the sign

is positive and vice-versa). To further make sure that the defined

actions correctly align with the model, we select the test samples

that the trained model made no mistakes on. This resulted in a

total of 1,320 samples from the test set on which each policy was

optimized.

G.2 Computing different costs for HELOC
dataset using Bradley-Terry model

While exact action costs may be unknown, it is often reasonable

for the decision maker to know an ordering over possible actions

in terms of their cost for decision subjects. For example, it may be

common knowledge that opening a new credit card is easier than

paying off some existing amount of debt, but exactly how much eas-

ier may be unclear. The Bradley-Terry model uses exponential score

functions to model the probability that feature 𝑥𝑖 is more costly for

a decision subject to take compared to feature 𝑥 𝑗 . Specifically, it

assumes

P(𝑎𝑖 ≻ 𝑎 𝑗 ) =
𝑒𝑐 (𝑎𝑖 )

𝑒𝑐 (𝑎𝑖 ) + 𝑒𝑐 (𝑎 𝑗 )
.

Given pairwise cost comparisons (generated from common knowl-

edge or gathered from experts) we can estimate P(𝑎𝑖 ≻ 𝑎 𝑗 ) and
solve for the parameters {𝑐 (𝑎𝑖 )}4𝑖=1 using maximum likelihood es-

timation. In order to gain more insight into how different action

cost orderings affect the decision maker utility, we consider several

different ground-truth cost orderings over actions and simulate

expert advice in order to estimate P(𝑎𝑖 ≻ 𝑎 𝑗 ), ∀𝑎𝑖 , 𝑎 𝑗 ∈ A. While

the expert advice is purely synthetic in our setting, this method

provides a principled way to estimate action costs whenever input

8
In this setting, we set `\ = −650 and 𝜎\ = 50 so that the decision subjects are

considered to have a reasonable estimate of the true threshold \ = −670, to make the

situation more favorable to the baselines.



Feature A Feature B # (A > B) # (A < B)

x1 x2 8 2

x1 x3 9 1

x1 x4 7 3

x2 x3 2 8

x2 x4 0 10

x3 x4 1 9

(a) 𝑐 (𝑎1) > 𝑐 (𝑎4) > 𝑐 (𝑎3) > 𝑐 (𝑎2)

Feature A Feature B # (A > B) # (A < B)

x1 x2 2 8

x1 x3 3 7

x1 x4 4 6

x2 x3 6 4

x2 x4 7 3

x3 x4 6 4

(b) 𝑐 (𝑎2) > 𝑐 (𝑎3) > 𝑐 (𝑎4) > 𝑐 (𝑎1)

Feature A Feature B # (A > B) # (A < B)

x1 x2 2 8

x1 x3 1 9

x1 x4 4 6

x2 x3 3 7

x2 x4 7 3

x3 x4 7 3

(c) 𝑐 (𝑎3) > 𝑐 (𝑎2) > 𝑐 (𝑎4) > 𝑐 (𝑎1)

Feature A Feature B # (A > B) # (A < B)

x1 x2 8 2

x1 x3 9 1

x1 x4 2 3

x2 x3 7 8

x2 x4 0 10

x3 x4 1 9

(d) 𝑐 (𝑎4) > 𝑐 (𝑎1) > 𝑐 (𝑎3) > 𝑐 (𝑎2)

Configuration 𝑐 (𝑎1) 𝑐 (𝑎2) 𝑐 (𝑎3) 𝑐 (𝑎4)
(i) 0.5151 0.0282 0.0723 0.3844

(ii) 0.1159 0.428 0.2758 0.1803

(iii) 0.07640764 0.27692769 0.50635064 0.14031403

(iv) 0.2987 0.0428 0.0476 0.6109

(e) Cost values learned by the Bradley-Terry model from the pair-wise comparison inputs above.

Table 3: Comparison inputs used by the Bradley-Terry model
to generate different cost configurations.

from domain experts (e.g., financial advisors) is available to the

decision maker.

We use the following set of comparison inputs (manually gen-

erated) in Table 3a-3d to generate cost values with the relative

ordering presented in Section D. While these comparison inputs

are generated arbitrarily for the simulations, these can be obtained

by querying several domain experts and aggregating their answers

regarding which feature is more difficult to change. The resulting

cost values are shown in Table 3e.

G.3 Additional results for different cost and
Δx(𝑎) configurations

Figure 8 shows more exhaustive results on different cost configura-

tions (i)-(iv) as defined in Table 3e and Δx(𝑎𝑖 ) ∈ 0, 0.25, 0.5, 0.75, 1.0

for 𝑖 = 1, 2, 3, 4 on HELOC datset. For all configurations consid-

ered, our optimal signaling policy (red) consistently yields utility

no less than both baselines: revealing full information about the

assessment rule (blue), and revealing no information (green).
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Figure 8: More detailed view on decision maker utility for
different Δx(𝑎) values and cost configurations (i)-(iv) (from
upper right to bottom right quadrants). Our optimal signal-
ing policy (red) consistently achieves utility no less than
revealing full information (blue) and revealing no informa-
tion (green) in all settings.
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