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ABSTRACT
Algorithmic pricing on online e-commerce platforms raises the con-

cern of tacit collusion, where reinforcement learning algorithms

learn to set collusive prices in a decentralized manner and through

nothing more than profit feedback. This raises the question as to

whether collusive pricing can be prevented through the design of

suitable "buy boxes," i.e., through the design of the rules that govern

the elements of e-commerce sites that promote particular products

and prices to consumers. In previous work, Johnson et al. [17] de-

signed hand-crafted buy box rules that use demand-steering, based

on the history of pricing by sellers, to prevent collusive behavior.

Although effective against price collusion, these rules effect this

by imposing severe restrictions on consumer choice and consumer

welfare. In this paper, we demonstrate that reinforcement learn-

ing (RL) can also be used by platforms to learn buy box rules that

are effective in preventing collusion by RL sellers, and to do so

without reducing consumer choice. For this, we adopt the method-

ology of Stackelberg MDPs, and demonstrate success in learning

robust rules that continue to provide high consumer welfare to-

gether with sellers employing different behavior models or having

out-of-distribution costs for goods.
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1 INTRODUCTION
The last decade has witnessed a dramatic shift of trading from

retailers to online e-commerce platforms such as Amazon and Al-

ibaba. In these platforms, sellers are increasingly using algorithms

to set prices for their products. On one hand, algorithmic pricing

can be beneficial for market efficiency, enabling sellers to quickly

react to market changes and also in enabling price competition.

At the same time, concerns that algorithmic pricing may facilitate

collusive behaviors have been raised by many government authori-

ties, including the U.S. Federal Trade Commission (FTC) [31] and

the European Commission [30]. These concerns are also finding

support in computational and empirical studies. Calvano et al. [11]

study pricing agents in a simulated platform economy, and show in

simulation that commonly used reinforcement-learning algorithms
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will learn to initiate and sustain collusive behaviors. Assad et al.

[4] also provide empirical support for algorithmic collusion in a

study of Germany’s retail gas stations, showing an association be-

tween the delegation of pricing to algorithms and an increase in the

markup of stations’ prices over gas cost. As highlighted by Calvano

et al. [10], these collusive behaviors are unlikely to be a violation

of antitrust law, as they are learned responses to profit signals and

not the result of explicit agreements.

As a solution to this problem, one can try to prevent algorithmic

collusion by introducing suitable rules by which platforms can

choose which sellers to promote to buyers. For example, might it

be possible to promote competition, even in the face of sellers with

reinforcement learning (RL) algorithms for pricing, by choosing a

suitable set of rules that govern how different products are ranked

or displayed to consumers? A leading example is the Amazon Buy
Box algorithm, which determines, for a given consumer search,

which products and prices to highlight to a consumer. This has been

noticed by Johnson et al. [17], who have designed and studied hand-

crafted platform interventions that implement buy-box policies

based on price choices of sellers in order to hinder collusion between

RL algorithms. At the same time, the rules that they study also

introduce undesirable effects in the way the market operates, by

limiting consumers to a single seller, and there remains potential

for more effective interventions.

The novel approach that we take in the present paper is to under-

stand whether machine learning can also be used defensively by a

platform, with the platform learning buy box rules that are effective

in mediating the behavior of RL-based sellers. We demonstrate for

the first time how machine learning, specifically RL, can be used to

automatically design platform rules that promote consumer welfare

and prevent collusive pricing in an ecosystem where sellers are also

using RL to set prices.

We model the interaction between the platform and sellers as

a Stackelberg game [16], where the leader is the platform designer

and sets the platform rules and the sellers respond, in our case by

using RL to set prices given these rules. To solve for an optimal

platform rule, we use a variation on the Stackelberg Markov decision
process (MDP) methodology [6]. This Stackelberg MDP technique

carefully defines the episode structure of an MDP such that the RL

algorithm representing the leader will learn to optimize its reward

(here, consumer surplus) given that its rules cause re-equilibration

on the part of the followers (here, the sellers who make use of Q-

learning algorithms to set prices). The Stackelberg MDP framework

is well formed as long as the re-equilibration behavior of sellers



can be modeled through Markovian dynamics, as is the case with

Q-learning. We introduce the class of threshold platform rules and
formally show that it contains rules that approximately maximize

consumer surplus when sellers play according to a subgame perfect

equilbrium of the game induced by the platform rules. We show

that this Stackelberg MDP framework and associated RL method-

ology can indeed be used to derive effective platform policies that

outperform the handcrafted rules suggested by Johnson et al. [17].

We also show that the learned platform rules should continue to

be effective when market conditions change, for example as the

result of a change to the cost structure of sellers. Finally, we test

the framework in settings where the sellers’ restart their learning

dynamics randomly and asynchronously, this resulting in highly

non-stationary dynamics. We demonstrate that the Stackelberg

MDP framework and implied learning methodology remains effec-

tive even in these scenarios.

Further related work. Abada and Lambin [1] have highlighted

collusive behavior between RL algorithms for selling and buying

electric power, and consider the use of machine learning as a mit-

igation, in their case learning a regulator agent that can sell and

buy energy. But this approach was ultimately unsuccessful in their

setting, leading to lower welfare than that one obtained under col-

lusive behavior. A key difference is that we work in the Stackelberg

framing, and by leveraging commitment power are able to derive

successful interventions.

There is a broader agenda of automated mechanism design (AMD)

[12], which proposes to use algorithms rather than analytical meth-

ods for the design of incentive mechanisms. Especially relevant

is work on empirical mechanism design [3, 8, 32], which applies

the method of empirical game theory to search for the equilibria of

induced games by building out a suitable set of candidate strate-

gies [18, 19, 34]. Bünz et al. [9] also use computational methods for

the design of combinatorial auction rules while considering bid-

ders’ strategic response. Recent work has also studied RL methods

for the design of incentive-compatible sequential price mechanisms
(SPMs) [7]. In a followup work, Brero et al. [6] consider SPMs with

an initial message passing round, and introduce the StackelbergMDP
framework to design SPMs along with bidders who are modeled

through no-regret learning.

Shen et al. [26], Tang [29], Zheng et al. [35] also make use of

RL to optimize different market mechanisms (including matching

markets, internet advertising, and designing tax policies) under

strategic agents’ responses. Unlike our work, these methods do

not leverage the designer’s commitment power or consider the

Stackelberg structure of the induced game with market participants.

There is also growing interest in the use of deep learning for optimal

economic design [13–15, 20, 22, 24, 25, 27, 28, 33].

2 PRELIMINARIES
2.1 Economic Platform Model
We follow Johnson et al. [17], and consider sellers N = {1, . . . , 𝑛},
each of whom sells a differentiated product on an economic plat-

form. Also, each seller has the same marginal cost, 𝑐 > 0, for pro-

ducing one unit of its product for sale. Sellers interact with each

other repeatedly over time in setting prices and selling goods to

consumers. At each time period, 𝑡 = 0, 1, . . . , each seller 𝑖 observes

all past prices and platform behavior, and sets a price 𝑝𝑖,𝑡 ≥ 0 for its

product. We let 𝑝𝑡 = (𝑝1,𝑡 , . . . , 𝑝𝑛,𝑡 ) denote a generic price profile
quoted at time 𝑡 .

There is also a platform, which acts to set the rules of a buy box

that governs which sellers are displayed to buys. In each period 𝑡 ,

the effect of the platform’s buy box rules is to display some set

N𝑡 ⊆ N of the sellers to consumers. Consumers in this period can

only buy from this set of sellers so that those outside the set forfeit

sales. There is also an outside option, indexed by 0, which provides

each consumer with a fallback choice that may be more desirable

than the products and prices corresponding to displayed sellers.

Competition between sellers for consumer demand is modeled

through the standard logit model for consumer choice. The product

of seller 𝑖 has quality index 𝛼𝑖 > 0, this providing horizontal differ-

entiation across products, and the outside good has quality index

𝛼0 > 0.

Products are offered to a new unit mass of consumers at each

period 𝑡 . Each of these consumers wishes to buy atmost one product.

To obtain a consumer’s utility for each product, we first draw 𝑛 + 1

consumer-specific variables 𝜁0, 𝜁1, ...𝜁𝑛 , independently from a type

I extreme value distribution with scale parameter 𝜇 > 0, for each of

the 𝑛 products and the outside option. We then let the consumer’s

utility be 𝛼𝑖 +𝜁𝑖−𝑝𝑖,𝑡 for product 𝑖 , and 𝛼0+𝜁0 for the outside option.
Considering the continuum of consumers, the effect is that firm

𝑖 ∈ N𝑡 receives fraction 𝐷𝑖 (𝑝𝑡 ;N𝑡 ) of demand in period 𝑡 , given by

𝐷𝑖 (𝑝𝑡 ;N𝑡 ) =
exp

(
𝛼𝑖−𝑝𝑖,𝑡

𝜇

)
∑

𝑗 ∈N𝑡
exp

(
𝛼 𝑗−𝑝 𝑗,𝑡

𝜇

)
+ exp

(
𝛼0

𝜇

) . (1)

Each firm not in N𝑡 receives zero demand in period 𝑡 . From

Equation (1), we see that scale parameter 𝜇 > 0 serves to control

the extent of horizontal differentiation of the products, with no

differentiation and perfect substitutes obtained in the limit, as 𝜇 →
0. According to the logit model, the total consumer surplus based
on this demand system is,

𝑈 (𝑝𝑡 ;N𝑡 ) = 𝜇 · log

∑
𝑗 ∈N𝑡

exp

(
𝛼 𝑗 − 𝑝 𝑗,𝑡

𝜇

)
+ exp

(
𝛼0

𝜇

) . (2)

From Equation (2), we see that consumer surplus is maximized

for low prices and with all sellers being displayed, so that N𝑡 = N
and consumers have the complete choice of products. Seller 𝑖’s

profit 𝜌𝑖 in period 𝑡 is given by its per-unit profit multiplied by

demand, i.e.

𝜌𝑖 (𝑝𝑡 ;N𝑡 ) = (𝑝𝑖,𝑡 − 𝑐) · 𝐷𝑖 (𝑝𝑡 ;N𝑡 ) . (3)

As in Calvano et al. [11] and Johnson et al. [17], we only let

sellers pick their price from prices on a discretized interval. In

defining an upper bound for this interval, it is useful to consider the

symmetric monopoly price 𝑝𝑚 , which is the price that, when set by

every seller and assuming that all sellers are displayed, maximizes

their total profit, i.e.,

𝑝𝑚 ∈ argmax𝑝∈R+

𝑛∑
𝑖=1

𝜌𝑖 (𝑝 · 1𝑛 ;N), (4)



where 1𝑛 = (1, . . . , 1). Following Johnson et al. [17] and Calvano

et al. [11], we consider here a symmetric solution to this monopoly

pricing problem,where each seller sets the same price for its product.

We note that this price is also optimal, in particular, in the case of

perfect collusion, where a single seller is able to set the price to

offer for each of the set of products. We use this price and the unit

cost 𝑐 to guide the choice as to the interval of prices that are made

available to the RL pricing agents.

2.2 Markov Decision Processes
In a single-agent, Markov decision process (MDP), an agent faces

a sequential decision problem under uncertainty. At each step 𝑡 ,

the agent observes a state variable 𝑠𝑡 ∈ 𝑆 and chooses an action

𝑎𝑡 ∈ 𝐴. When taking action 𝑎𝑡 in state 𝑠𝑡 , the agent obtains a reward

𝑟 (𝑠𝑡 , 𝑎𝑡 ), and the environment moves to state 𝑠𝑡+1 according to a

distribution 𝑝𝑡 (𝑠𝑡+1 |𝑠0, . . . , 𝑠𝑡 , 𝑎0, . . . , 𝑎𝑡 ). When

𝑝𝑡 (𝑠𝑡+1 |𝑠0, . . . , 𝑠𝑡 , 𝑎0, . . . , 𝑎𝑡 ) = 𝑝𝑡 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )

we have the Markov property, and when

𝑝𝑡 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) = 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )

the environment is stationary. Given a Markovian, stationary envi-

ronment it is without loss of generality to consider policy 𝜋 : 𝑆 → 𝐴

(stationary, and depending only on current state 𝑠𝑡 ), and we let

𝜏 = (𝑠0, 𝑎0, ..., 𝑠𝑇 , 𝑎𝑇 ) denote a state-action trajectory determined

by executing policy 𝜋 , and 𝑝𝜋 (𝜏) denote the probability of trajec-

tory 𝜏 as induced by the MDP and policy 𝜋 . The optimal policy 𝜋∗

maximizes the expected total reward, i.e.,

𝜋∗ ∈ argmax𝜋𝐸𝜏∼𝑝𝜋 (𝜏)

[
𝑇∑
𝑡=0

𝛿𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )
]
, (5)

where 𝛿 ∈ [0, 1] is the discount factor. The time-horizon 𝑇 can be

finite or infinite. In some scenarios, the policy 𝜋 cannot access states

𝑠𝑡 to determine its actions, but only observations 𝑜𝑡 sampled from

probability distributions 𝑝 (𝑜𝑡 |𝑠𝑡 ). In this case the MDP becomes a

partially-observable MDP (POMDP).

The existing literature on tacit collusion has assumed Q-learning
on the part of sellers, which is an RL algorithm that learns an

estimate of the action-value function 𝑄∗ (𝑠, 𝑎). This action-value
function gives the expected total reward of taking action 𝑎 at state

𝑠 and using the optimal policy function in the future. Once𝑄∗ (𝑠, 𝑎)
has been learned, the optimal policy is

𝜋∗ (𝑠) ∈ arg max𝑎∈𝐴𝑄
∗ (𝑠, 𝑎) . (6)

A Q-learning algorithm maintains an |𝑆 | × |𝐴| Q-matrix, 𝑄𝑡 ,

representing the estimate of 𝑄∗ (𝑠, 𝑎) at step 𝑡 . Usually, this matrix

is randomly initialized. At each step 𝑡 , the algorithm takes action

𝑎𝑡 that with probability 1 − 𝜀𝑡 is optimal according to its current

Q-matrix 𝑄𝑡 , and with probability 𝜀𝑡 chosen uniformly at random

from the set of avalilable actions. We call 𝜀𝑡 the exploration rate.
The entry (𝑠𝑡 , 𝑎𝑡 ) of 𝑄𝑡 is updated based on feedback via a convex

combination of its previous value and the reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ) attained
from the action plus the discounted value of the state 𝑠𝑡+1:

𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑡 ) = (1 − 𝛼)𝑄𝑡 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼 [𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛿 max

𝑎∈𝐴
𝑄𝑡 (𝑠𝑡+1, 𝑎)] .

(7)

Parameter 𝛼 ∈ [0, 1] is the learning rate. When the environment

is stationary and Markovian, and under suitable assumptions on

the learning rate and exploration rate, the Q-matrix is guaranteed

to converge in the limit to the action-value function 𝑄∗ (𝑠, 𝑎) and
the policy to the optimal policy.

Multi-agent Reinforcement Learning. In settings with multiple

agents, for example the multiple seller agents in our economic

platform model, we can formulate a multi-agent MDP [5]. In a

multi-agent MDP for 𝑛 agents we have a set of states 𝑆 common to

all agents, and a set of actions𝐴𝑖 for each agent 𝑖 . When each agent

𝑖 picks action 𝑎𝑖,𝑡 in state 𝑠𝑡 , the environment moves to state 𝑠𝑡+1
according to a distribution 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎1,𝑡 , .., 𝑎𝑛,𝑡 ) and each agent 𝑖

obtains a reward 𝑟𝑖 (𝑠𝑡 , 𝑎𝑡 ) which depends on the underlying state

and joint actions. To derive optimal sellers’ policies in our multi-

agent MDP, we follow Calvano et al. [11] and Johnson et al. [17]

and assume decentralized learning amongst sellers, modeling each

seller through its own Q-learning algorithm. One key challenge

is that each agent independently updates its policy, which makes

the environment non-stationary from the view point of any single

agent, violating the assumptions required for convergence of Q-

learning. However, both Calvano et al. [11] and Johnson et al. [17]

nearly always obtain convergence in their experiments, and we

find the same in our experiments. Moreover, 𝑄-learning is taken in

these works as a positive theory for how seller agents might actually

work, operationally, in learning to set prices on an e-commerce

platform. Checks for convergence are based on policy stability over

a defined time horizon as detailed by Johnson et al. [17].

2.3 The Platform Design Problem
To formalize the platform design problem, we model the interac-

tion between the platform, which sets the rules of the buy box,

and the sellers as a Stackelberg game. The platform designer is the

leader and fixes the platform rules. The sellers are the followers,

and play an infinitely repeated game according to these rules. As

with Calvano et al. [11], Johnson et al. [17], we model the sellers’

behavior through decentralized Q-learning. As a result, the plat-

form design problem considers a kind of behavioral Stackelberg
framework, with followers modeled through Q-learning rather than

playing an equilibrium of the induced game.

The sellers. In this model, we fix the states that comprise the

MDP of a seller to include the prices set by all sellers in the last

period, i.e., 𝑠𝑡 = 𝑝𝑡−1. We initialize 𝑠0 to be a randomly selected

price profile. The action of a seller is modeled as one of𝑚 equally-

spaced points in the interval ranging from just below the sellers’

cost 𝑐 to just above the monopoly price 𝑝𝑚 . At each step 𝑡 ≥ 0, each

seller 𝑖 selects a price 𝑝𝑖,𝑡 and is rewarded by its per-period profit

𝜌𝑖 (𝑝𝑡 ;N𝑡 ), which depends on 𝑝𝑡 = (𝑝1,𝑡 , . . . , 𝑝𝑛,𝑡 ) and the choice

of which sellers N𝑡 are displayed by the platform.

To formalize the platform design problem, let 𝜎∗ = (𝜎∗
1
, .., 𝜎∗𝑛)

denote a strategy profile selected by Q-learning on the part of

sellers, in response to the platform rule, and in the long run, after a

suitably large number of steps. The platform must decide in each

period which sellers to display to consumers. For this, we denote

the platform rule as policy 𝜋 , and we adopt for the state of this

platform policy the prices quoted by sellers in step 𝑡 , 𝑝𝑡 , so that the



policy uses these prices to select a set of agents to display, with N𝑡

selected according to 𝜋 (𝑝𝑡 ).
Let 𝑝∗𝑡 = 𝜎∗ (𝑠𝑡 ) denote a price profile chosen under seller strate-

gies 𝜎∗, i.e., in response to the platform rules, and at some large

enough time step 𝑡∗, and 𝜏∗ = (𝑝∗
𝑡∗ , 𝑝

∗
𝑡∗+1, ..) denote a trajectory of

these prices. As Q-learning is a random process whose dynamic

is affected by the platform rules, price trajectory 𝜏∗, will itself be
randomly distributed, and we denote this distribution as 𝑝𝜋 (𝜏∗).

We can now define the behavioral Stackelberg problem facing the

platform, which is the problem of finding a policy 𝜋 that maximizes

consumer surplus given the effect of this policy on the induced

strategy profile of sellers.

Definition 1 (Behavioral Stackelberg Problem). Let CS(𝜋)
denote the expected discounted sum of consumer surplus when sellers
follow strategy 𝜎∗ forward from period 𝑡∗, i.e.,

CS(𝜋) = E𝜏∗∼𝑝𝜋 (𝜏∗)

[ ∞∑
𝑡=𝑡∗

𝛿𝑡𝑈 (𝑝∗𝑡 ;𝜋 (𝑝∗𝑡 ))
]
. (8)

The rules of an optimal platform are any rules such that 𝜋∗ ∈
argmax𝜋CS(𝜋).

Here, we assume that the platform knows or is able to estimate

the consumer surplus𝑈 (𝑝∗𝑡 ;𝜋 (𝑝∗𝑡 )), so that this is available as re-

ward feedback in learning a suitable platform rule. In practice, we

envision that consumer surplus can be estimated from proxies of

consumer satisfaction, for example those available from a feedback

system provided to consumers, or by directly estimating the param-

eters of the demand system given the prices and revealed demand

of consumers. Last, we note that, given that we model our followers’

behavior via Q-learning, each equilibrium price trajectory 𝜏∗ con-
sists of price cycles. Thus, we can reformulate 1 using a finite time

horizon large-enough to capture these cycles. In our experiments,

we will use this alternative formulation together with a discount

factor 𝛿 = 1.

3 THRESHOLD PLATFORM RULES
In this section, we consider the special class of threshold platform
rules. These are rules that set a price threshold below which a seller

will be displayed, the same threshold for all sellers, and with this

threshold depending on the current prices offered by sellers.

Definition 2 (Threshold Platform Rule). A threshold plat-

form rule sets a threshold 𝜏 (𝑝𝑡 ) ≥ 0, for each price profile 𝑝𝑡 , such
that N𝑡 = {𝑖 ∈ {1, .., 𝑛} : 𝑝𝑖,𝑡 ≤ 𝜏 (𝑝𝑡 )}, i.e., any seller whose price is
no greater than the threshold is displayed to consumers.

Although simple, this class of threshold rules is instructive be-

cause it leads to a simple optimality result: there is a threshold rule

that makes the market competitive, with all sellers displayed and

consumer surplus maximized in the subgame perfect Nash equilib-

rium (SPE) of the induced continuous pricing game. Even though

the pricing behaviors that arise from Q-learning dynamics need

not converge to a SPE (and we have only a discrete set of prices),

this provides useful theoretical support for the choice we make to

adopt this family of threshold platform rules in our experimental

work.

Proposition 1. For any 𝜖 > 0, there exists a threshold platform
rule 𝜋 such that CS(𝜋) ≥ CS(𝜋∗) −∑

𝑡 𝛿
𝑡𝜖 under a subgame perfect

Nash equilibrium (SPE) of the infinitely-repeated continuous pricing
game induced by platform rule 𝜋 .

Proof. For any 𝜂 > 0, we study the stage game with continuous

prices induced by the threshold platform rule that sets threshold

𝜏 = 𝑐 + 𝜂 for each price profile 𝑝 . We show that this stage game

has a unique Nash equilibrium in which each seller sets a price

𝑝𝑖 = 𝑝∗, for some 𝑝∗ ∈ (𝑐, 𝑐+𝜂]. Given this, we have that every seller
pricing at 𝑝∗ ∈ (𝑐, 𝑐 + 𝜂] in every period is a SPE of the infinitely

repeated game, since this is an open-loop Nash equilibrium profile

(and thus SPE by the single-deviation principle). Moreover (as it

is a continuous function over price profiles) the consumer surplus

comes arbitrarily close, for a small enough 𝜂 > 0, to the maximum

consumer surplus, which coincides with every seller pricing at cost.

Left to prove is that every seller pricing at 𝑝∗ is a Nash eq (NE)

of the stage game. First, pricing 𝑝𝑖 > 𝜏 (𝑝𝑡 ) = 𝑐 + 𝜂 provides zero

profit to a seller because the seller is not part of the displayed

set of sellers. Similarly, pricing 𝑝𝑖 = 𝑐 provides zero profit. Now

dropping the time period 𝑡 , because we study a generic stage game,

and considering prices 𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ ×𝑛
𝑖=1

(𝑐, 𝑐 + 𝜂], so that

all sellers are displayed, and with seller profit 𝜌𝑖 (𝑝;N) for price
profile 𝑝 , we have

𝜕

𝜕𝑝𝑖
𝜌𝑖 (𝑝;N) = −(𝑝𝑖 − 𝑐)𝐷𝑖 (𝑝;N)(1 − 𝐷𝑖 (𝑝;N))

𝜇
+ 𝐷𝑖 (𝑝;N).

By first-order optimality conditions, we have
𝜕
𝜕𝑝𝑖

𝜌𝑖 (𝑝;N) = 0,

for each 𝑖 , only when 𝑝𝑖 = 𝑝 , for some 𝑝 > 𝑐 [2]. Furthermore,

𝜌𝑖 (𝑝𝑖 , 𝑝−𝑖 ;N) is concave. Thus, if 𝑐 + 𝜂 ≥ 𝑝 , there is only one

Nash equilibrium of the stage game, where each seller 𝑖 sets price

𝑝∗ = 𝑝 ≤ 𝑐+𝜂. On the other hand, if 𝑐+𝜂 < 𝑝 , we have that 𝜌𝑖 (𝑝 ;N)
is strictly increasing when 𝑝 ∈ ×𝑛

𝑖=1
(𝑐, 𝑐 + 𝜂], and there is a unique

Nash equilibrium where each seller quotes price 𝑝∗ = 𝑐 + 𝜂. □

Although instructive, the platform intervention used in Proposi-

tion 1 is severe, as it only displays products with prices close to the

sellers’ costs. In particular, this platform rule is fragile, and would

lead to market failure if these costs vary. By letting the threshold 𝜏

also vary with the price profile 𝑝𝑡 , we can hope for milder interven-

tions that still mitigate collusion but remain robust to variations

in the costs faced by sellers in the marketplace. We will study this

effect in our experiments, showing this additional robustness by

comparing rules that are restricted to using the same threshold for

all price states with those that can choose a different threshold for

different states. In the next section, we show how optimal platforms

in this larger class can be identified as the solution to a suitably

formulated RL problem.

4 LEARNING OPTIMAL PLATFORM RULES
In this section, we formulate the platform design problem through

the Stackelberg MDP framework [6]. This creates a suitably de-

fined MDP in which the optimal policy maximizes our platform

design objective (8), solving the behavioral Stackelberg problem

(Definition 1).



Definition 3 (Stackelberg MDP for platform design). The
Stackelberg MDP for platform design is a finite-horizon MDP, where
each episode has the following two phases:

(1) An equilibrium phase, consisting of 𝑛𝑒 ≥ 1 steps. In this phase,
each state 𝑠𝑡 includes the step counter 𝑡 , the sellers’ current
Q-matrices, and the prices 𝑝𝑡 quoted by the agents. Policy
actions determine the set of agents displayed (in their more
general version, 𝑎𝑡 = N𝑡 ). State transitions are determined
by Q-learning, where each seller 𝑖 updates its Q-matrix after
being rewarded by 𝜌𝑖 (𝑝𝑡 ;N𝑡 ). The policy has zero reward in
every time step (𝑟 (𝑠𝑡 , 𝑎𝑡 ) = 0, for 𝑡 ≤ 𝑛𝑒 ).

(2) A reward phase, consisting of 𝑛𝑟 ≥ 1 steps, each with the
same actions and states as the equilibrium steps. The reward
phase differs in two ways. First, the Q-matrices of sellers are
not updated, and second, the platform policy now receives a
non-zero reward, and this is set in each step to be equal to
the consumer surplus in that step (𝑟 (𝑠𝑡 , 𝑎𝑡 ) = 𝑈 (𝑝𝑡 ;N𝑡 ), for
𝑡 > 𝑛𝑒 ).

This Stackelberg MDP formulation is an adaptation of the one

that had been earlier provided by Brero et al. [6] to learn sequen-

tial price mechanisms (SPMs) in the presence of communication

from bidders. Here, our stage games replace SPMs, and the follow-

ers respond through Q-learning dynamics rather than no-regret

algorithms. Following Brero et al. [6], we show the Stackelberg

MDP formulation is well-founded by showing that an optimal pol-

icy will also solve the Behavioral Stackelberg design problem of

Definition 1. Specifically, when the number of reward steps 𝑛𝑟 is

large enough and when 𝑛𝑒 ≥ 𝑡∗, the optimal policy, denoted 𝜋∗𝑛𝑒 ,𝑛𝑟 ,
for the Stackelberg MDP with 𝑛𝑒 equilibrium and 𝑛𝑟 reward steps

maximizes the objective in Equation (8).

Proposition 2. The optimal Stackelberg MDP policy 𝜋∗𝑛𝑒 ,𝑛𝑟 , for
an equilibrium phase with 𝑛𝑒 ≥ 1 steps and a reward phase with
𝑛𝑟 ≥ 1 steps, maximizes CS(𝜋), for seller behavior induced after 𝑛𝑒
steps, in the limit for 𝑛𝑟 → ∞.

Proof. Let 𝜏 ∼ 𝑝𝜋 (𝜏) denote a generic trajectory determined by

executing policy 𝜋 in the Stackelberg MDP environment. We have

𝜋∗𝑛𝑒 ,𝑛𝑟 ∈ argmax𝜋E𝜏∼𝑝𝜋 (𝜏)

[
𝑛𝑒+𝑛𝑟∑
𝑡=𝑛𝑒+1

𝛿𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )
]
, (9)

recognizing 𝑟 (𝑠𝑡 , 𝑎𝑡 ) = 0 if 𝑡 ≤ 𝑛𝑒 . After replacing 𝑟 (𝑠𝑡 , 𝑎𝑡 ) with
𝑈 (𝑝𝑡 ;𝜋 (𝑝𝑡 )), we can rewrite the objective in (9) as

E𝜏∼𝑝𝜋 (𝜏)

[
𝑛𝑒+𝑛𝑟∑
𝑡=𝑛𝑒+1

𝛿𝑡𝑈 (𝑝𝑡 ;𝜋 (𝑝𝑡 ))
]
,

which approximates (8) as 𝑛𝑟 grows to infinity. □

In practice, 𝑛𝑟 does not need to go to infinity, but rather be

large enough to capture the discounted reward associated with the

pricing policies of sellers induced by the platform’s policy. In an

extreme case, when the platform policy and seller policy are both

deterministic, and in the absence of cycles, then a single time step

is sufficient for the reward phase given the logit demand model and

continuum model of consumers.

As in Brero et al. [6], we work with a partially-observable vari-

ation on the Stackelberg MDP, since the MDP state includes the

Q-matrix of each seller, which is private to the sellers. Rather, the

platform can only observe the price profile, 𝑝𝑡 . Brero et al. [6] han-

dle this additional challenge in their setting by training the leader

policy via an actor-critic deep RL algorithm, and leveraging the

paradigm of centralized training and decentralized execution [21,

e.g.,]. In particular, they give the critic network, which estimates

the sum of rewards until the end of the episode, access so the full

state during training. Only the actor network, which represents the

policy, is restricted to the partial state information. This helps to

stabilize training while still providing a policy that makes use of

only observable state information.

Here, we want to study the use of the Stackelberg MDP frame-

work to train useful leader policies "in the wild," where the learning

algorithm of the platform can only access the kind of information

that an economic platform would expect to have in regard to de-

ployed seller algorithms. For this reason, we deviate from Brero

et al. [6], and do not allow even the critic network access to the

Q-matrix of a seller, since this is internal to a seller agent and pri-

vate.
1
In particular, we make use of actor-critic networks (and the

A2C algorithm), but restrict both the critic- and actor-networks to

access only the price profile 𝑝𝑡 quoted by the sellers.

We see in experiments that the deep RL algorithms used for

platform learning are nevertheless able to derive optimal platform

policies, when only giving the critic network access to price profiles,

along with a binary flag determining whether the environment

is in an equilibrium or reward phase. We allow this binary flag

because when used “in the wild," the learning system can control

for itself when to attend to rewards.
2
Our experiments also show

learning robustness in settings where sellers adopt a highly non-

stationary behavior, restarting their learning rates randomly and

asynchronously.

5 EXPERIMENTAL RESULTS
In this section, we evaluate our learning approach via three main

experiments. We first consider training performance in terms of

consumer surplus, bench-marking our RL interventions against the

ones introduced by Johnson et al. [17]. We find that our learning

approach is able to learn optimal leader strategies in the Stackelberg

game with the followers across all the seeds we tested, significantly

outperforming the other interventions. We then test the robustness

of our interventions by evaluating our platforms in environments

where sellers have different costs from those assumed during train-

ing. Here, we consider a slightly-modified training approach where

agents use random prices in the reward phase with some proba-

bility. We find that, when using “ad hoc” thresholds that depend

on the prices quoted, our platform policies are much more flexible,

achieving good performances also under different costs. In the ex-

periments described so far, we let the sellers adopt a behavior model

similar to the one used in Calvano et al. [11] and Johnson et al. [17],

1
Brero et al. [6] have different motivations and situate their work as one of using

the Stackelberg MDP framework as an offline computational method for the design

of optimal mechanisms, with a mechanism then deployed in the real world once

trained. For this reason, they give the critic network during training access to private

information of the followers, which in their context is the value of buyers and their

internal, no-regret learning state.

2
Whereas we freeze the Q-matrices during a short reward phase, this could be equally

well achieved by running a long-enough equilibrium phases, so that rather than

freezing then, the Q-matrices are relatively stable when collecting rewards.



with sellers using the same exploration rate 𝜀𝑡 , and decaying this

over time. In our third experiment, we also test the ability of the

Stackelberg MDP framework to adapt to a seller behavior model in

which each of them restarts its exploration rate randomly and asyn-

chronously, as would be more typical. Even in this scenario, our

platform interventions significantly outperform all the baselines,

with threshold platform policies using prices approaching optimal

performances.

Experimental set-up. As in Calvano et al. [11] and Johnson et al.

[17], we consider settings with two pricing agents with cost 𝑐 = 1,

quality indexes 𝛼1 = 𝛼2 = 2, and 𝛼0 = 0, and we set parameter

𝜇 = 0.25 to control horizontal differentiation. The seller Q-learning

algorithms are also trained using discount factor 𝛿 = 0.95, explo-

ration rate 𝜀𝑡 = 𝑒−𝛽𝑡 with 𝛽 = 1𝑒 − 5, and learning rate 𝛼 = 0.15.

We deviate from prior work in considering the choice of one of

five possible prices for the action of a seller, these prices ranging

from just below the sellers’ cost to the monopoly price, whereas

previous work gave sellers a choice of fifteen different prices (over a

similar range). We need to use a smaller grid in order to satisfy our

computational constraints given the more exacting computational

work in this paper; earlier work studied the effect of different, hand-

designed platform rules, and did not also use RL for the automated

design of suitable platform rules. This coarsened price grid allows

us to train our policy for 50 million steps in 18 hours using a single

core on a Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz machine.

Learning algorithm. To train the platform policy, we start from

the A2C algorithm provided by Stable Baselines3 [23]. Given that our
policy is only rewarded at the end of our Stackelberg MDP episodes,

we configure A2C so that neural network parameters are only up-

dated after this reward phase. In this way we guarantee that poli-

cies inducing desired followers’ equilibria are properly rewarded.

Furthermore, to reduce variance due to non-deterministic policy

behavior throughout episodes, we maintain an observation-action

map throughout each episode: When a new observation is encoun-

tered during the episode, the policy chooses an action following the

default training behavior and stores this new observation-action

pair in the map. This reduces variance, so that if the observation

is encountered again during the same episode, the policy will take

the same action.

As discussed in Section 2.2, the Q-learning as used by seller

agents is guaranteed to converge only if the underlying environ-

ment is stationary, which is not the case in this multi-agent setting.

In their work, Calvano et al. [11] and Johnson et al. [17] find that,

despite these potential non-stationarities, Q-learning dynamics con-

verge most of the time. In this earlier work the platform rules are

fixed. In order to avoid introducing additional non-stationarity due

to the platform rules changing, we assume sellers restart the Q-

learning process by re-initializing exploration rates every time the

platform rules change (i.e., at the beginning of every Stackelberg

MDP episode). We relax this assumption in Section 5.3.

5.1 Learning Performance
In this section, we evaluate the training performance of our policies.

For this, we train our policies for 50 million steps in total. We set

up the Stackelberg MDP environment using 50k equilibrium steps

and 30 reward steps. We selected these hyperparameters using the

following criteria: First, we want to make sure that the equilibrium

phase of our Stackelberg MDP is long enough such that sellers’

dynamics produce best responses to platform policies. At the same

time, we want to avoid too long equilibrium phases, as this makes

rewards too sparse. With 50k steps we have a good trade-off be-

tween these two desiderata. Regarding the reward phase, we want

to make sure that this reward is representative of the converged

policy reached by Q-learners, and their converged behavior is usu-

ally a single price profile or an loop of two or three price profiles.

We adopt 30 reward steps to be conservative.

We consider the following kinds of interventions on behalf of

the platform designer:

• No intervention:Here the platform does not intervene. Sellers

are always displayed, no matter the price they quote. To

derive this baseline, we run our Q learning dynamics until

convergence (as described in Johnson et al. [17]) for each

seed and then average the surplus at final strategies.

• PDP: We test price-directed prominence, the first platform

intervention introduced by Johnson et al. [17]. Here, the

platform only displays the seller who quotes the lower price

(breaking ties at random), thus enhancing competition. As

for no intervention, we compute the performance of PDP
by averaging consumer surplus after Q learning dynamics

converge.

• DPDP: Dynamic price-directed prominence is the second in-

tervention introduced by Johnson et al. [17], which also

conditions the choice of the (unique) displayed seller on past

prices. Under this intervention, quoting prices equal to cost

is a subgame perfect equilibrium of the induced game (under

suitable discount factors). As for the previous baselines, we

compute the performance of DPDP by averaging consumer

surplus after Q learning dynamics converge.

• No state RL: Here we use our Stackelberg MDP methodology

to train a platform policy that does not use prices 𝑝𝑡 to

determine the threshold at which to admit each seller to

the buy box (thus, no state).
3
Here, Q learning is restarted

whenever a Stackelberg MDP episodes begins.

• No Stackelberg state-based RL: Here we use our Stackelberg
MDP methodology to train a platform policy that sets a

threshold at which to admit each seller as a function of the

price profile quoted by the sellers (thus, state-based). This

is the full class of threshold platform rules. As above, Q

learning is restarted whenever a Stackelberg MDP episodes

begins.

Figure 1 shows the consumer surplus realized under these dif-

ferent interventions. First, we confirm the results of Johnson et al.

[17], and see consumer surplus improvements from both PDP and

DPDP compared to No intervention, with DPDP outperforming PDP.
Our RL interventions based on our Stackelberg framework dramat-

ically improve consumer surplus, driving it to (approximately, in

the state-based scenario) its maximal level (which, in our setting, is

approximately 0.94). This is confirmed by the fact that, for both No
state and State-based RL, all sellers are displayed and they almost

3
This class of policies already includes the approximately optimal policy described in

the proof of Proposition 1.



Figure 1: Learning performance of no state RL and state-
based RL, and compared with different baselines. The re-
sults are averaged over 10 runs and shaded regions show 95%
confidence intervals.

always quote their minimal prices at the end of training. Given

that this is the optimal (i.e., surplus maximizing) seller behavior,

we can conclude that our Stackelberg-based learning methodology

almost always finds an optimal leader strategy given the Q-learning

behavior of sellers. We note that, as expected, it is easier for no state
RL to reach the maximal performance given that that its class of

policies is much smaller than the ones considered by state-based RL.
However, as we will see in the next set of experiments, the state-

based policy is much more flexible, and achieves better robustness

to the case that the cost basis changes for sellers, such that the test

environment is very different from that assumed during training.

5.2 Robustness Tests
As observed in our previous experiments, the Stackelberg-based RL

algorithms are effective in learning interventions that maximize

consumer surplus for a given economic setting. However, as they

are tailored to the economic setting at hand, these interventions

can perform poorly when facing settings different from those faced

at training time. To learn more robust platform rules, we also train

with amodified version of the StackelbergMDP: at each reward step,

with some random-price probability, sellers quote prices sampled

uniformly at random from the price grid. In this way, the platform

is rewarded during training for robust performance when presented

with prices that are not produced by the Q-learning equilibrium

dynamics of the sellers given the seller cost structure during train-

ing. Having trained with this random price perturbation, we test

our policies in settings with different sellers’ costs: in addition to

the default cost 𝑐 = 1.0, we also test with sellers that have cost

𝑐 = 1.38 (falling in between the second and the third price from the

set of discretized prices between 0.95 and 2.1) and sellers with cost

𝑐 = 1.67 (falling in between the third and the fourth price of the

price grid). As we can see from Figure 2, when using random prices

during training (and in particular with random-price probability

0.4), the state-based policy is more flexible, displaying sellers with

Figure 2: Robustness testwhen the platform’s buy boxpolicy
is trained with random-price probability=0.4. The results are
averaged over 10 runs.

higher prices due to their higher costs, while continuing to outper-

form DPDP when seller costs are the same as during training. This

is also confirmed by the policy visualizations in Figure 3, which

show how the buy box tends to be much more open under this

modified training regime. At the same time, our no state policy

performs very poorly when tested at costs that differ from those

assumed during training, generating zero consumer surplus even

under this modified training regime. Despite this, the state-based

RL policy has lower performance than DPDP in environments with

out-of-training seller costs, suggesting that the platform interven-

tions introduced by Johnson et al. [17] are more effective when the

market is highly dynamic (and in the absence of continued learning

by the platform, as conditioned change).

5.3 Learning in the Wild
In our previous experiments, we assumed that both sellers restart

their learning processes any time the platform rules change. This

is consistent with the original experiments run by Calvano et al.

[11], which demonstrated seller collusive behavior. However, this

assumption may not hold in real-world settings, where sellers can

restart their learning processes asynchronously and at any time.

This behavior can present new challenges to learning an effective

platform policy. Indeed, in this scenario, changes in the sellers’ be-

havior may be caused not only by different platform interventions,

but also as a result of learning restarts.

In this section, we evaluate the performance of the Stackelberg

MDP framework in scenarios where sellers randomly restart their

exploration rate during training. Specifically, we assume that, at

each step of the platform’s learning process, each seller restarts

its exploration rate with some probability. We set this probability

such that, in expectation, each seller restarts its exploration once

per Stackelberg MDP episode (which corresponds to the number

of steps between platform updates). A particular concern is that

this behavior may result in effectively random prices if a restart

occurs close to the nominal reward phase of the Stackelberg MDP

episode. A sensible response of a platform to this would be to



Figure 3: Policy visualization - number of displayed agents
given price selection, averaged over 10 seeds. (Top-left): No
state RL with no price perturbation in the reward step. (Top-
right): No state RL with 40% random price probability in the
reward step. (Bottom-left): State-based RL with no price per-
turbation in the reward step. (Bottom-right): State-based RL
with 40% random price probability in the reward step. The
heatmap shows white when the average number of agents
displayed is 2, and blackwhen the average number of agents
displayed is 0. The axes show indices representing the order-
ing price pairs. E.g., (0, 0) represents a selection of the two
lowest prices by both agents 0, while (4, 4) represents the
highest prices by both agents.

monitor sellers’ prices, and isolate stages when price profiles are

more stable to audit rewards. For a stylized version of this, we

allow sellers’ exploration to restart as outlined above, but pause

any exploration during the reward phase of the Stackelberg MDP.

Furthermore, if restarts occur close to the reward phases, rewards

may reflect an out-of-equilibrium behavior of the sellers (even if

exploration is paused). To avoid this problem, we generate our plots

by logging rewards in an evaluation Stackelberg MDP episode we

run every 100k training steps. These evaluation episodes use the

current platform policy and operate it executing the action with

the highest weight given each observation. In these episodes, the

Q learning processes are run as in the previous sections, without

intra-episode restarts. As we can see from Figure 4, the Stackelberg

learning framework allows us to derive close-to-optimal policies

even in this “in the wild" setting. Given that rewards are collected

in evaluation episodes (where policies are operated via highest-

weighted actions), the optimal intervention under no State RL is

executed much earlier than in the simulations of Figure 1, reaching

the maximum reward after only 15M training steps.

6 CONCLUSION
This work has demonstrated that effective platform interventions

can be learned via machine learning methodologies that recognize

and make use of the platform’s commitment power. Specifically, we

introduced the class of threshold policies, showing that it contains

Figure 4: Learning in the wild performance. The results are
averaged over 10 runs and shaded regions show 95% confi-
dence intervals.

policies that optimize consumer surplus. We introduced a learn-

ing methodology that can effectively learn optimal leader policies

in this class. The interventions we learned significantly outper-

form the interventions introduced in prior work. We also showed

how our learned platform interventions can be made more robust

when settings are dynamic, with varying seller cost structures, by

adopting a suitably-modified training problems. In addition, we

demonstrated that this approach to platform learning is robust to

still more realistic assumptions about sellers’ learning behavior.

Despite we focused on preventing price collusion in a simple

setting, we believe that our approach is much more general. For

example, it can be used to design interventions for the electricity

markets studied by Abada and Lambin [1] or more general inter-

ventions (not only the threshold ones) in the setting we considered.

In order to scale to larger settings, one could leverage symmetries

among market participants.

We note our approach can also be used to derive “ad-hoc” in-

terventions throughout the learning process. These interventions

can be derived by letting the platform policy observe longer price

histories or entire Q matrices (even though this would significantly

increase the learning complexity).
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