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ABSTRACT
We study cooperative online learning in stochastic and adversarial

Markov decision process (MDP). That is, in each episode,𝑚 agents

interact with an MDP simultaneously and share information in

order tominimize their individual regret.We consider environments

with two types of randomness: fresh –where each agent’s trajectory
is sampled i.i.d, and non-fresh – where the realization is shared by

all agents (but each agent’s trajectory is also affected by its own

actions). More precisely, with non-fresh randomness the realization

of every cost and transition is fixed at the start of each episode, and

agents that take the same action in the same state at the same time

observe the same cost and next state. We thoroughly analyze all

relevant settings, highlight the challenges and differences between

the models, and prove nearly-matching regret lower and upper

bounds. To our knowledge, we are the first to consider cooperative

reinforcement learning (RL) with either non-fresh randomness or

in adversarial MDPs.
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1 INTRODUCTION
Cooperative multi-agent reinforcement learning (MARL; see Zhang

et al. [54]) achieved impressive empirical success in many applica-

tions such as cyber-physical systems [1, 46], finance [28, 29] and

sensor/communication networks [9, 11]. The theoretical work on

MARL has focused on either Markov Games (MGs) [23], where the

goal is to converge to an equilibrium, or stochastic MDPs [30].

In this paper we initiate the study of two topics not addressed

before in the MARL literature. First, we differentiate between two

types of randomness: fresh – where each agent’s trajectory is sam-

pled i.i.d, and non-fresh – where at any time the cost and transition

kernel’s randomness is shared by all agents. More precisely, if at

the same time two different agents perform the same action in the

same state, they observe the same cost and the same next state.

Second, we consider cooperation in the challenging adversarial

MDP setting that generalizes stochastic MDPs and allows to model

temporal changes in the environment through costs that change

arbitrarily and are chosen by an adversary.

While previous works focus mostly on fresh randomness, non-

fresh randomness models are just as well-motivated since different

agents might experience the same dynamics and rewards when

visiting the same state simultaneously. Conceptually, non-fresh

randomness models cases where the randomness is more a function
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of the time than the agent. For example, drones that fly together ex-

perience similar weather conditions and autonomous vehicles that

drive on the same roads on the same time encounter the same traffic

congestion. Moreover, the non-fresh randomness model is theoreti-

cally highly challenging, as we show in this paper. We indicate a

gap in the lower bounds between fresh and non-fresh randomness

and identify the weaknesses of current optimistic approaches in

handling non-fresh randomness, thus requiring us to develop new

algorithmic techniques.

Our main contributions can be summarized as follows. First, we

derive multi-agent versions of known regret minimization algo-

rithms in stochastic and adversarial MDPs, and thoroughly analyze

their regret in the fresh randomness model. To complement our

bounds, we formally prove matching lower bounds (the adversarial

MDP with unknown transitions lower bound nearly-matches, as

optimal regret has not been achieved even for a single agent). Sec-

ond, we point to the failure of optimistic methods under non-fresh

randomness and prove lower bounds that reveal a significant gap

from the fresh randomness case. Our novel constructions for these

lower bounds carefully take advantage of the agents’ shared ran-

dom seed to make sure that they cannot explore different areas of

the environment simultaneously. Third, we develop a novel multi-

agent action-elimination based algorithm for stochastic MDP with

non-fresh randomness that forces the agents to scatter at a care-

fully chosen time so that exploration is maximized. Through novel

analysis of the relations between the policies of different agents

and the error propagation, we prove near-optimal regret for the

algorithm. Finally, for adversarial MDP (where action-elimination

is not possible) with non-fresh randomness, we design a novel ex-

ploration mechanism to replace optimism and show that it can

achieve near-optimal regret for a large number of agents. Table 1

summarizes all our regret lower and upper bounds.

1.1 Related Work
Multi-agent multi-armed bandit. Cooperation was previ-

ously studied in both stochastic [16, 27, 34, 45] and adversarial

[5, 7, 8, 19] multi-armed bandit (MAB). While we extend some ideas

from the MAB literature to RL, many of the challenges that this

paper faces do not arise in MAB. Notably, fresh vs. non-fresh ran-

domness, which is the main focus of the paper, is unique to MDPs

as it involves dynamics (i.e., state transitions) that do not exist in

MAB.

MARL.. There is a long line of research on the theoretical as-

pects of MARL, mainly focusing on MGs [3, 4, 23, 31, 32, 47, 52].

This literature is only partially related for two reasons: it aims to

converge to an equilibrium rather than minimize individual regret,

and MGs assume the agents share the current state while in our



Table 1: Summary of our regret upper and lower bounds for𝑚 agents facing 𝐾 episode interaction with an MDP that has 𝑆
states, 𝐴 actions and horizon 𝐻 . The bounds ignore poly-logarithmic factors and lower order terms. (*) The algorithm requires
𝑚 =
√
𝐾 agents.

Algorithm Regret Lower Bound Randomness Cost Transition

coop-ULCVI
√︃
𝐻 3𝑆𝐴𝐾
𝑚

√︃
𝐻 3𝑆𝐴𝐾
𝑚 fresh stochastic unknown

coop-O-REPS
√
𝐻2𝐾 +

√︃
𝐻 2𝑆𝐴𝐾
𝑚

√
𝐻2𝐾 +

√︃
𝐻 2𝑆𝐴𝐾
𝑚 fresh adversarial known

coop-UOB-REPS
√
𝐻2𝐾 +

√︃
𝐻 4𝑆2𝐴𝐾

𝑚

√
𝐻2𝐾 +

√︃
𝐻 3𝑆𝐴𝐾
𝑚 fresh adversarial unknown

coop-ULCAE
√
𝐻5𝑆𝐾 +

√︂
𝐻 7𝑆𝐴𝐾√

𝑚

√
𝐻2𝑆𝐾 +

√︃
𝐻 3𝑆𝐴𝐾
𝑚 non-fresh stochastic unknown

coop-nf-O-REPS
√
𝐻2𝑆𝐾 +

√︃
𝐻 2𝑆𝐴𝐾
𝑚

√
𝐻2𝑆𝐾 +

√︃
𝐻 2𝑆𝐴𝐾
𝑚 non-fresh adversarial known

coop-nf-UOB-REPS
√
𝐻4𝑆2𝐾 (*)

√
𝐻2𝑆𝐾 +

√︃
𝐻 3𝑆𝐴𝐾
𝑚 non-fresh adversarial unknown

model different agents traverse different trajectories (i.e., modelling

our setting in a MG requires exponentially large state space). More

related is the literature on decentralized MARL that considers sto-

chastic MDPs with fresh randomness. However, the theoretical

guarantees provided by these works are either asymptotic or less

tight than our bounds [30, 53, 55, 56].

Single-agent RL.. There is a rich literature on regret minimiza-

tion in both stochastic [2, 20–22, 24, 49–51] and adversarial [6,

25, 33, 37–39, 57] MDPs. Note that for a single agent, fresh and

non-fresh randomness are identical.

2 PRELIMINARIES
A finite-horizon episodic MDPM is defined as follows.M is a

tuple (S,A, 𝐻, 𝑝, {𝑐𝑘 }𝐾
𝑘=1
), where S (of size 𝑆) and A (of size 𝐴)

are finite state and action spaces, 𝐻 is the horizon and 𝐾 is the

number of episodes. 𝑝 is a transition function such that the proba-

bility to move to state 𝑠 ′ when taking action 𝑎 in state 𝑠 at time ℎ is

𝑝ℎ (𝑠 ′ |𝑠, 𝑎). 𝑐𝑘 ∈ [0, 1]𝐻𝑆𝐴 is the cost function for episode 𝑘 . In the

adversarial setting the sequence of cost functions {𝑐𝑘 }𝐾
𝑘=1

is chosen

by an oblivious adversary before the interaction starts, while in the

stochastic setting the costs are sampled i.i.d from a stationary dis-

tribution (that does not depend on 𝑘) with mean 𝑐𝑘
ℎ
(𝑠, 𝑎) = 𝑐ℎ (𝑠, 𝑎).

The adversarial MDP model generalizes stochastic MDPs.

A policy 𝜋 is a function such that 𝜋ℎ (𝑎 |𝑠) gives the probability to
take action 𝑎 in state 𝑠 at time ℎ. If 𝜋 is deterministic we often abuse

notation and use 𝜋ℎ (𝑠) for the action chosen by the policy. Given a

cost function 𝑐 , the value𝑉 𝜋
ℎ
(𝑠) of 𝜋 is the expected cost when start-

ing from state 𝑠 at timeℎ, i.e.,𝑉 𝜋
ℎ
(𝑠) = E𝑝,𝜋 [∑𝐻

ℎ′=ℎ 𝑐ℎ′ (𝑠ℎ′, 𝑎ℎ′) |𝑠ℎ =

𝑠] where the notation E𝑝,𝜋 [·] means that actions are chosen by 𝜋

and transitions are determined by 𝑝 . We also define the 𝑄-function

𝑄𝜋
ℎ
(𝑠, 𝑎) = E𝑝,𝜋 [∑𝐻

ℎ′=ℎ 𝑐ℎ′ (𝑠ℎ′, 𝑎ℎ′) | 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎] that satisfies
the Bellman equations [44]:

𝑄𝜋
ℎ
(𝑠, 𝑎) = 𝑐ℎ (𝑠, 𝑎) + E𝑝ℎ ( · |𝑠,𝑎)

[
𝑉 𝜋
ℎ+1

]
𝑉 𝜋
ℎ
(𝑠) = ⟨𝜋ℎ (· | 𝑠), 𝑄𝜋ℎ (𝑠, ·)⟩,

where E𝑟 ( ·) [𝑓 ] denotes the expectation of 𝑓 (𝑥) where 𝑥 is sampled

from the distribution 𝑟 , and ⟨·, ·⟩ is the dot product.

Multi-agent interaction. A team of𝑚 agents interacts with

the MDPM. At the beginning of episode 𝑘 , every agent 𝑣 ∈ [𝑚]
picks a policy 𝜋𝑘,𝑣 and starts in the initial state 𝑠

𝑘,𝑣
1

= 𝑠init. At

time ℎ = 1, . . . , 𝐻 , each agent observes its current state 𝑠
𝑘,𝑣

ℎ
and

samples an action 𝑎
𝑘,𝑣

ℎ
∼ 𝜋

𝑘,𝑣

ℎ
(·|𝑠𝑘,𝑣

ℎ
). In the fresh randomness

model, the next state is sampled independently for each agent,

i.e., 𝑠
𝑘,𝑣

ℎ+1 ∼ 𝑝ℎ (·|𝑠
𝑘,𝑣

ℎ
, 𝑎
𝑘,𝑣

ℎ
). For non-fresh randomness, the next state

is sampled once for each state-action pair 𝑆𝑘
ℎ
(𝑠, 𝑎) ∼ 𝑝ℎ (·|𝑠, 𝑎) ahead

of the episode, and then every agent 𝑣 that takes action 𝑎 in 𝑠 at time

ℎ transitions to the same state 𝑆𝑘
ℎ
(𝑠, 𝑎), i.e., 𝑠𝑘,𝑣

ℎ+1 = 𝑆𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
).

Similarly, the cost 𝐶
𝑘,𝑣

ℎ
suffered by the agent is either sampled in-

dependently when randomness is fresh, or sampled once for each

state-action pair (𝑠, 𝑎) ahead of the episode when randomness is

non-fresh. Note that for adversarial MDPs the costs are not sto-

chastic so it is always the case that𝐶
𝑘,𝑣

ℎ
= 𝑐𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
). At the end

of the episode, the team observes the trajectories and costs of all

agents {𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
,𝐶
𝑘,𝑣

ℎ
}𝐻 ,𝑚

ℎ=1,𝑣=1
(i.e., bandit feedback).

Regret. Let 𝑉𝑘,𝜋 be the value function of 𝜋 with respect to 𝑐𝑘 .

The pseudo-regret of an agent 𝑣 is the cumulative difference be-

tween the values of its policies and the values of the best fixed

policy in hindsight. The performance of the team is measured by

the maximal individual pseudo-regret (note that this criterion is

stronger than the average regret):

𝑅𝐾 = max

𝑣∈[𝑚]

𝐾∑︁
𝑘=1

𝑉
𝑘,𝜋𝑘,𝑣

1
(𝑠init) −min

𝜋

𝐾∑︁
𝑘=1

𝑉
𝑘,𝜋
1
(𝑠init).

For stochastic MDP, we use the more common definition of the

regret in which, for 𝑘 ∈ [𝐾], 𝑉𝑘,𝜋
ℎ
(𝑠) = 𝑉 𝜋

ℎ
(𝑠) for the cost function

𝑐 (the mean of the costs distribution).

Occupancymeasures. For policy 𝜋 , let𝑞𝜋 be its occupancymea-

sure such that 𝑞𝜋
ℎ
(𝑠) is the probability to visit 𝑠 at time ℎ playing 𝜋

and 𝑞𝜋
ℎ
(𝑠, 𝑎) = 𝑞𝜋

ℎ
(𝑠)𝜋ℎ (𝑎 | 𝑠). By definition, 𝑉

𝑘,𝜋
1
(𝑠init) = ⟨𝑞𝜋 , 𝑐𝑘 ⟩,

so we can write the regret in terms of occupancy measures as



follows:

𝑅𝐾 = max

𝑣∈[𝑚]

𝐾∑︁
𝑘=1

⟨𝑞𝜋
𝑘,𝑣

, 𝑐𝑘 ⟩ − min

𝑞∈Δ(M)

𝐾∑︁
𝑘=1

⟨𝑞, 𝑐𝑘 ⟩,

where Δ(M) is the set of valid occupancy measures which corre-

sponds to the set of stochastic policies and is a convex polytope in

R𝐻𝑆𝐴 defined by 𝑂 (𝐻𝑆𝐴) linear inequalities.

Additional notations. The notation𝑂 (·) hides constants, lower
order terms and poly-logarithmic factors, including log(𝐾/𝛿) for
some confidence parameter 𝛿 . The indicator of event 𝐸 is denoted

by I{𝐸}. In addition, we denote [𝑛] = {1, 2, . . . , 𝑛} for 𝑛 ∈ N and

𝑥 ∨𝑦 = max{𝑥,𝑦} for 𝑥,𝑦 ∈ R. 𝜋★ denotes the optimal policy (best

in hindsight for the adversarial case).

3 FRESH RANDOMNESS
The main principle that guides us in the design of algorithms for

fresh randomness is the following: even if all agents play the same

policy, the team still gathers “𝑚 times more data”. Thus, we take

a single-agent regret minimization algorithm ALG and let all the

agents play the policy that it outputs. ALG is then updated based on

the observations of all agents.

For the stochastic setting we propose an optimistic algorithm

we call coop-ULCVI based on the single-agent algorithms of Azar

et al. [2], Dann et al. [13]. The algorithm maintains empirical esti-

mates of the transition probabilities and costs, based on samples

from all agents. At the beginning of episode 𝑘 it constructs an

optimistic estimate 𝑄𝑘 of the optimal 𝑄-function 𝑄∗ so that with

high probability (w.h.p) 𝑄𝑘
ℎ
(𝑠, 𝑎) ≤ 𝑄∗

ℎ
(𝑠, 𝑎). The agents all play

the same deterministic policy which is greedy with respect to 𝑄𝑘 :

𝜋
𝑘,𝑣

ℎ
(𝑠) = arg max𝑎 𝑄

𝑘

ℎ
(𝑠, 𝑎). Even if agents arrive together at the

same state and take the same action, we still get multiple i.i.d sam-

ples. Hence, the empirical estimates are based on 𝑚 times more

samples compared to the non-cooperative (single-agent) setting.

This is the key property that allows us to prove the following

improved regret bound. Detailed description of the coop-ULCVI
algorithm and the proof of Theorem 3.1 appear in Appendix B.

Theorem 3.1. For stochastic MDP with fresh randomness, the

coop-ULCVI algorithm ensures w.h.p 𝑅𝐾 = 𝑂 (
√︃
𝐻 3𝑆𝐴𝐾
𝑚 ).

This bound improves upon Lidard et al. [30] by a factor of

√
𝐻 ,

and is in fact optimal up to logarithmic factors as shown by our

lower bound in Appendix A. The lower bound is built on a simple

observation [19]: minimizing the sum of regrets of𝑚 agents in 𝐾

episodes is harder than minimizing the regret of a single agent in

𝑚𝐾 episodes. By single-agent lower bound [15], the sum of regrets

is Ω(
√
𝐻3𝑆𝐴𝐾𝑚), so that the lower bound on the average regret

matches our regret bound in Theorem 3.1.

For the adversarial setting we propose coop-O-REPS which is

based on the single-agent O-REPS algorithm [57]. Essentially, this is

Online Mirror Descent [41] on the set of occupancy measures with

entropy regularization. More specifically, in episode 𝑘 all agents

play policy 𝜋𝑘 computed as follows:

𝑞𝜋
𝑘

= arg min

𝑞∈Δ(M)
[⟨𝑞, 𝑐𝑘−1⟩ + KL(𝑞 ∥ 𝑞𝜋

𝑘−1

), (1)

where KL(· ∥ ·) is the KL-divergence, [ is a learning rate and 𝑐𝑘

is an importance sampling estimator. The main difference in our

algorithm is the new estimator that incorporates the observations

from all the different agents as follows:

𝑐𝑘
ℎ
(𝑠, 𝑎) =

𝑐𝑘
ℎ
(𝑠, 𝑎)I{∃𝑣 : 𝑠

𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

, (2)

where𝛾 is a bias added for high-probability regret [35], and𝑊 𝑘
ℎ
(𝑠, 𝑎)

is the probability that some agent visits state 𝑠 and takes action 𝑎

at time ℎ – this quantity will play a major role in the analysis of

all our algorithms. Conveniently,𝑊 𝑘
ℎ
(𝑠, 𝑎) = 1 − (1 − 𝑞𝜋𝑘

ℎ
(𝑠, 𝑎))𝑚

as it is the complement of the event that all agents do not visit

(𝑠, 𝑎) at time ℎ. Thus, the algorithm can be implemented efficiently

similarly to the single-agent algorithm [57].

For unknown transitions we propose coop-UOB-REPS based on

single-agent UOB-REPS [22], which is similar to coop-O-REPS but

uses an estimate Δ(M, 𝑘) of the set of occupancy measures which

contains the true set Δ(M) with high probability. Note that without
knowing 𝑝 , we cannot compute𝑊 𝑘

ℎ
. Instead, we use an optimistic

estimate𝑈 𝑘
ℎ
which bounds𝑊 𝑘

ℎ
from above with high probability.

The full algorithms and analysis for the adversarial setting with

fresh randomness appear in Appendices D and E.

Theorem 3.2. For adversarial MDP with fresh randomness, the

coop-O-REPS algorithm ensures w.h.p 𝑅𝐾 = 𝑂 (𝐻
√
𝐾 +

√︃
𝐻 2𝑆𝐴𝐾
𝑚 ) for

known dynamics, and the coop-UOB-REPS algorithm ensures w.h.p

𝑅𝐾 = 𝑂 (𝐻
√
𝐾 +

√︃
𝐻 4𝑆2𝐴𝐾

𝑚 ) for unknown dynamics.

In Appendix A we show these bounds are optimal, except for

an extra

√
𝐻𝑆 factor in the second term of our unknown dynamics

bound which we cannot hope to remove here since it is still an open

problem even for single-agent. Notice the additional 𝐻
√
𝐾 term

that does not appear in the stochastic setting. It follows from the

lower bound for single-agent adversarialMDPwith full-information

feedback (not bandit feedback), which is equivalent to our setting

in the best case scenario where the agents manage to visit all state-

actions.

Proof sketch for Theorem 3.2. By standard analysis, the re-

gret scales with two terms: penalty of order 𝐻/[, and stability of

order[
∑
𝑘,ℎ,𝑠,𝑎 𝑞

𝜋𝑘

ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)2. We show that the stability (which

accounts for the estimator’s variance) decreases as the number of

agents increases. In particular we prove that,

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎) ≤

(
1

𝑚
+ 𝑞𝜋

𝑘

ℎ
(𝑠, 𝑎)

)
𝑊 𝑘
ℎ
(𝑠, 𝑎) . (3)

This implies that either the probability to observe cost 𝑐𝑘
ℎ
(𝑠, 𝑎) is

𝑚 times the probability of a single agent to observe it , or that this

probability is at least a constant. Hence, 𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)2 ≤ (1/𝑚+

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎))𝑐𝑘

ℎ
(𝑠, 𝑎). Then, by concentration, the stability amounts to

[𝐻𝐾 (1 + 𝑆𝐴/𝑚), and optimizing over [ gives the desired bound.

With unknown dynamics, there is an additional error term that

comes from the estimation of the occupancy measures set and

the bias of the estimator (in particular 𝑈 𝑘
ℎ
). This error is handled

similarly to the stochastic case. □



4 THE CHALLENGES OF NON-FRESH
RANDOMNESS

Unlike fresh randomness, in the non-fresh randomness setting the

total amount of feedback is not necessarily𝑚 times the feedback

of a single agent. In fact, any algorithm that uses deterministic

policies (e.g., optimistic algorithms) simply fails in this setting. The

reason is that all agents follow the exact same trajectory since the

policy does not introduce any randomness and the transitions are

fixed ahead of the episode. Thus, the total amount of feedback is

exactly the same as a single-agent would have gathered, which

means Ω(
√
𝐻3𝑆𝐴𝐾) regret with no benefit from multiple agents.

The next theorem shows that the non-fresh randomness setting
is significantly harder than fresh randomness even in terms of

the statistical lower bound. While the regret for stochastic MDP

with fresh randomness scales only logarithmically with 𝐾 for large

enough𝑚,𝐻
√
𝑆𝐾 regret is unavoidable under non-fresh randomness

even if𝑚 →∞.

Theorem 4.1. For any 𝑆,𝐴, 𝐻,𝑚 ∈ N and 𝐾 ≥ 𝑆𝐴𝐻 , and for
any algorithm ALG, there exists a stochastic MDP with non-fresh
randomness such that ALG suffers expected average regret of at least

Ω(𝐻
√
𝑆𝐾 +

√︃
𝐻 3𝑆𝐴𝐾
𝑚 ).

Proof sketch. We construct the following MDP illustrated in

Figure 1. All agents start in 𝑠0. Taking action 𝑎1 transitions to one

of the MAB states 𝑠1, . . . , 𝑠𝑆 with probability 1/𝑆 to each. Taking

any other action 𝑎 ≠ 𝑎1 transitions to a bad state 𝑠𝑏 which is a

sink with maximal cost 1. Each MAB state encodes a hard MAB

instance: one action gives cost 0 with probability 1/2 + 𝜖 and cost

1 otherwise, while the rest of the actions give cost 0 or 1 with

probability 1/2. From the MAB states all actions transition back to

𝑠0 with probability 1.

Since the bad state has higher cost than everyMAB state and does

not contribute to exploration at all, we can assume that all agents

choose action 𝑎1 every time they arrive to 𝑠0. Recall that transitions

are non-fresh, so all agents visit exactly the same states. This is

the critical point in our construction, as it means that exploration

is limited to the 𝐴 actions in the states that all agents visit (and

cannot remove 𝑆 from the regret).

Choosing 𝜖 as in standard MAB lower bounds, we get that the

regret from each of MAB state is Ω(
√︁
(1 +𝐴/𝑚)𝑋 ), where 𝑋 is the

total number of visits to that state. For last, 𝑋 ≈ 𝐾/𝑆 with high

probability which implies that the regret from each MAB state is

Ω(
√︁
(1 +𝐴/𝑚)𝐾/𝑆). Summing over all states and time steps, we get

the desired lower bound. We note that this is a simplified version,

missing a factor of

√
𝐻 in the second term. For the full construction

and other lower bounds, see Appendix A. □

In Section 5 we face non-fresh randomness in stochastic MDP

and present the coop-ULCAE algorithm based jointly on optimism

and action-elimination. It is important to note that, much like opti-

mistic algorithms, existing RL action elimination algorithms (e.g.,

Xu et al. [48]) are deterministic and thus fail in the cooperative non-

fresh randomness setting, even though they achieve optimal regret

for single-agent. Moreover, naive ways to make these algorithms

use stochastic policies that succeed in cooperative MAB, such as

𝑠0 𝑠𝑏

𝑠1

𝑠2 𝑠𝑆...

MAB

MAB

MAB

𝑎 ≠ 𝑎1

𝑐𝑘
ℎ
(𝑠𝑏 , ·) = 1

w.p 1/𝑆

w
.p
1

Figure 1: Lower bound construction for non-fresh random-
ness.

uniform exploration of non-eliminated arms, lead to sub-optimal re-

gret in RL because exploration must be controlled more carefully to

ensure important states are reached with large enough probability.

Hence, we develop a novel exploration method for our algorithm

which guarantees that agents can deviate from the optimistic policy

and explore potentially optimal actions with minimal effect on the

regret.

For adversarial MDP, non-fresh randomness introduces an ad-

ditional challenge. Due to correlations between the trajectories

of different agents, there is no clear and simple relation between

𝑊 𝑘
ℎ
(𝑠, 𝑎) and 𝑞𝜋𝑘

ℎ
(𝑠, 𝑎) as in the fresh randomness setting. In fact,

Equation (3) does not hold anymore. In Section 6.1 we present a

sophisticated technique for bounding the ratio 𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)/𝑊 𝑘

ℎ
(𝑠, 𝑎)

through a Linear Programming formulation. This allows us to prove

optimal regret bounds for adversarial cost and known dynamics.

Existing algorithms for adversarial cost and unknown dynam-

ics are optimistic in essence, and as mentioned before, such algo-

rithms fail to utilize cooperation under non-fresh randomness. In

Section 6.2 we overcome this challenge with a novel exploration

mechanism and prove regret that does not depend on 𝐴 (up to log-

arithmic factors) if there are at least

√
𝐾 agents. However, finding

the optimal regret for general𝑚 still remains an important open

question.

5 NON-FRESH RANDOMNESS - STOCHASTIC
MDP

As outlined in Section 4, under non-fresh randomness, we cannot let

all agents play the optimistic policy as in the fresh randomness case.

Hence, we want agents to occasionally deviate from the optimistic

policy for the purpose of exploration. A naive approach would be to

let agents explore a random action with probability 𝜖 and to follow

the optimistic policy with probability 1 − 𝜖 . That way, we get𝑚𝜖
more feedback for𝑚 ≥ 1/𝜖 and the regret of playing the optimistic

policy would scale as

√︁
𝑆𝐴𝐾/(𝑚𝜖) (ignoring dependency in 𝐻 ). On

the other hand, deviating with an arbitrary action can lead to cost

of order of 𝐻 , which happens for approximately 𝜖𝐾 episodes, so

one would have to set 𝜖 ≤
√︁
𝑆𝐴/𝐾 in order to obtain improvement

over single agent regret. Thus, the number of agents must be at

least𝑚 ≥ 1/𝜖 ≥
√︁
𝐾/(𝑆𝐴) for an improvement. In this section we

significantly reduce the number of agents required for a gain in the

regret, and show that it can depend on 𝐴 alone.

Another natural approach, which leads to optimal regret in co-

operative MAB, is action-elimination, i.e., eliminate all actions that



Algorithm 1 coop-ULCAE

1: initialize: A0

ℎ
(𝑠) = A for every 𝑠 ∈ S and ℎ ∈ [𝐻 ].

2: for 𝑘 = 1, . . . , 𝐾 do
3: Compute 𝑄𝑘 , 𝑄𝑘 based on empirical estimates.

4: Set optimistic policy 𝜋𝑘
ℎ
(𝑠) ∈ arg min𝑎∈A 𝑄

𝑘

ℎ
(𝑠, 𝑎).

5: Eliminate sub-optimal actions: remove 𝑎 from A𝑘
ℎ
(𝑠) if

∃𝑎′ ∈ A𝑘
ℎ
(𝑠) s.t. 𝑄𝑘

ℎ
(𝑠, 𝑎) > 𝑄𝑘ℎ (𝑠, 𝑎′).

6: Set policies for agents: for every 𝑣 ∈ [𝑚] sample ℎ𝑣 ∈ [𝐻 ]
uniformly at random and set:

𝜋𝑘,𝑣 =

{
𝜋𝑘 with probability 1 − 𝜖
𝜋𝑘,ℎ𝑣 with probability 𝜖,

where 𝜋
𝑘,ℎ′

ℎ
= 𝜋𝑘

ℎ
for any ℎ ≠ ℎ′ and uniform over A𝑘

ℎ
(𝑠) at

(ℎ, 𝑠).
7: Play episode 𝑘 , observe feedback and update empirical esti-

mates.

8: end for

are clearly sub-optimal and explore uniformly at random over non-

eliminated actions. However, this approach would also fail in RL be-

cause it does not explore efficiently enough. More precisely, agents

deviate too much from the optimistic policy so we cannot guarantee

that they visit important states. A closer look at action-elimination

algorithms for RL [48] reveals that they use deterministic policies

for this very reason.

Our algorithm, cooperative upper lower confidence action elim-

ination (coop-ULCAE), is presented in Algorithm 1 and in its full

version (together with the full analysis) in Appendix C. It takes

inspiration from the two previous approaches but utilizes multi-

agent exploration in a nearly optimal way. It explores only over

non-eliminated actions, but also makes sure that deviation from the

optimistic policy is minimal, thus avoiding “non-important” states.

This is achieved by playing a random non-eliminated action only

at one step during the episode, selected uniformly at random.

Formally, the algorithm maintains a set of active actions in each

state A𝑘
ℎ
(𝑠), consisting of only potentially optimal actions. In each

episode 𝑘 , it computes optimistic and pessimistic estimates of 𝑄∗,

𝑄𝑘 and 𝑄
𝑘
, respectively, such that w.h.p 𝑄𝑘

ℎ
(𝑠, 𝑎) ≤ 𝑄∗

ℎ
(𝑠, 𝑎) ≤

𝑄
𝑘
ℎ (𝑠, 𝑎). Hence, if for actions 𝑎 and 𝑎′, 𝑄𝑘ℎ (𝑠, 𝑎) > 𝑄

𝑘
ℎ (𝑠, 𝑎′), then

𝑎 is clearly sub-optimal and we can eliminate it. The policies of

the agents are determined as follows: agent 𝑣 plays the optimistic

policy (greedy with respect to 𝑄𝑘 ) with probability 1 − 𝜖 , and with

probability 𝜖 she plays the optimistic policy except for one random

time step ℎ𝑣 where she takes a uniformly random active action. The

key idea is that deviating on a single time step with an active arm

would have only minor affect on the regret, so we can set 𝜖 much

larger compared to the naive 𝜖-exploration approach described in

the beginning of this section.

Theorem 5.1. For stochastic MDP with non-fresh randomness,

coop-ULCAE ensures w.h.p 𝑅𝐾 = 𝑂

(√
𝐻5𝑆𝐾 +

√︂
𝐻 7𝑆𝐴𝐾√

𝑚

)
.

If𝑚 ≥ 𝐻4𝐴2
, the first term is dominant, in which case the regret

is nearly optimal and matches our lower bound (Theorem 4.1) up

to 𝐻3/2
. Otherwise, we have optimal dependence in 𝑆,𝐴, 𝐾 but

there is still a gap of 𝐻2
and more importantly 1/ 4

√
𝑚. Determining

the optimal dependency in𝑚 for this setting is an important open

question.

Proof sketch for Theorem 5.1. To simplify presentation, we

ignore 𝑝𝑜𝑙𝑦 (𝐻 ) factors in the proof sketch and use the notation

𝑉 𝜋 = 𝑉 𝜋
1
(𝑠init). For agent 𝑣 , we first break the regret into episodes

in which she plays the optimistic policyK𝑣OP and episodes in which

she plays an exploration policy K𝑣EXP:∑︁
𝑘∈K𝑣OP

𝑉 𝜋
𝑘

−𝑉 𝜋
★

︸                ︷︷                ︸
𝑅𝑣OP

+
∑︁

𝑘∈K𝑣EXP

𝑉 𝜋
𝑘,ℎ𝑣 −𝑉 𝜋

★

︸                    ︷︷                    ︸
𝑅𝑣EXP

.

Then, we show that the regret of playing 𝜋𝑘 is bounded by the dif-

ference between the optimistic and pessimistic estimates of𝑄★
over

the trajectory of 𝜋𝑘 . This difference shrinks with the confidence

radius and mainly scales as,

𝑅𝑣OP ≲
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)√︃

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

, (4)

where 𝑛𝑘
ℎ
(𝑠, 𝑎) = ∑𝑘−1

𝑗=1
I{∃𝑣 : 𝑠

𝑗,𝑣

ℎ
= 𝑠, 𝑎

𝑗,𝑣

ℎ
= 𝑎} is the number of

times some agent visited (𝑠, 𝑎) at time ℎ before episode 𝑘 . Now, one

can show that𝑛𝑘
ℎ
(𝑠, 𝑎) is approximately the sum of probabilities that

some agent visits (ℎ, 𝑠, 𝑎), i.e., 𝑛𝑘
ℎ
(𝑠, 𝑎) ≈ ∑𝑘−1

𝑗=1
𝑊

𝑗

ℎ
(𝑠, 𝑎). Trivially

𝑊
𝑗

ℎ
(𝑠, 𝑎) ≥ 𝑞𝜋

𝑗

ℎ
(𝑠, 𝑎), but we can further utilize the exploration of

all the agents to bound𝑊
𝑗

ℎ
(𝑠, 𝑎) in terms of𝑞

𝜋 𝑗

ℎ
(𝑠) and not𝑞𝜋

𝑗

ℎ
(𝑠, 𝑎),

as follows: With probability 1 − (1 − 𝜖/𝐻𝐴)𝑚 some agent plays the

policy 𝜋 𝑗,ℎ and takes action 𝑎 at time ℎ. In that case, she would

arrive to 𝑠 in time ℎ with probability 𝑞𝜋
𝑗,ℎ

ℎ
(𝑠). Recall that 𝜋 𝑗,ℎ and

𝜋 𝑗 are identical up to time ℎ, and so 𝑞𝜋
𝑗,ℎ

ℎ
(𝑠) = 𝑞𝜋

𝑗

ℎ
(𝑠). Also, it is

possible to show that 1 − (1 − 𝜖/𝐴)𝑚 ≈𝑚𝜖/𝐴 whenever 𝜖 ≤ 𝐴/𝑚.

Thus, we get the better bound:

𝑛𝑘
ℎ
(𝑠, 𝑎) ≈

𝑘−1∑︁
𝑗=1

𝑊
𝑗

ℎ
(𝑠, 𝑎) ≳ 𝑚𝜖

𝐴

𝑘−1∑︁
𝑗=1

𝑞
𝜋 𝑗

ℎ
(𝑠) .

Combining this with Equation (4), we obtain:

𝑅𝑣OP ≲

√︂
𝐴

𝑚𝜖

∑︁
𝑘,ℎ,𝑠

∑
𝑎 𝑞

𝜋𝑘

ℎ
(𝑠, 𝑎)√︂∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)
≲

√︂
𝑆𝐴𝐾

𝑚𝜖
, (5)

where the last relation uses

∑
𝑎∈A 𝑞

𝜋𝑘

ℎ
(𝑠, 𝑎) = 𝑞

𝜋𝑘

ℎ
(𝑠), together

with the Cauchy–Schwarz inequality and standard arguments [36,

Lemma B.18] to bound

∑
𝑘 𝑞

𝜋𝑘

ℎ
(𝑠)/∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠) ≲ log𝐾 .

For 𝑅𝑣EXP we utilize the fact that when the agent plays an ex-

ploration policy, she deviates from the optimistic policy using an

active action. Particularly, we show that similar to the regret of the

optimistic policy, the regret of the exploration episodes scales with

the difference between the optimistic and pessimistic estimates of



𝑄★
over the trajectory of 𝜋𝑘,ℎ𝑣 , but with additional penalty due to

the deviation which is overall bounded recursively by 𝑅𝑣OP, i.e.,

𝑅𝑣EXP ≲ 𝑅
𝑣
OP +

∑︁
𝑘∈K𝑣EXP

∑︁
ℎ,𝑠,𝑎

𝑞𝜋
𝑘,ℎ𝑣

ℎ
(𝑠, 𝑎)√︃

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

. (6)

While we can bound 𝑛𝑘
ℎ
(𝑠, 𝑎) as before in terms of 𝑞

𝜋 𝑗

ℎ
(𝑠), it can be

very different than 𝑞𝜋
𝑘,ℎ𝑣

ℎ
(𝑠). Intuitively, once the agent deviated

from the optimal policy, we have a much weaker guarantee on

the quality of our confidence sets in the states that she reaches

since the cooperative exploration is done over the trajectory of

the optimistic policy. Thus, we cannot use similar arguments to

the ones we used to bound 𝑅𝑣OP, and in particular Equation (4).

Instead, we only utilize samples gathered by 𝑣 in K𝑣EXP, and bound

𝑛𝑘
ℎ
(𝑠, 𝑎) ≳ ∑

𝑗 ∈K𝑣EXP, 𝑗<𝑘 𝑞
𝜋 𝑗,ℎ𝑣

ℎ
(𝑠, 𝑎). Using the fact that the number

of exploration episodes for 𝑣 is approximately |K𝑣EXP | ≈ 𝜖𝐾 and

standard arguments, the second term in Equation (6) is bounded by√
𝑆𝐴𝐾𝜖 . To finish, combine the bounds and set 𝜖 = min{ 𝐴𝑚 ,

1√
𝑚
}.
□

6 NON-FRESH RANDOMNESS - ADVERSARIAL
MDP

6.1 Known Transitions
Before tackling the most challenging model – adversarial MDP with

non-fresh randomness and unknown transitions, we first study the

case of known transitions. While some of the challenges that we

tackled in Section 5 are alleviated when transitions are known, in

this section we face additional challenges that stem from the fact

that now an adversary is choosing the sequence of cost functions

instead of them being sampled from a fixed distribution.

More precisely, under non-fresh randomness there are strong

correlations between the trajectories of different agents. This is in

stark contrast to the fresh randomness setting where, by playing

the same policy for all agents, we obtained different i.i.d samples

which enabled us to prove that our estimator has reduced variance

and therefore get an improved regret bound (Theorem 3.2). The

correlations between the agents’ trajectories introduce two main

challenges: a statistical challenge and a computational challenge.

The statistical challenge resembles the ones we faced in the sto-

chastic case (Section 5) – whenever the policy is close to being deter-

ministic, the trajectories of the agents are almost identical. However,

since costs are adversarial, here we need different techniques that

are compatible with adversarial online learning. More formally, for

a near-deterministic policy 𝜋𝑘 , we have𝑊 𝑘
ℎ
(𝑠, 𝑎) ≈ 𝑞𝜋𝑘

ℎ
(𝑠, 𝑎) which

means that there is almost no benefit from the cooperation between

the agents. Even though algorithms for adversarial environments

inherently choose stochastic policies, it is still unclear a-priori how

to bound the ratio 𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)/𝑊 𝑘

ℎ
(𝑠, 𝑎), except for the trivial bound

of 1 which leads to single-agent regret guarantees. Recall that for

fresh randomness we bounded this ratio in Equation (3) which relies

on the independence of the agents’ trajectories given the policy 𝜋𝑘 .

However, this bound no longer holds and we develop a new bound

that is suitable to the non-fresh randomness setting and builds on

a novel LP formulation.

The computational challenge follows because we no longer have

a closed-form expression to compute𝑊 𝑘
ℎ
(𝑠, 𝑎) like we had under

fresh randomness. We propose to solve this challenge by Monte

Carlo estimation of𝑊 𝑘
ℎ
(𝑠, 𝑎) which we show does not damage the

final regret guarantees.

For this setting we propose coop-nf-O-REPS, presented (to-

gether with its analysis) in Appendix F. It follows the same up-

date rule (Equation (1)) of coop-O-REPS, but instead of𝑊 𝑘
ℎ
(𝑠, 𝑎)

(which is now hard to compute) in the definition of the importance

sampling estimator (Equation (2)), it uses a Monte Carlo estimate

𝑊 𝑘
ℎ
(𝑠, 𝑎). The estimate is computed by simulating the run of multi-

ple agents playing policy 𝜋𝑘 over the MDP for𝑂 (𝐾) times and tak-

ing the fraction of times where some agent visited the state-action

pair (𝑠, 𝑎) at time ℎ. The approximation error adds a small bias of

order 𝑂 (1/
√
𝐾) which affects the total regret by only a constant

factor. We note that the computational complexity of this algorithm

is similar to standard O-REPS-based algorithms which are known to

have 𝑝𝑜𝑙𝑦 (𝐾,𝐻, 𝑆,𝐴) per-episode computational complexity [14].

Theorem 6.1. For adversarial MDP with non-fresh randomness
and known dynamics, the coop-nf-O-REPS algorithm ensures w.h.p

𝑅𝐾 = 𝑂
(
𝐻
√
𝑆𝐾 +

√︃
𝐻 2𝑆𝐴𝐾
𝑚

)
.

The above regret bound is optimal up logarithmic factors. The

lower bound can be found in Appendix A, and features a similar

construction to the one in the proof of Theorem 4.1. Note that in

Theorem 4.1 there is an extra

√
𝐻 factor in the second term, which

only appears for unknown dynamics.

Proof sketch for Theorem 6.1. Similarly to the proof of The-

orem 3.2, the regret scale with the penalty term 𝐻/[, and the stabil-
ity term [

∑
𝑘,ℎ,𝑠,𝑎 𝑞

𝜋𝑘

ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)2. Bounding the approximation

error of𝑊 𝑘
ℎ
(𝑠, 𝑎) by 𝛾/2 gives us:

(𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ≲ [
∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)

𝑊 𝑘
ℎ
(𝑠, 𝑎)

𝑐𝑘
ℎ
(𝑠, 𝑎) (7)

To further bound the right-hand-side we use a standard concen-

tration bound of 𝑐𝑘
ℎ
(𝑠, 𝑎) around 𝑐𝑘

ℎ
(𝑠, 𝑎) ≤ 1. It remains to bound

the ratio 𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)/𝑊 𝑘

ℎ
(𝑠, 𝑎) which is our main technical novelty

in this proof. Let 𝑀𝑘
ℎ
(𝑠) be the random variable that represents

the number of agents that arrive at state 𝑠 in time ℎ and denote

𝑝𝑖 = Pr[𝑀𝑘
ℎ
(𝑠) = 𝑖]. LetE𝑘 [·] denote an expectation conditioned on

everything that occurred before the start of episode 𝑘 . By definition,

𝑊 𝑘
ℎ
(𝑠, 𝑎) = E𝑘

[
1 − (1 − 𝜋𝑘

ℎ
(𝑎 | 𝑠))𝑀

𝑘
ℎ
(𝑠)

]
≥ E𝑘

[
𝑀𝑘
ℎ
(𝑠)𝜋𝑘

ℎ
(𝑎 | 𝑠)

1 +𝑀𝑘
ℎ
(𝑠)𝜋𝑘

ℎ
(𝑎 | 𝑠)

]
=

𝑚∑︁
𝑖=0

𝑝𝑖𝑖𝜋
𝑘
ℎ
(𝑎 | 𝑠)

1 + 𝑖𝜋𝑘
ℎ
(𝑎 | 𝑠)

, (8)

where the inequality holds deterministically for every realization

of𝑀𝑘
ℎ
(𝑠) (see Lemma D.3). Note that the expected value of𝑀𝑘

ℎ
(𝑠) is

𝑚𝑞𝜋
𝑘

ℎ
(𝑠), so the right-hand-side of Eq. (8) is bounded by the value



of the following linear program:

min

𝑝0,...,𝑝𝑚

𝑚∑︁
𝑖=0

𝑝𝑖
𝑖𝜋𝑘
ℎ
(𝑎 | 𝑠)

1 + 𝑖𝜋𝑘
ℎ
(𝑎 | 𝑠)

𝑠 .𝑡 .

𝑚∑︁
𝑖=0

𝑝𝑖𝑖 =𝑚𝑞
𝑘
ℎ
(𝑠) ;

𝑚∑︁
𝑖=0

𝑝𝑖 = 1.

Now, we can solve the LP by considering the dual problem (see

Lemma F.3), and get that𝑊 𝑘
ℎ
(𝑠, 𝑎) ≥ 𝑚𝑞𝜋

𝑘

ℎ
(𝑠)𝜋𝑘

ℎ
(𝑎 |𝑠)

1+𝑚𝜋𝑘
ℎ
(𝑎 |𝑠) . Hence, Eq.

(7) is bounded by [𝐻𝑆𝐾 (1 + 𝐴/𝑚), and we obtain the claim by

optimizing over [. □

6.2 Unknown Transitions
When facing adversarial MDPs with unknown transitions and non-

fresh randomness, we encounter all the challenges presented in

previous sections. The combination of these challenges makes this

model especially hard from an algorithmic perspective. Specifically,

the only way (currently) to obtain regret bounds in adversarial

MDPs with unknown dynamics is via optimism. Unfortunately, as

discussed in Sections 4 and 5, optimistic methods fail under non-

fresh randomness. Moreover, our solution for the stochastic case

is based on action-elimination so it cannot be extended to adver-

sarial costs. Instead, in this section we present a novel exploration

mechanism which guarantees near-optimal regret for large enough

number of agents. Importantly, if we used optimism, regret would

not improve even for𝑚 →∞.
We propose the coop-nf-UOB-REPS algorithm, presented in Al-

gorithm 2 and in full version (together with analysis) in Appendix G.

Similarly to coop-O-REPS and coop-nf-O-REPS, it maintains a pol-

icy 𝜋𝑘 through the O-REPS update rule (Equation (9)), however

unlike the previous algorithms, some agents play a different policy

than 𝜋𝑘 for the purpose of exploration. We now present the two key

features that allow our algorithm to perform efficient exploration

in this challenging setting.

First, we equip the algorithm with a novel exploration mech-

anism: for every (ℎ, 𝑎, 𝑘) we assign an agent 𝜎 (ℎ, 𝑎, 𝑘) to follow

𝜋𝑘 up to time ℎ, and then take action 𝑎. The rest of the agents

follow the policy 𝜋𝑘 . This exploration mechanism is motivated by

coop-ULCAE, but since costs are adversarial, we cannot eliminate

actions and thus have much weaker guarantees on the regret of the

exploration policies. As a result, we require many agents so that

each agent would explore less often. In particular, there are𝐻𝐴𝐾 tar-

gets to explore and whenever𝑚 ≥
√
𝐾 we can choose 𝜎 so that each

agent performs exploration for at most 𝐻𝐴
√
𝐾 episodes. Second, to

avoid the complex dependencies between the agents’ trajectories,

we use a new importance sampling estimator that ignores all agents

except for 𝜎 (ℎ, 𝑎, 𝑘), i.e., 𝑐𝑘
ℎ
(𝑠, 𝑎) =

𝑐𝑘
ℎ
(𝑠,𝑎)I{𝑠𝑘,𝜎 (ℎ,𝑎,𝑘 )

ℎ
=𝑠 }

𝑢𝑘
ℎ
(𝑠)+𝛾 , where

𝑢𝑘
ℎ
(𝑠) ≈ 𝑞𝜋𝑘

ℎ
(𝑠). Notice that this estimator is approximately unbi-

ased (up to 𝛾 and approximation errors) since I{𝑎𝑘,𝜎 (ℎ,𝑎,𝑘)
ℎ

= 𝑎} = 1.

Finally, since we do not know the set occupancy measures under

unknown dynamics, we use an approximation Δ(M, 𝑘) based on

empirical estimates.

Algorithm 2 coop-nf-UOB-REPS

1: initialize: define a mapping 𝜎 : [𝐻 ] × A × [𝐾] → [𝑚].
2: for 𝑘 = 1, . . . , 𝐾 do
3: Compute 𝜋𝑘

ℎ
(𝑎 | 𝑠) = 𝑞𝑘

ℎ
(𝑠, 𝑎)/𝑞𝑘

ℎ
(𝑠) for:

𝑞𝑘 = arg min

𝑞∈Δ(M,𝑘)
[⟨𝑞, 𝑐𝑘−1⟩ + KL(𝑞 ∥ 𝑞𝑘−1) . (9)

4: Set policies for agents: For every (ℎ, 𝑎, 𝑘) set the policy of

agent 𝑣 = 𝜎 (ℎ, 𝑎, 𝑘) to be:

𝜋
𝑘,𝑣

ℎ′
(𝑎′ | 𝑠) =

{
I{𝑎′ = 𝑎} ℎ′ = ℎ

𝜋𝑘
ℎ′
(𝑎′ | 𝑠) ℎ′ ≠ ℎ,

and for the rest of the agents set 𝜋𝑘,𝑣 = 𝜋𝑘 .

5: Play episode 𝑘 , observe feedback, update transition empiri-

cal estimates, and compute cost estimator 𝑐𝑘 .

6: end for

Theorem 6.2. Assume 𝑆 ≥ 𝐴 and𝑚 ≥
√
𝐾 . For adversarial MDP

with non-fresh randomness and unknown dynamics, coop-nf-O-REPS
ensures w.h.p 𝑅𝐾 = 𝑂 (𝐻2𝑆

√
𝐾).

The above result shows that optimal regret is attainable up to

factor of

√
𝐻𝑆 . Recall that the extra factor

√
𝐻𝑆 compared to the

lower bound of Theorem 4.1 also appear in the state-of-the-art

upper bound for single-agent. There is still a significant gap on

the number of agents required for optimal regret, and finding the

minimal number of agents to ensure such regret still remains an

important open problem.

Proof sketch for Theorem 6.2. The proof focuses on bound-

ing the regret of the O-REPS policies {𝜋𝑘 }𝐾
𝑘=1

, since the number

of episodes that each agent does not play these policies is at most

𝐻𝐴
√
𝐾 , resulting in extra regret of at most 𝐻2𝑆

√
𝐾 . Similarly to the

proof of Theorem 6.1 we need to bound the stability term, but here

the unknown dynamics also introduce additional approximation

errors. The analysis of the stability term resembles the proof of

Theorem 6.1 but utilizes the fact that 𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)/𝑢𝑘

ℎ
(𝑠) ≲ 𝜋𝑘

ℎ
(𝑎 | 𝑠).

The analysis of the approximation errors takes inspiration from

the proof of Theorem 5.1, and shows that it scales with the sum of

confidence radius over the trajectory of 𝜋𝑘 :

(∗) =
∑︁
ℎ,𝑠,𝑎,𝑘

𝐻
√
𝑆𝑞𝜋

𝑘

ℎ
(𝑠, 𝑎)√︃

𝑛𝑘
ℎ
(𝑠, 𝑎)

≈
∑︁
ℎ,𝑠,𝑎,𝑘

𝐻
√
𝑆𝑞𝜋

𝑘

ℎ
(𝑠, 𝑎)√︃∑𝑘−1

𝑗=1
𝑊

𝑗

ℎ
(𝑠, 𝑎)

.

We then utilize agents’ exploration to lower bound𝑊 𝑘
ℎ
(𝑠, 𝑎). Recall

that agent 𝜎 (ℎ, 𝑠, 𝑘) follows 𝜋𝑘 until time ℎ, so she arrives at 𝑠 with

probability 𝑞𝜋
𝑘

ℎ
(𝑠) and then takes action 𝑎 deterministically. Hence,

𝑊 𝑘
ℎ
(𝑠, 𝑎) ≥ 𝑞𝜋𝑘

ℎ
(𝑠), yielding:

(∗) ≲
∑︁
ℎ,𝑠,𝑘

𝐻
√
𝑆
∑
𝑎 𝑞

𝜋𝑘

ℎ
(𝑠, 𝑎)√︃∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠)

≲ 𝐻2𝑆
√
𝐾. □

7 CONCLUSIONS AND FUTUREWORK
In this paper we studied cooperation in multi-agent RL. We in-

troduced the non-fresh randomness model and characterized its



challenges compared to standard fresh randomness. We provided

nearly-matching regret lower and upper bounds in all relevant set-

tings, and developed novel techniques for handling different types

of randomness in various models.

Our work leaves two important directions for future work. First,

our regret bounds for non-fresh randomness with unknown transi-

tions are not tight for both stochastic and adversarial MDPs. Second,

we assume agents communicate through a fully-connected graph.

Extending our results to general communication graphs (as in MAB)

is an interesting future direction that would also require analyzing

delayed feedback [18, 26].
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Additional notations. While in the main paper the notation ≲ hides lower order terms and logarithmic factors, in the appendix it only

hides constant factors, i.e., 𝑥 ≲ 𝑦 if and only if 𝑥 = 𝑂 (𝑦). We use the notation E𝑘 [·] to denote an expectation conditioned on everything

that occurred before the beginning of episode 𝑘 . Furthermore, E𝑘 [· | 𝜋] denotes an expectation conditioned on everything that occurred

before the beginning of episode 𝑘 , and when playing episode 𝑘 using the policy 𝜋 . 𝑛𝑘
ℎ
(𝑠, 𝑎) denotes the number of samples we have from

(𝑠, 𝑎, ℎ) in the beginning of episode 𝑘 . More precisely, for fresh randomness 𝑛𝑘
ℎ
(𝑠, 𝑎) = ∑𝑘−1

𝑗=1

∑𝑚
𝑣=1
I{𝑠 𝑗,𝑣

ℎ
= 𝑠, 𝑎

𝑗,𝑣

ℎ
= 𝑎}, and for non-fresh

randomness 𝑛𝑘
ℎ
(𝑠, 𝑎) = ∑𝑘−1

𝑗=1
I{∃𝑣 : 𝑠

𝑗,𝑣

ℎ
= 𝑠, 𝑎

𝑗,𝑣

ℎ
= 𝑎}. Finally, Var𝑟 ( ·) [𝑓 ] denotes the variance of 𝑓 (𝑥) where 𝑥 is sampled from the

distribution 𝑟 . For transition function 𝑝 ′ and policy 𝜋 , 𝑞
𝑝′,𝜋
ℎ
(𝑠, 𝑎, 𝑠 ′) = Pr[𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎, 𝑠ℎ+1 = 𝑠 ′ | 𝑝 ′, 𝜋] denotes its occupancy measure,

𝑞
𝑝′,𝜋
ℎ
(𝑠, 𝑎) = ∑

𝑠′ 𝑞
𝑝′,𝜋
ℎ
(𝑠, 𝑎, 𝑠 ′) and 𝑞𝑝

′,𝜋
ℎ
(𝑠) = ∑

𝑎 𝑞
𝑝′,𝜋
ℎ
(𝑠, 𝑎). When the transition function is 𝑝 , we often use the shorter notation 𝑞𝜋 = 𝑞𝑝,𝜋 .

𝜋★ denotes the optimal policy (or best in hindsight), 𝑉★
denotes its values function and 𝑞★ its occupancy measure.

A LOWER BOUNDS
In this section we provide proofs for the lower bounds that appear in Table 1.

A.1 Fresh randomness
Theorem A.1 (Lower bound for stochastic MDP with fresh randomness). Let 𝑆,𝐴, 𝐻,𝑚 ∈ N and 𝐾 ≥ 𝑆𝐴𝐻 . For any algorithm ALG

there exists a stochastic MDPM with fresh randomness such that: (i)M has Θ(𝑆) states, Θ(𝐴) actions and horizon Θ(𝐻 ); (ii) Running ALG with

𝑚 agents for 𝐾 episodes suffers expected average regret of at least Ω(
√︃
𝐻 3𝑆𝐴𝐾
𝑚 ).

Proof. The proof is similar to the proof of Ito et al. [19, Theorem 4]. Notice that cooperative regret minimization with𝑚 agents for 𝐾

episodes is harder than single agent regret minimization for 𝐾𝑚 episodes, because we can solve the second problem using an algorithm for

the first problem. Simply let the agents play the first𝑚 episodes one by one, feed the feedback to the algorithm and then again let the agents

play sequentially. This implies that the cumulative expected regret of the agents is at least Ω(
√
𝐻3𝑆𝐴𝐾𝑚) by standard lower bounds for

MDPs [15]. Thus, the average expected regret is at least Ω(
√︃
𝐻 3𝑆𝐴𝐾
𝑚 ). □

Theorem A.2 (Lower bound for adversarial MDP with fresh randomness and known transition). Let 𝑆,𝐴, 𝐻,𝑚 ∈ N and
𝐾 ≥ 𝑆𝐴𝐻 . For any algorithm ALG there exists an adversarial MDPM with fresh randomness such that: (i)M has Θ(𝑆) states, Θ(𝐴) actions and
horizon Θ(𝐻 ); (ii) Running ALG with𝑚 agents for 𝐾 episodes, when the transition function is known, suffers expected average regret of at least

Ω(
√
𝐻2𝐾 +

√︃
𝐻 2𝑆𝐴𝐾
𝑚 ).

Proof. The lower bound is obtained by a combination of the following two constructions, i.e., with probability 1/2 the MDP has the

structure of the first construction and with probability 1/2 of the other one:

(1) Similarly to the proof of Theorem A.1, cooperative regret minimization with𝑚 for 𝐾 episodes is harder than single agent regret

minimization for 𝐾𝑚 episodes. Invoking the Ω(
√
𝐻2𝑆𝐴𝐾𝑚) lower bound of Zimin and Neu [57] for adversarial MDP with bandit

feedback and known transition, this gives us the Ω(
√︃
𝐻 2𝑆𝐴𝐾
𝑚 ) lower bound.

(2) Cooperative regret minimization with bandit feedback is harder than single agent regret minimization with full-information feedback

because the transition function is known so the agents share information only about the cost function (which is fully revealed under

full-information feedback). Thus, for the second construction we can simply use the construction of Zimin and Neu [57] for the

Ω(
√
𝐻2𝐾) lower bound of single agent adversarial MDP with known transition and full-information feedback. □

Theorem A.3 (Lower bound for adversarial MDP with fresh randomness and unknown transition). Let 𝑆,𝐴, 𝐻,𝑚 ∈ N and
𝐾 ≥ 𝑆𝐴𝐻 . For any algorithm ALG there exists an adversarial MDPM with fresh randomness such that: (i)M has Θ(𝑆) states, Θ(𝐴) actions and
horizon Θ(𝐻 ); (ii) Running ALG with𝑚 agents for 𝐾 episodes, when the transition function is unknown, suffers expected average regret of at least

Ω(
√
𝐻2𝐾 +

√︃
𝐻 3𝑆𝐴𝐾
𝑚 ).

Proof. Similarly to the proof of Theorem A.2 we use a combination of two constructions. The first one is the construction from

Theorem A.1 which gives the Ω(
√︃
𝐻 3𝑆𝐴𝐾
𝑚 ) lower bound, and the second one is the construction from Theorem A.2 which gives the Ω(

√
𝐻2𝐾)

lower bound. □

A.2 Non-fresh randomness
Theorem A.4 (Lower bound for adversarial MDP with non-fresh randomness and known transition). Let 𝑆,𝐴, 𝐻,𝑚 ∈ N and

𝐾 ≥ 𝑆𝐴𝐻 . For any algorithm ALG there exists an adversarial MDPM with non-fresh randomness such that: (i)M has Θ(𝑆) states, Θ(𝐴) actions
and horizon Θ(𝐻 ); (ii) Running ALG with𝑚 agents for 𝐾 episodes, when the transition function is known, suffers expected average regret of at

least Ω(
√
𝐻2𝑆𝐾 +

√︃
𝐻 2𝑆𝐴𝐾
𝑚 ).



Proof. Consider the following MDP with horizon 2𝐻 . There are 𝐴 actions 𝑎1, 𝑎2, . . . , 𝑎𝐴 and 𝑆 + 2 states: the initial state 𝑠0, a bad state 𝑠𝑏
and the MAB states 𝑠1, 𝑠2, . . . , 𝑠𝑆 . The agent starts in the initial state 𝑠0 where action 𝑎1 transitions to each of the MAB states 𝑠1, . . . , 𝑠𝑆 with

probability 1/𝑆 , and all the other actions 𝑎2, . . . , 𝑎𝐴 transition to the bad state 𝑠𝑏 . In the bad state the cost is always 1 and all the actions just

stay in it with probability 1. Each MAB state 𝑠𝑖 encodes a hard multi-arm bandit problem for each horizon step ℎ. That is, all the actions

transition back to the initial state 𝑠0, but one action (sampled uniformly at random) suffers cost 0 with probability 1/2 + 𝜖 (and otherwise 1)

while the other actions suffer cost 0 with probability 1/2, where 𝜖 ≈
√︁
𝑆𝐴/𝐾 which is standard for MAB/RL lower bounds.

Without loss of generality we can assume that all of the agents always choose action 𝑎1 in the initial state because otherwise they

transition to the bad state and suffer maximal cost. Critically, this means that all of the agents visit the same state in every time step (because

of non-fresh randomness).

Denote by 𝑇𝑖,ℎ the number of visits to MAB state 𝑠𝑖 in step ℎ. We utilize the lower bound for cooperation in multi-arm bandit [19, 40] in

order to bound the average expected regret from below by

Ω
©«E


𝑆∑︁
𝑖=1

𝐻∑︁
ℎ=1

√︄(
1 + 𝐴

𝑚

)
𝑇𝑖,2ℎ

ª®¬ = Ω

(
𝑆𝐻

√︂
1 + 𝐴

𝑚
E[
√
𝑋 ]

)
,

for 𝑋 ∼ 𝐵𝑖𝑛(𝑛 = 𝐾, 𝑝 = 1/𝑆) because in each even step size 2ℎ one of the MAB states is sampled uniformly at random. By Lemma A.7, we

have E[
√
𝑋 ] ≥ Ω(√𝑛𝑝) for 𝑛 ≥ 1/𝑝2

which proves the lower bound Ω(
√
𝐻2𝑆𝐾 +

√︃
𝐻 2𝑆𝐴𝐾
𝑚 ) for 𝐾 ≥ 𝑆2

. We note that a more involved proof

of the lower bound in each state reveals that the standard assumption 𝐾 ≥ 𝐻𝑆𝐴 is sufficient. For more details see the proof of Rosenberg

et al. [36, Theorem 2.7]. □

Theorem A.5 (Lower bound for stochastic MDP with non-fresh randomness). Let 𝑆,𝐴, 𝐻,𝑚 ∈ N and 𝐾 ≥ 𝑆𝐴𝐻 . For any algorithm
ALG there exists a stochastic MDPM with non-fresh randomness such that: (i)M has Θ(𝑆) states, Θ(𝐴) actions and horizon Θ(𝐻 ); (ii) Running
ALG with𝑚 agents for 𝐾 episodes suffers expected average regret of at least Ω(

√
𝐻2𝑆𝐾 +

√︃
𝐻 3𝑆𝐴𝐾
𝑚 ).

Proof. Similarly to the proof of Theorem A.2 we use a combination of two constructions. The first one is presented in the rest of the

proof and gives the Ω(
√︃
𝐻 3𝑆𝐴𝐾
𝑚 ) lower bound, and the second one is the construction from Theorem A.4 which gives the Ω(

√
𝐻2𝑆𝐾) lower

bound.

Consider the following MDP with horizon 2𝐻 + 1. There are 𝐴 actions 𝑎1, 𝑎2, . . . , 𝑎𝐴 and 2𝑆 + 3 states: the initial state 𝑠0, a bad state 𝑠𝑏 , a

good state 𝑠𝑔 , the MAB states 𝑠1, 𝑠2, . . . , 𝑠𝑆 , and the wait states 𝑠𝑤
1
, . . . , 𝑠𝑤

𝑆
. The agent starts in the initial state 𝑠0 where action 𝑎1 transitions

to each of the wait states 𝑠𝑤
1
, . . . , 𝑠𝑤

𝑆
with probability 1/𝑆 , and all the other actions 𝑎2, . . . , 𝑎𝐴 transition to the bad state 𝑠𝑏 . In the bad state

the cost is always 1 and all the actions just stay in it with probability 1, while in the good state the cost is always 0 and all the actions just

stay in it with probability 1.

For each 𝑖 ∈ [𝑆], the pair of states (𝑠𝑖 , 𝑠𝑤𝑖 ) encodes a hard multi-arm bandit problem with 𝐻𝐴 actions and costs either 0 or Ω(𝐻 ). In
the next paragraph we describe how the MAB problem is encoded, but first notice that this achieves the desired lower bound. In each

episode all of the agents visit the same MAB problem and do not obtain any information about the other ones. Thus, similarly to the proof of

Theorem A.4, we can utilize the lower bound for cooperation in MAB [40] in order to prove the lower bound:

Ω

(
𝑆∑︁
𝑖=1

𝐻

√︂
𝐻𝐴

𝑚
· 𝐾
𝑆

)
= Ω

(√︂
𝐻3𝑆𝐴𝐾

𝑚

)
.

Finally, we describe how to encode a hard MAB instance through the pair of state (𝑠𝑖 , 𝑠𝑤𝑖 ). In the wait state 𝑠𝑤
𝑖

the action 𝑎1 transitions to

𝑠𝑖 with probability 1, and the action 𝑎2 stays in state 𝑠𝑤
𝑖

if the step ℎ is at most 𝐻 + 2, otherwise it transitions to the bad state 𝑠𝑏 . All the other

actions 𝑎3, . . . , 𝑎𝐴 always transition to the bad state. In state 𝑠𝑖 all the actions transition to the good state 𝑠𝑔 with probability 1/2 and to the

bad state 𝑠𝑏 with probability 1/2, except for one action in a specific time step (both sampled uniformly at random) that transition to the good

state with probability 1/2 + 𝜖 (and to the bad state with probability 1/2 − 𝜖) for some 𝜖 ≈
√︁
𝑆𝐴/𝐾 which is standard for MAB/RL lower

bounds.

Notice that this is in fact MAB with 𝐻𝐴 actions since the learner needs to pick both the right action and the right horizon step. Moreover,

the cost is either 0 if the agents is successful in transitioning to the good state, or Θ(𝐻 ) if the learner transitions to the bad state (in any case

that the good state is not reached, the bad state will be reached before time step 𝐻 + 2). □

Theorem A.6 (Lower bound for adversarial MDP with non-fresh randomness and unknown transition). Let 𝑆,𝐴, 𝐻,𝑚 ∈ N
and 𝐾 ≥ 𝑆𝐴𝐻 . For any algorithm ALG there exists an adversarial MDPM with non-fresh randomness such that: (i)M has Θ(𝑆) states, Θ(𝐴)
actions and horizon Θ(𝐻 ); (ii) Running ALG with𝑚 agents for 𝐾 episodes, when the transition function is unknown, suffers expected average

regret of at least Ω(
√
𝐻2𝑆𝐾 +

√︃
𝐻 3𝑆𝐴𝐾
𝑚 ).

Proof. Follows immediately from Theorem A.5 since adversarial MDPs generalize stochastic MDPs. □



A.3 Auxiliary lemmas
Lemma A.7. Let 𝑋 ∼ 𝐵𝑖𝑛(𝑛, 𝑝) and assume that 𝑛 ≥ 1/𝑝2. Then, E[

√
𝑋 ] ≥ 0.01

√
𝑛𝑝 .

Proof. By Markov inequality we have:

E[
√
𝑋 ] ≥

√
𝑛𝑝

10

Pr

[√
𝑋 ≥

√
𝑛𝑝

10

]
=

√
𝑛𝑝

10

Pr

[
𝑋 ≥ 𝑛𝑝

100

]
=

√
𝑛𝑝

10

(
1 − Pr

[
𝑋 <

𝑛𝑝

100

] )
.

Thus, it suffices to show that Pr

[
𝑋 <

𝑛𝑝
100

]
≤ 9/10 which follows immediately from Hoeffding inequality and the assumption that 𝑛 ≥

1/𝑝2
. □



Algorithm 3 Cooperative Upper Lower Confidence Value Iteration (coop-ULCVI)

1: input: state space S, action space A, horizon 𝐻 , confidence parameter 𝛿 , number of episodes 𝐾 , number of agents𝑚.

2: initialize: 𝑛1

ℎ
(𝑠, 𝑎) = 0, 𝑛1

ℎ
(𝑠, 𝑎, 𝑠 ′) = 0,𝐶1

ℎ
(𝑠, 𝑎) = 0 ∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

3: for 𝑘 = 1, . . . , 𝐾 do

4: set 𝑝𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎) ← 𝑛𝑘

ℎ
(𝑠,𝑎,𝑠′)

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

, 𝑐𝑘
ℎ
(𝑠, 𝑎) ← 𝐶𝑘

ℎ
(𝑠,𝑎)

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

5: compute {𝜋𝑘
ℎ
(𝑠)}𝑠,ℎ via Optimistic-Pessimistic Value Iteration (Algorithm 4).

6: set 𝑛𝑘+1
ℎ
(𝑠, 𝑎) ← 𝑛𝑘

ℎ
(𝑠, 𝑎), 𝑛𝑘+1

ℎ
(𝑠, 𝑎, 𝑠 ′) ← 𝑛𝑘

ℎ
(𝑠, 𝑎, 𝑠 ′),𝐶𝑘+1

ℎ
(𝑠, 𝑎) ← 𝐶𝑘

ℎ
(𝑠, 𝑎) ∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

7: for 𝑣 = 1, . . . ,𝑚 do
8: observe initial state 𝑠

𝑘,𝑣
1

.

9: for ℎ = 1, . . . , 𝐻 do
10: pick action 𝑎

𝑘,𝑣

ℎ
= 𝜋𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
), suffer cost 𝐶𝑘,𝑣

ℎ
∼ 𝑐ℎ (𝑠𝑘,𝑣ℎ , 𝑎

𝑘,𝑣

ℎ
) and observe next state 𝑠

𝑘,𝑣

ℎ+1 ∼ 𝑝ℎ (· | 𝑠
𝑘,𝑣

ℎ
, 𝑎
𝑘,𝑣

ℎ
).

11: update 𝑛𝑘+1
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ← 𝑛𝑘+1

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) + 1, 𝑛𝑘+1

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
, 𝑠
𝑘,𝑣

ℎ+1) ← 𝑛𝑘+1
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
, 𝑠
𝑘,𝑣

ℎ+1) + 1.

12: update 𝐶𝑘+1
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ← 𝐶𝑘+1

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) +𝐶𝑘,𝑣

ℎ
.

13: end for
14: end for
15: end for

B THE COOP-ULCVI ALGORITHM FOR STOCHASTIC MDPS WITH FRESH RANDOMNESS
For the setting of stochastic MDPs with fresh randomness we propose the Cooperative Upper Lower Confidence Value Iteration algorithm

(coop-ULCVI; see Algorithm 3). The idea is simple: all the agents run the same optimistic policy, but the estimated costs and transition

models are updated based on the trajectories of all of them. Since the randomness is fresh in this setting, we expect the agents to observe𝑚

times more information. Next, we prove the following optimal regret bound for coop-ULCVI.

Theorem B.1. With probability 1 − 𝛿 , the individual regret of each agent of coop-ULCVI is

𝑅𝐾 = 𝑂

(√︂
𝐻3𝑆𝐴𝐾

𝑚
log

𝑚𝐾𝐻𝑆𝐴

𝛿
+ 𝐻3𝑆2𝐴 log

2
𝑚𝐾𝐻𝑆𝐴

𝛿

)
.

B.1 The good event, optimism and pessimism
Define the following events (for 𝜏 = 3 log

6𝑆𝐴𝐻𝐾𝑚
𝛿

):

𝐸𝑐 (𝑘) =
{
∀(𝑠, 𝑎, ℎ) : |𝑐𝑘

ℎ
(𝑠, 𝑎) − 𝑐ℎ (𝑠, 𝑎) | ≤

√︄
2𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

}
𝐸𝑝 (𝑘) =

{
∀(𝑠, 𝑎, 𝑠 ′, ℎ) : |𝑝ℎ (𝑠 ′ |𝑠, 𝑎) − 𝑝𝑘ℎ (𝑠

′ |𝑠, 𝑎) | ≤
√︄

2𝑝ℎ (𝑠 ′ |𝑠, 𝑎)𝜏
𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 2𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

}

𝐸𝑝𝑣1 (𝑘) =
∀(𝑠, 𝑎, ℎ) : |

(
(𝑝𝑘
ℎ
(·|𝑠, 𝑎) − 𝑝ℎ (·|𝑠, 𝑎)

)
·𝑉★
ℎ+1 | ≤

√√√
2Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

★
ℎ+1)𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 5𝐻𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1


𝐸𝑝𝑣2 (𝑘) =

{
∀(𝑠, 𝑎, ℎ) : |

√︃
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

★
ℎ+1) −

√︃
Var

𝑝𝑘
ℎ
( · |𝑠,𝑎) (𝑉

★
ℎ+1) | ≤

√︄
12𝐻2𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

}
The basic good event, which is the intersection of the above events, is the one used in Efroni et al. [17]. The following lemma establishes

that the good event holds with high probability. The proof is supplied in Efroni et al. [17, Lemma 13] by applying standard concentration

results.

Lemma B.2 (The First Good Event). Let G1 = ∩𝐾
𝑘=1

𝐸𝑐 (𝑘) ∩𝐾
𝑘=1

𝐸𝑝 (𝑘) ∩𝐾
𝑘=1

𝐸𝑝𝑣1 (𝑘) ∩𝐾
𝑘=1

𝐸𝑝𝑣2 (𝑘) be the basic good event. It holds that
Pr(G1) ≥ 1 − 𝛿/2.

Under the first good event, we can prove that the value is optimistic using standard techniques (similar to Efroni et al. [17, Lemma 14]).

Lemma B.3 (Upper Value Function is Pessimistic, Lower Value Function is Optimistic). Conditioned on the first good event G1, it

holds that 𝑉𝑘
ℎ
(𝑠) ≤ 𝑉★

ℎ
(𝑠) ≤ 𝑉 𝜋𝑘

ℎ
(𝑠) ≤ 𝑉𝑘ℎ (𝑠) for every 𝑘 = 1, . . . , 𝐾 , 𝑠 ∈ S and ℎ = 1, . . . , 𝐻 .



Algorithm 4 Optimistic-Pessimistic Value Iteration

1: input: state space S, action space A, horizon 𝐻 , confidence parameter 𝛿 , number of episodes 𝐾 , number of agents𝑚, visit counters 𝑛𝑘 ,

empirical transition function 𝑝𝑘 , empirical cost function 𝑐𝑘 .

2: initialize: 𝑉𝑘
𝐻+1 (𝑠) = 𝑉

𝑘
𝐻+1 (𝑠) = 0 for all 𝑠 ∈ S.

3: for ℎ = 𝐻,𝐻 − 1, . . . , 1 do
4: for 𝑠 ∈ S do
5: for 𝑎 ∈ A do
6: set the bonus 𝑏𝑘

ℎ
(𝑠, 𝑎) = 𝑏𝑘

ℎ
(𝑠, 𝑎; 𝑐) + 𝑏𝑘

ℎ
(𝑠, 𝑎;𝑝) defined as follows (for 𝜏 = 3 log

6𝑆𝐴𝐻𝐾𝑚
𝛿

),

𝑏𝑘
ℎ
(𝑠, 𝑎; 𝑐) =

√︄
2𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

𝑏𝑘
ℎ
(𝑠, 𝑎;𝑝) =

√√√√
2Var

𝑝𝑘
ℎ
( · |𝑠,𝑎) (𝑉

𝑘
ℎ+1)𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 44𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 1

16𝐻
E
𝑝𝑘
ℎ
( · |𝑠,𝑎)

[
𝑉
𝑘
ℎ+1 −𝑉𝑘ℎ+1

]
.

7: compute optimistic and pessimistic Q-functions:

𝑄𝑘
ℎ
(𝑠, 𝑎) = 𝑐𝑘

ℎ
(𝑠, 𝑎) − 𝑏𝑘

ℎ
(𝑠, 𝑎) + E

𝑝𝑘
ℎ
( · |𝑠,𝑎) [𝑉

𝑘
ℎ+1]

𝑄
𝑘
ℎ (𝑠, 𝑎) = 𝑐𝑘ℎ (𝑠, 𝑎) + 𝑏

𝑘
ℎ
(𝑠, 𝑎) + E

𝑝𝑘
ℎ
( · |𝑠,𝑎) [𝑉

𝑘
ℎ+1] .

8: end for
9: set 𝜋𝑘

ℎ
(𝑠) ∈ arg min𝑎∈A 𝑄

𝑘

ℎ
(𝑠, 𝑎).

10: set 𝑉𝑘
ℎ
(𝑠) = max{𝑄𝑘

ℎ
(𝑠, 𝜋𝑘

ℎ
(𝑠)), 0}, 𝑉𝑘ℎ (𝑠) = min{𝑄𝑘ℎ (𝑠, 𝜋𝑘ℎ (𝑠)), 𝐻 }.

11: end for
12: end for

Finally, using similar techniques to Efroni et al. [17, Lemma 21], we can prove an additional high probability event which hold alongside

the basic good event G1. To that end, we define the filtration {F 𝑘 }𝑘≥1
as the 𝜎-algebra that contains the information on all observed data

until the beginning of episode 𝑘 (including the initial state of episode 𝑘). In addition, we define the filtration {F 𝑘
ℎ
}𝑘≥1,ℎ≥1

as the 𝜎-algebra

that contains the information on all observed data until step ℎ of episode 𝑘 (including the ℎ-th state of episode 𝑘).

Lemma B.4 (The Good Event). Let G1 be the event defined in Lemma B.2. The second good event is the intersection of two events G2 =

𝐸𝑂𝑃 ∩ 𝐸Var defined as follows:

𝐸𝑂𝑃 =

{
∀ℎ ∈ [𝐻 ], 𝑣 ∈ [𝑚] :

𝐾∑︁
𝑘=1

E[𝑉𝑘ℎ (𝑠
𝑘,𝑣

ℎ
) −𝑉𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
) | F 𝑘

ℎ
] ≤ 18𝐻2𝜏 +

(
1 + 1

2𝐻

) 𝐾∑︁
𝑘=1

𝑉
𝑘
ℎ (𝑠

𝑘,𝑣

ℎ
) −𝑉𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
)
}

𝐸Var =

{
∀𝑣 ∈ [𝑚] :

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

Var
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1) ≤ 4𝐻3𝜏 + 2

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

E[Var
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1) | F
𝑘 ]

}
.

Then, the good event G = G1 ∩ G2 holds with probability at least 1 − 𝛿 .

B.2 Proof of Theorem B.1
Lemma B.5 (Key Recursion Bound). Conditioning on the good event G, the following bound holds for all ℎ ∈ [𝐻 ] and 𝑣 ∈ [𝑚].

𝐾∑︁
𝑘=1

𝑉
𝑘
ℎ (𝑠

𝑘,𝑣

ℎ
) −𝑉𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
) ≤ 18𝐻2𝜏 +

𝐾∑︁
𝑘=1

226𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
𝐾∑︁
𝑘=1

2

√
2𝜏√︃

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
𝐾∑︁
𝑘=1

2

√
2𝜏

√︂
Var

𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎
𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
(
1 + 1

2𝐻

)
2 𝐾∑︁
𝑘=1

𝑉
𝑘
ℎ+1 (𝑠

𝑘,𝑣

ℎ+1) −𝑉
𝑘
ℎ+1 (𝑠

𝑘,𝑣

ℎ+1).



Proof. We bound each of the terms in the sum as follows:

𝑉
𝑘
ℎ (𝑠

𝑘,𝑣

ℎ
) −𝑉𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
) ≤ 2𝑏𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
; 𝑐) + 2𝑏𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
;𝑝) + E

𝑝𝑘
ℎ
( · |𝑠𝑘,𝑣

ℎ
,𝑎
𝑘,𝑣

ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1]

= 2𝑏𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
; 𝑐) + 2𝑏𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
;𝑝)

+ E
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1] + (𝑝

𝑘
ℎ
− 𝑝ℎ) (·|𝑠𝑘,𝑣ℎ , 𝑎

𝑘,𝑣

ℎ
) · (𝑉𝑘ℎ+1 −𝑉𝑘ℎ+1)

≤ 2𝑏𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
; 𝑐) + 2𝑏𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
;𝑝)

+ 8𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
(
1 + 1

4𝐻

)
E
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1], (10)

where the last relation holds by Cohen et al. [10, Lemma B.13] which upper bounds

(𝑝𝑘
ℎ
− 𝑝ℎ) (·|𝑠𝑘,𝑣ℎ , 𝑎

𝑘,𝑣

ℎ
) ·

(
𝑉
𝑘
ℎ+1 −𝑉𝑘ℎ+1

)
≤ 8𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+ 1

4𝐻
E
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1]

by setting 𝛼 = 4𝐻,𝐶1 = 𝐶2 = 2 and bounding 𝐻𝜏 (2𝐶2 + 𝛼𝑆𝐶1/2) ≤ 8𝐻2𝑆𝜏 (the assumption of the lemma holds since the event ∩𝑘𝐸𝑝 (𝑘)
holds). Taking the sum over 𝑘 ∈ [𝐾] we get that

𝐾∑︁
𝑘=1

𝑉
𝑘
ℎ (𝑠

𝑘,𝑣

ℎ
) −𝑉𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
) ≤

𝐾∑︁
𝑘=1

2𝑏𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
; 𝑐) +

𝐾∑︁
𝑘=1

2𝑏𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
;𝑝) +

𝐾∑︁
𝑘=1

8𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
(
1 + 1

4𝐻

) 𝐾∑︁
𝑘=1

E
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1] . (11)

The first sum is bounded by definition by

𝐾∑︁
𝑘=1

𝑏𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
; 𝑐) ≤

𝐾∑︁
𝑘=1

√︄
2𝜏

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

,

and the second sum is bounded in Efroni et al. [17, Lemma 24] by

𝐾∑︁
𝑘=1

𝑏𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ≤

𝐾∑︁
𝑘=1

109𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
√

2𝜏

𝐾∑︁
𝑘=1

√︂
Var

𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎
𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+ 1

8𝐻

𝐾∑︁
𝑘=1

E
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1] .

Plugging this into (11) and rearranging the terms we get

𝐾∑︁
𝑘=1

𝑉
𝑘
ℎ (𝑠

𝑘,𝑣

ℎ
) −𝑉𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
) ≤

𝐾∑︁
𝑘=1

2

√
2𝜏√︃

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+ 2

√
2𝜏

𝐾∑︁
𝑘=1

√︂
Var

𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎
𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
𝑘∑︁
𝑘=1

226𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
(
1 + 1

2𝐻

) 𝐾∑︁
𝑘=1

E
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1]

≤ 18𝐻2𝜏 +
𝐾∑︁
𝑘=1

2

√
2𝜏√︃

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
𝑘∑︁
𝑘=1

226𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
𝐾∑︁
𝑘=1

2

√
2𝜏

√︂
Var

𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎
𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+
(
1 + 1

2𝐻

)
2 𝐾∑︁
𝑘=1

𝑉
𝑘
ℎ+1 (𝑠

𝑘,𝑣

ℎ+1) −𝑉
𝑘
ℎ+1 (𝑠

𝑘,𝑣

ℎ+1),

where the last inequality follows since the second good event holds. □



Proof of Theorem B.1. Start by conditioning on the good event which holds with probability greater than 1− 𝛿 . Applying the optimism-

pessimism of the upper and lower value function we get

𝐾∑︁
𝑘=1

𝑉 𝜋
𝑘

1
(𝑠𝑘,𝑣

1
) −𝑉★

1
(𝑠𝑘,𝑣

1
) ≤ 1

𝑚

𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝑉
𝑘
1
(𝑠𝑘,𝑣

1
) −𝑉𝑘

1
(𝑠𝑘,𝑣

1
). (12)

Iteratively applying Lemma B.5 and bounding the exponential growth by (1 + 1

2𝐻
)2𝐻 ≤ 𝑒 ≤ 3, the following upper bound on the cumulative

regret is obtained.

(12) ≤ 54𝐻2𝜏 + 1

𝑚

𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

678𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+ 1

𝑚

𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

6

√
2𝜏√︃

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+ 1

𝑚

𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

6

√︂
2𝜏Var

𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎
𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
)

. (13)

We now bound each of the three sums in Equation (13). We bound the first sum in Equation (13) via standard analysis as follows:

𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

1

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

=

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

=

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝑛𝑘
ℎ
(𝑠, 𝑎) ≥ 𝑚}

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝑛𝑘
ℎ
(𝑠, 𝑎) < 𝑚}

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤ 2𝐻𝑆𝐴𝜏 +
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝑛𝑘
ℎ
(𝑠, 𝑎) < 𝑚}

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤ 2𝐻𝑆𝐴𝜏 + 2𝑚𝐻𝑆𝐴 ≤ 4𝑚𝐻𝑆𝐴𝜏, (14)

where the first inequality is by Lemma B.6.

The second sum in Equation (13) is bounded as follows,

𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

1√︃
𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

≤
𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

I{𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ≥ 𝑚}√︃

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+ 2𝑚𝐻𝑆𝐴

≤

√√√ 𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

1

√√√√ 𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

I{𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ≥ 𝑚}

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ∨ 1

+ 2𝑚𝐻𝑆𝐴

≤
√
𝐾𝐻𝑚

√
2𝐻𝑆𝐴𝜏 + 24𝐻𝑆𝐴𝜏 =

√︁
2𝑚𝐻2𝑆𝐴𝐾𝜏 + 2𝑚𝐻𝑆𝐴,

where the first inequality is similar to Equation (14), the second is by Cauchy–Schwarz, and the third is by Lemma B.6.



The third sum in Equation (13) is bounded by applying the Cauchy–Schwarz inequality as follows,

𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

√︂
Var

𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎
𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
)

≤
𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

I{𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ≥ 𝑚}

√︂
Var

𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎
𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
)

+ 2𝑚𝐻2𝑆𝐴

≤

√√√ 𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

Var
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1)

√√√√ 𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

I{𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ≥ 𝑚}

𝑛𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
)

+ 2𝑚𝐻2𝑆𝐴

≤

√√√ 𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

Var
𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎

𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1)
√

2𝐻𝑆𝐴𝜏 + 2𝑚𝐻2𝑆𝐴

≤
√

2𝐻𝑆𝐴𝜏

√√√ 𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

E

[
Var

𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎
𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1) | F
𝑘

]
+ 4𝐻3𝜏 + 2𝑚𝐻2𝑆𝐴

≤
√

2𝐻𝑆𝐴𝜏

√√√ 𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

E

[
Var

𝑝ℎ ( · |𝑠𝑘,𝑣ℎ ,𝑎
𝑘,𝑣

ℎ
) (𝑉

𝜋𝑘

ℎ+1) | F
𝑘

]
+ 5𝑚𝐻2𝑆𝐴𝜏

(∗)
=
√

2𝐻𝑆𝐴𝜏

√√√√√ 𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

E


(
𝑉 𝜋

𝑘

1
(𝑠𝑘,𝑣

1
) −

𝐻∑︁
ℎ=1

𝑐ℎ (𝑠𝑘,𝑣ℎ , 𝑎
𝑘,𝑣

ℎ
)
)2

| F 𝑘
 + 5𝑚𝐻2𝑆𝐴𝜏

≤
√

2𝐻𝑆𝐴𝜏

√√√ 𝑚∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝐻2 + 5𝑚𝐻2𝑆𝐴𝜏 ≤
√︁

2𝑚𝐻3𝑆𝐴𝐾𝜏 + 5𝑚𝐻2𝑆𝐴𝜏.

where the first inequality is similar to Equation (14), the third inequality is by Lemma B.6, the forth is by event 𝐸Var
, and (∗) is by the law of

total variance [10, Lemma B.14]. □

B.3 Auxiliary lemmas
Lemma B.6. It holds that

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝑛𝑘
ℎ
(𝑠, 𝑎) ≥ 𝑚}

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤ 2𝐻𝑆𝐴 log(𝐾𝑚) .

Proof. By Rosenberg et al. [36, Lemma B.18], we have that

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝑛𝑘
ℎ
(𝑠, 𝑎) ≥ 𝑚}

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

2 log

(
𝐾∑︁
𝑘=1

𝑚∑︁
𝑣=1

I{𝑠𝑘,𝑣
ℎ

= 𝑠, 𝑎
𝑘,𝑣

ℎ
= 𝑎}

)
≤ 2𝐻𝑆𝐴 log(𝐾𝑚) . □



Algorithm 5 Cooperative Upper Lower Confidence action elimination (coop-ULCAE)

1: input: state space S, action space A, horizon 𝐻 , confidence parameter 𝛿 , number of episodes 𝐾 , number of agents𝑚, exploration

parameter 𝜖 > 0.

2: initialize: 𝑛1

ℎ
(𝑠, 𝑎) = 0, 𝑛1

ℎ
(𝑠, 𝑎, 𝑠 ′) = 0,𝐶1

ℎ
(𝑠, 𝑎) = 0,A0

ℎ
(𝑠) = A ∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

3: for 𝑘 = 1, . . . , 𝐾 do

4: set 𝑝𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎) ← 𝑛𝑘

ℎ
(𝑠,𝑎,𝑠′)

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

, 𝑐𝑘
ℎ
(𝑠, 𝑎) ← 𝐶𝑘

ℎ
(𝑠,𝑎)

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

5: compute {𝜋𝑘
ℎ
(𝑠)}𝑠,ℎ via Optimistic-Pessimistic Value Iteration (Algorithm 4).

6: set A𝑘
ℎ
(𝑠) ← A𝑘−1

ℎ
(𝑠) for every 𝑠, ℎ.

7: remove sub-optimal actions for every 𝑠, ℎ: if ∃𝑎, 𝑎′ ∈ A𝑘
ℎ
(𝑠) s.t. 𝑄𝑘

ℎ
(𝑠, 𝑎) > 𝑄𝑘ℎ (𝑠, 𝑎′), then A𝑘ℎ (𝑠) ← A

𝑘
ℎ
(𝑠)\{𝑎}.

8: set 𝐼𝑘
ℎ
(𝑠, 𝑎, 𝑠 ′) = 0, 𝐼𝑘

ℎ
(𝑠, 𝑎) = 0, 𝐼𝐶𝑘

ℎ
(𝑠, 𝑎) = 0 ∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

9: for 𝑣 = 1, . . . ,𝑚 do
10: sample ℎ𝑣 ∈ [𝐻 ] uniformly at random.

11: set 𝜋𝑘,𝑣 =

{
𝜋𝑘 with probability 1 − 𝜖
𝜋𝑘,ℎ𝑣 with probability 𝜖

, where: 𝜋
𝑘,ℎ′

ℎ
(𝑎 | 𝑠) =

𝜋
𝑘
ℎ
(𝑎 | 𝑠) ℎ ≠ ℎ′

1

A𝑘
ℎ
(𝑠) ℎ = ℎ′.

12: observe initial state 𝑠
𝑘,𝑣
1

.

13: for ℎ = 1, . . . , 𝐻 do
14: pick action 𝑎

𝑘,𝑣

ℎ
∼ 𝜋𝑘,𝑣

ℎ
(· | 𝑠𝑘,𝑣

ℎ
), suffer cost 𝐶𝑘,𝑣

ℎ
and observe next state 𝑠

𝑘,𝑣

ℎ+1.

15: update 𝐼𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ← 1, 𝐼𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
, 𝑠
𝑘,𝑣

ℎ+1) ← 1, 𝐼𝐶𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ← 𝐶

𝑘,𝑣

ℎ
.

16: end for
17: end for
18: set 𝑛𝑘+1

ℎ
(𝑠, 𝑎) ← 𝑛𝑘

ℎ
(𝑠, 𝑎) + 𝐼𝑘

ℎ
(𝑠, 𝑎), 𝑛𝑘+1

ℎ
(𝑠, 𝑎, 𝑠 ′) ← 𝑛𝑘

ℎ
(𝑠, 𝑎, 𝑠 ′) + 𝐼𝑘

ℎ
(𝑠, 𝑎, 𝑠 ′) ∀(𝑠, 𝑎, 𝑠 ′, ℎ).

19: set 𝐶𝑘+1
ℎ
(𝑠, 𝑎) ← 𝐶𝑘

ℎ
(𝑠, 𝑎) + 𝐼𝐶𝑘

ℎ
(𝑠, 𝑎) ∀(𝑠, 𝑎, ℎ).

20: end for

C THE COOP-ULCAE ALGORITHM FOR STOCHASTIC MDPS WITH NON-FRESH RANDOMNESS
For the setting of stochastic MDPs with non-fresh randomness we propose the Cooperative Upper Lower Confidence Action Elimination

algorithm (coop-ULCAE; see Algorithm 5). Recall that if all the agents play the optimistic policy (like coop-ULCVI), the regret will not improve

since the randomness is non-fresh. Thus, we want each agent to diverge from the trajectory of the optimistic policy at some point. To that

end, at some step each agent takes a random action. At the other steps it follows the optimistic policy to make sure that its regret does not

increase. Finally, since all actions have probability to be explored, we eliminate sub-optimal actions to avoid unnecessary over exploration.

Theorem C.1. With probability 1 − 𝛿 , setting 𝜖 = min{𝐻𝐴𝑚 , 1√
𝑚
}, the individual regret of each agent of coop-ULCAE is

𝑅𝐾 = 𝑂

(√︁
𝐻5𝑆𝐾 log

𝑚𝐻𝑆𝐴𝐾

𝛿
+

√︄
𝐻7𝑆𝐴𝐾
√
𝑚

log

𝑚𝐻𝑆𝐴𝐾

𝛿
+

√︂
𝐻8𝑆𝐴𝐾

𝑚
log

𝑚𝐻𝑆𝐴𝐾

𝛿

+ 𝐻5𝑆2𝐴 log
2
𝑚𝐻𝑆𝐴𝐾

𝛿
+ 𝐻

6𝑆2𝐴2

√
𝑚

log
2
𝑚𝐻𝑆𝐴𝐾

𝛿

)
.



C.1 The good event, optimism and pessimism
Define the following events (for 𝜏 = 3 log

6𝑆𝐴𝐻𝐾𝑚
𝛿

):

𝐸𝑐 (𝑘) =
{
∀(𝑠, 𝑎, ℎ) : |𝑐𝑘

ℎ
(𝑠, 𝑎) − 𝑐ℎ (𝑠, 𝑎) | ≤

√︄
2𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

}
𝐸𝑝 (𝑘) =

{
∀(𝑠, 𝑎, 𝑠 ′, ℎ) : |𝑝ℎ (𝑠 ′ |𝑠, 𝑎) − 𝑝𝑘ℎ (𝑠

′ |𝑠, 𝑎) | ≤
√︄

2𝑝ℎ (𝑠 ′ |𝑠, 𝑎)𝜏
𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 2𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

}

𝐸𝑝𝑣1 (𝑘) =
∀(𝑠, 𝑎, ℎ) : |

(
(𝑝𝑘
ℎ
(·|𝑠, 𝑎) − 𝑝ℎ (·|𝑠, 𝑎)

)
·𝑉★
ℎ+1 | ≤

√√√
2Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

★
ℎ+1)𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 5𝐻𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1


𝐸𝑝𝑣2 (𝑘) =

{
∀(𝑠, 𝑎, ℎ) : |

√︃
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

★
ℎ+1) −

√︃
Var

𝑝𝑘
ℎ
( · |𝑠,𝑎) (𝑉

★
ℎ+1) | ≤

√︄
12𝐻2𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

}

The basic good event, which is the intersection of the above events, is the one used in Efroni et al. [17]. The following lemma establishes

that the good event holds with high probability. The proof is supplied in Efroni et al. [17, Lemma 13] by applying standard concentration

results.

Lemma C.2 (The First Good Event). Let G1 = ∩𝐾
𝑘=1

𝐸𝑐 (𝑘) ∩𝐾
𝑘=1

𝐸𝑝 (𝑘) ∩𝐾
𝑘=1

𝐸𝑝𝑣1 (𝑘) ∩𝐾
𝑘=1

𝐸𝑝𝑣2 (𝑘) be the basic good event. It holds that
Pr(G1) ≥ 1 − 𝛿/2.

Under the first good event, we can prove that the value is optimistic using standard techniques (similar to Efroni et al. [17, Lemma 14]).

Lemma C.3 (Upper Value Function is Pessimistic, Lower Value Function is Optimistic). Conditioned on the first good event G1, it

holds that 𝑉𝑘
ℎ
(𝑠) ≤ 𝑉★

ℎ
(𝑠) ≤ 𝑉 𝜋

𝑘

ℎ
(𝑠) ≤ 𝑉𝑘ℎ (𝑠) and that 𝑄𝑘ℎ (𝑠, 𝑎) ≤ 𝑄

★
ℎ
(𝑠, 𝑎) ≤ 𝑄𝜋

𝑘

ℎ
(𝑠, 𝑎) ≤ 𝑄𝑘ℎ (𝑠, 𝑎) for every 𝑘 = 1, . . . , 𝐾 , 𝑠 ∈ S, 𝑎 ∈ A and

ℎ = 1, . . . , 𝐻 . Moreover, 𝜋★
ℎ
(𝑠) ∈ A𝑘

ℎ
(𝑠) for every 𝑘 = 1, . . . , 𝐾 , 𝑠 ∈ S and ℎ = 1, . . . , 𝐻 .

Finally, we define the following events that are more specific to our algorithmic action elimination framework:

𝐸𝑛1 =

∀(𝑘, ℎ, 𝑠) ∈ [𝐾] × [𝐻 ] × S ∀𝑎 ∈ A𝑘ℎ (𝑠) : 𝑛𝑘
ℎ
(𝑠, 𝑎) ≥ 𝑚𝜖

4𝐻𝐴

𝑘−1∑︁
𝑗=1

𝑞
𝜋 𝑗

ℎ
(𝑠) − log

6𝐻𝑆𝐴

𝛿


𝐸𝑛2 =

∀(𝑘, ℎ, 𝑠, 𝑎, 𝑣) ∈ [𝐾] × [𝐻 ] × S × A × [𝑚] : 𝑛𝑘
ℎ
(𝑠, 𝑎) ≥ 1

2

𝑘−1∑︁
𝑗=1

𝑞𝜋
𝑗,𝑣

ℎ
(𝑠, 𝑎) − log

6𝑚𝐻𝑆𝐴

𝛿


𝐸𝜖 =

{
∀(ℎ′, 𝑣) ∈ [𝐻 ] × [𝑚] :

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
} ≤ 𝜖

𝐻
𝐾 +

√︂
𝐾 log

6𝑚𝐻

𝛿

}

Lemma C.4 (The Second Good Event). Let G2 = 𝐸𝑛1 ∩ 𝐸𝑛2 ∩ 𝐸𝜖 be the second good event. It holds that Pr(G2) ≥ 1 − 𝛿/2.

As a direct consequence, we get that the good event G which is the intersection of G1 and G2 holds with probability 1 − 𝛿 .

Lemma C.5 (The Good Event). Let G1 be the first good event defined in Lemma C.2, and G2 be the second good event defined in Lemma C.4.
Then, the good event G = G1 ∩ G2 holds with probability 1 − 𝛿 .

Proof of Lemma C.4. We show that each of the events ¬𝐸𝑛1,¬𝐸𝑛2,¬𝐸𝜖 occur with probability at most 𝛿/6. Then, by a union bound we

obtain the statement.



Pr[¬𝐸𝑛1] ≤ 𝛿/6:Without loss of generality, assume that in each episode, each agent uniformly randomizes a permutation over all actions,

𝜎𝑘,𝑣 , and in case of exploration takes the first active arm in the permutation 𝜎𝑘,𝑣 : arg min
𝑎∈A𝑘

ℎ
(𝑠) 𝜎

𝑘,𝑣 (𝑎). For any 𝑎 ∈ A𝑘
ℎ
(𝑠),

𝑛𝑘
ℎ
(𝑠, 𝑎) =

𝑘−1∑︁
𝑗=1

I{∃𝑣 : 𝑠
𝑗,𝑣

ℎ
= 𝑠, 𝑎

𝑗,𝑣

ℎ
= 𝑎}

≥
𝑘−1∑︁
𝑗=1

I{∃𝑣 : 𝑠
𝑗,𝑣

ℎ
= 𝑠, 𝑎

𝑗,𝑣

ℎ
= 𝑎, ℎ𝑣 = ℎ, 𝜋

𝑗,𝑣 = 𝜋 𝑗,ℎ𝑣 , 𝜎 𝑗,𝑣 (𝑎) = 1}

≥
(∗)

𝑘−1∑︁
𝑗=1

I{∃𝑣 : 𝑠
𝑗,𝑣

ℎ
= 𝑠, ℎ𝑣 = ℎ, 𝜋

𝑗,𝑣 = 𝜋 𝑗,ℎ𝑣 , 𝜎
𝑗,𝑣
𝑠 (𝑎) = 1}

=
(∗∗)

𝑘−1∑︁
𝑗=1

I{𝑠 𝑗,𝜋
𝑗

ℎ
= 𝑠}I{∃𝑣 : ℎ𝑣 = ℎ, 𝜋

𝑗,𝑣 = 𝜋 𝑗,ℎ𝑣 , 𝜎
𝑗,𝑣
𝑠 (𝑎) = 1}, (15)

For (∗), recall that 𝑎 ∈ A𝑘
ℎ
(𝑠), which implies that 𝑎 ∈ A 𝑗

ℎ
(𝑠). Therefore, if ℎ𝑣 = ℎ, 𝜋 𝑗,𝑣 = 𝜋 𝑗,ℎ𝑣 , 𝜎 𝑗,𝑣 (𝑎) = 1 (that is, the agent explores ℎ, and

𝑎 is the first action in the permutation), then 𝑎𝑘
ℎ
= 𝑎. (∗∗) is because each agent that randomize ℎ𝑣 = ℎ follows the (deterministic) optimistic

until horizon ℎ. Since ℎ𝑣 , 𝜎
𝑗,𝑣

and the event {𝜋 𝑗,𝑣 = 𝜋 𝑗,ℎ𝑣 } are randomized independently,

E

[
I{𝑠 𝑗,𝜋

𝑗

ℎ
= 𝑠}I{∃𝑣 : ℎ𝑣 = ℎ, 𝜋

𝑗,𝑣 = 𝜋 𝑗,ℎ𝑣 , 𝜎
𝑗,𝑣
𝑠 (𝑎) = 1} | F 𝑗

]
=

= 𝑞
𝜋 𝑗

ℎ
(𝑠) Pr

[
∃𝑣 : ℎ𝑣 = ℎ, 𝜋

𝑗,𝑣 = 𝜋 𝑗,ℎ𝑣 , 𝜎
𝑗,𝑣
𝑠 (𝑎) = 1

]
= 𝑞

𝜋 𝑗

ℎ
(𝑠)

[
1 − Pr

[
∀𝑣 : ℎ𝑣 ≠ ℎ ∨ 𝜋 𝑗,𝑣 ≠ 𝜋 𝑗,ℎ𝑣 ∨ 𝜎 𝑗,𝑣𝑠 (𝑎) ≠ 1

] ]
= 𝑞

𝜋 𝑗

ℎ
(𝑠)

[
1 −

(
Pr[ℎ1 ≠ ℎ ∨ 𝜋 𝑗,1 ≠ 𝜋 𝑗,ℎ1 ∨ 𝜎 𝑗,1𝑠 (𝑎) ≠ 1]

)𝑚 ]
= 𝑞

𝜋 𝑗

ℎ
(𝑠)

[
1 −

(
1 − Pr[ℎ1 = ℎ, 𝜋 𝑗,1 = 𝜋 𝑗,ℎ1 , 𝜎

𝑗,1
𝑠 (𝑎) = 1]

)𝑚 ]
= 𝑞

𝜋 𝑗

ℎ
(𝑠)

[
1 −

(
1 − 𝜖

𝐻𝐴

)𝑚 ]
= 𝑞

𝜋 𝑗

ℎ
(𝑠)

[
1 −

((
1 − 𝜖

𝐻𝐴

) 𝐻𝐴
𝜖

)𝑚 𝜖
𝐻𝐴

]
≥ 𝑞𝜋

𝑗

ℎ
(𝑠)

[
1 − 𝑒−

𝑚𝜖
𝐻𝐴

]
((1 − 𝑥−1)𝑥 ≤ 𝑒)

≥ 𝑞𝜋
𝑗

ℎ
(𝑠)

[
𝑚𝜖

𝐻𝐴
− 1

2

(𝑚𝜖
𝐻𝐴

)
2

]
(𝑒−𝑥 ≤ 1 − 𝑥 + 𝑥2

2
)

≥ 𝑞𝜋
𝑗

ℎ
(𝑠) 𝑚𝜖

2𝐻𝐴
. (𝜖 ≤ 𝐻𝐴

𝑚 )

By [12][Lemma F.4] and Equation (15) we have, Pr

[
∃𝑘 : 𝑛𝑘

ℎ
(𝑠, 𝑎) < 𝑚𝜖

4𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠) − log

6𝐻𝑆𝐴
𝛿

]
≤ 𝛿

6𝐻𝑆𝐴
. By taking the union bound over

all ℎ ∈ [𝐻 ], 𝑠 ∈ S and 𝑎 ∈ A, we get Pr(¬𝐸𝑛1) ≤ 𝛿/6.
Pr[¬𝐸𝑛2] ≤ 𝛿/6: For any 𝑣 ∈ [𝑚],

𝑛𝑘
ℎ
(𝑠, 𝑎) =

𝑘−1∑︁
𝑗=1

I{∃𝑣 ′ ∈ [𝑚] : 𝑠
𝑗,𝑣′

ℎ
= 𝑠, 𝑎

𝑗,𝑣′

ℎ
= 𝑎} ≥

𝑘−1∑︁
𝑗=1

I{𝑠 𝑗,𝑣
ℎ

= 𝑠, 𝑎
𝑗,𝑣

ℎ
= 𝑎}.

Again, by [12][Lemma F.4], we get Pr

[
∃𝑘 ∈ [𝐾] : 𝑛𝑘

ℎ
(𝑠, 𝑎) < 1

2

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗,𝑣

ℎ
(𝑠, 𝑎) − log

6𝑚𝐻𝑆𝐴
𝛿

]
≤ 𝛿

6𝑚𝐻𝑆𝐴
. Taking the union bound we get

Pr[¬𝐸𝑛2] ≤ 𝛿/6.
Pr[¬𝐸𝜖 ] ≤ 𝛿/6: Directly from Hoeffding’s inequality and a union bound. □



C.2 Proof of Theorem C.1
Proof of Theorem C.1. By Lemma C.5, the good event holds with probability 1 − 𝛿 . We now analyze the regret under the assumption

that the good event holds. We start by decomposing the regret according to the policy played by agent 𝑣 :

𝑅𝐾 =

𝐾∑︁
𝑘=1

𝑉 𝜋
𝑘,𝑣

1
(𝑠𝑘,𝑣

1
) −𝑉★

1
(𝑠𝑘,𝑣

1
)

=

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘 }
(
𝑉
𝜋𝑘

1
(𝑠𝑘,𝑣

1
) −𝑉★

1
(𝑠𝑘,𝑣

1
)
)
+

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}
(
𝑉 𝜋

𝑘,ℎ′

1
(𝑠𝑘,𝑣

1
) −𝑉★

1
(𝑠𝑘,𝑣

1
)
)

≤
𝐾∑︁
𝑘=1

𝑉
𝜋𝑘

1
(𝑠𝑘,𝑣

1
) −𝑉★

1
(𝑠𝑘,𝑣

1
) +

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}
(
𝑉 𝜋

𝑘,ℎ′

1
(𝑠𝑘,𝑣

1
) −𝑉★

1
(𝑠𝑘,𝑣

1
)
)
.

For the first term we use Lemma C.12, then Lemma C.7 and then Lemma C.6:

𝐾∑︁
𝑘=1

𝑉
𝜋𝑘

1
(𝑠𝑘,𝑣

1
) −𝑉★

1
(𝑠𝑘,𝑣

1
) ≲ 𝐻

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

E𝑘


√︂
𝜏Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+ 𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


≲ 𝐻
√
𝜏

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

E𝑘


√︂

Var
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


+ 𝐻

5𝑆2𝐴2𝜏2

𝑚𝜖

≲

√︂
𝐻6𝑆𝐴𝐾𝜏2

𝑚𝜖
+ 𝐻

5𝑆2𝐴2𝜏2

𝑚𝜖
.

For the second term we use Lemma C.11, then Lemmas C.7 and C.8 and then Lemmas C.9 and C.10:

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}
(
𝑉 𝜋

𝑘,ℎ′

1
(𝑠𝑘,𝑣

1
) −𝑉★

1
(𝑠𝑘,𝑣

1
)
)
≲

≲ 𝐻
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

𝐻∑︁
ℎ=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}E𝑘


√︂
𝜏Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+ 𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘,ℎ
′


+ 𝐻2

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

𝐻∑︁
ℎ=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}E𝑘


√︂
𝜏Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+ 𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


≲ 𝐻
√
𝜏

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

𝐻∑︁
ℎ=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}E𝑘


√︂

Var
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘,ℎ
′


+ 𝐻5𝑆2𝐴𝜏2

+ 𝐻2
√
𝜏

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

𝐻∑︁
ℎ=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}E𝑘


√︂

Var
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


+ 𝐻

6𝑆2𝐴2𝜏2

𝑚𝜖

≲
√︁
𝐻7𝑆𝐴𝐾𝜖𝜏2 + 𝜏

√︁
𝐻7𝑆𝐴𝜏3𝐾1/4 + 𝐻5𝑆2𝐴𝜏2 +

√︂
𝐻8𝑆𝐴𝐾𝜏

𝑚
+

√︂
𝐻9𝑆𝐴𝜏2

𝑚𝜖
𝐾1/4 + 𝐻

6𝑆2𝐴2𝜏2

𝑚𝜖
.



Setting 𝜖 = min

{
𝐻𝐴
𝑚 , 1√

𝑚

}
, we get:

𝑅𝐾 ≲

√︂
𝐻6𝑆𝐴𝐾𝜏2

𝑚𝜖
+ 𝐻

6𝑆2𝐴2𝜏2

𝑚𝜖
+

√︁
𝐻7𝑆𝐴𝐾𝜖𝜏2 + 𝜏

√︁
𝐻7𝑆𝐴𝜏3𝐾1/4

+ 𝐻5𝑆2𝐴𝜏2 +
√︂
𝐻8𝑆𝐴𝐾𝜏

𝑚
+

√︂
𝐻9𝑆𝐴𝜏2

𝑚𝜖
𝐾1/4

≲
√︁
𝐻5𝑆𝐾𝜏2 +

√︄
𝐻7𝑆𝐴𝐾𝜏2

√
𝑚

+
√︂
𝐻8𝑆𝐴𝐾𝜏

𝑚
+ 𝐻5𝑆2𝐴𝜏2 + 𝐻

6𝑆2𝐴2𝜏2

√
𝑚

+
√︁
𝐻7𝑆𝐴𝜏3𝐾1/4 +

√︁
𝐻8𝑆𝜏2𝐾1/4 +

√︄
𝐻9𝑆𝐴𝜏2

√
𝑚

𝐾1/4

≲
√︁
𝐻5𝑆𝐾𝜏2 +

√︄
𝐻7𝑆𝐴𝐾𝜏2

√
𝑚

+
√︂
𝐻8𝑆𝐴𝐾𝜏

𝑚
+ 𝐻5𝑆2𝐴𝜏2 + 𝐻

6𝑆2𝐴2𝜏2

√
𝑚

,

where the last inequality follows because the 𝐾1/4
terms are dominant only when 𝐾 is small, and in these cases the constant terms are

larger. □

C.3 Bounds on the cumulative bonuses
Lemma C.6. Under the good event, if 𝑚𝜖

𝐻𝐴
≤ 1,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

E𝑘


√︂

Var
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


≲

√︂
𝐻4𝑆𝐴𝐾𝜏

𝑚𝜖
+ 𝐻

3𝑆𝐴2𝜏

𝑚𝜖
.



Proof. By the event 𝐸𝑛1
, we have:

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

E𝑘


√︂

Var
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


=

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

√︂
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤
∑︁
𝑠∈S

∑︁
𝑎∈A

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

√︂
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)√︂
( 𝑚𝜖

4𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠) − 𝜏) ∨ 1

≤
∑︁
𝑠∈S

∑︁
𝑎∈A

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘 :

𝑚𝜖
8𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠) ≤𝜏

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

√︂
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)︸                    ︷︷                    ︸
≤𝐻

+
∑︁
𝑠∈S

∑︁
𝑎∈A

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘 :

𝑚𝜖
8𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)>𝜏

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

√︂
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)√︂
( 𝑚𝜖

4𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠) − 𝜏) ∨ 1

≲
𝐻3𝐴2𝑆𝜏

𝑚𝜖
+

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

√︂
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)√︂
(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

≤ 𝐻3𝐴2𝑆𝜏

𝑚𝜖
+

√√√∑︁
𝑠∈S

∑︁
𝑎∈A

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)

√√√√√∑︁
𝑠∈S

∑︁
𝑎∈A

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

=
𝐻3𝐴2𝑆𝜏

𝑚𝜖
+

√√√∑︁
𝑠∈S

∑︁
𝑎∈A

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)

√√√√√∑︁
𝑠∈S

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠)

(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

,

where the last inequality is Cauchy–Schwarz inequality. Using the law of total variance [10, Lemma B.14],

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1) = E
[
𝐻∑︁
ℎ=1

Var𝑝ℎ ( · |𝑠,𝑎) (𝑉
𝜋𝑘

ℎ+1) | 𝜋
𝑘

]

= E


(
𝑉
𝜋𝑘

1
(𝑠𝑘

1
) −

∑︁
ℎ

𝑐ℎ (𝑠𝑘ℎ , 𝑎
𝑘
ℎ
)
)

2

| 𝜋𝑘
 ≤ 𝐻2 . (16)

Using Rosenberg et al. [36][Lemma B.18], since
𝑚𝜖
𝐻𝐴
≤ 1,

∑︁
𝑠∈S

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠)

(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

=
𝐻𝐴

𝑚𝜖

∑︁
𝑠∈S

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝑚𝜖
𝐻𝐴

𝑞
𝜋𝑘

ℎ
(𝑠)

(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

≲
𝐻2𝑆𝐴𝜏

𝑚𝜖
. (17)

Combining the last three inequalities completes the proof. □

Lemma C.7. Under the good event,
∑𝐾
𝑘=1

∑𝐻
ℎ=1
E𝑘

[
1

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
,𝑎𝑘
ℎ
)∨1

| 𝜋𝑘
]
≲ 𝐻 2𝑆𝐴2𝜏

𝑚𝜖 .



Proof. By the event 𝐸𝑛1
, we have:

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

E𝑘

[
1

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘
]
=

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)(

𝑚𝜖
4𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠) − 𝜏

)
∨ 1

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

∑︁
𝑘 :

𝑚𝜖
8𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠) ≤𝜏

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎) +

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

∑︁
𝑘 :

𝑚𝜖
8𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)>𝜏

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)(

𝑚𝜖
4𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠) − 𝜏

)
∨ 1

≲
𝐻2𝑆𝐴2𝜏

𝑚𝜖
+ 𝐻𝐴
𝑚𝜖

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)(∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)

)
∨ 1

≲
𝐻2𝑆𝐴2𝜏

𝑚𝜖
,

where the last inequality follows from Rosenberg et al. [36][Lemma B.18]. □

Lemma C.8. Let ℎ′ ∈ [𝐻 ]. Under the good event, ∑𝐾
𝑘=1

∑𝐻
ℎ=1
I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}E𝑘

[
1

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
,𝑎𝑘
ℎ
)∨1

| 𝜋𝑘,ℎ′
]
≲ 𝐻𝑆𝐴𝜏 .

Proof. By the event 𝐸𝑛2
, we have:

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}
𝐻∑︁
ℎ=1

E𝑘

[
1

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘,ℎ
′
]
=

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}
𝑞𝜋

𝑘,ℎ′

ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}

𝑞𝜋
𝑘,ℎ′

ℎ
(𝑠, 𝑎)(

1

2

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗,𝑣

ℎ
(𝑠, 𝑎) − 𝜏

)
∨ 1

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋𝑘,ℎ
′

ℎ
(𝑠, 𝑎)(

1

2

∑𝑘−1

𝑗=1
I{𝜋 𝑗,𝑣 = 𝜋 𝑗,ℎ′}𝑞𝜋 𝑗,ℎ

′

ℎ
(𝑠, 𝑎) − 𝜏

)
∨ 1

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

∑︁
𝑘 :

1

4

∑𝑘−1

𝑗=1
I{𝜋 𝑗,𝑣=𝜋 𝑗,ℎ′ }𝑞𝜋 𝑗,ℎ

′
ℎ

(𝑠,𝑎) ≤𝜏

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}𝑞𝜋

𝑘,ℎ′

ℎ
(𝑠, 𝑎)

+
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

∑︁
𝑘 :

1

4

∑𝑘−1

𝑗=1
I{𝜋 𝑗,𝑣=𝜋 𝑗,ℎ′ }𝑞𝜋 𝑗,ℎ

′
ℎ

(𝑠,𝑎)>𝜏

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋𝑘,ℎ
′

ℎ
(𝑠, 𝑎)(

1

2

∑𝑘−1

𝑗=1
I{𝜋 𝑗,𝑣 = 𝜋 𝑗,ℎ′}𝑞𝜋 𝑗,ℎ

′

ℎ
(𝑠, 𝑎) − 𝜏

)
∨ 1

≲ 𝐻𝑆𝐴𝜏 +
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋𝑘,ℎ
′

ℎ
(𝑠, 𝑎)(∑𝑘−1

𝑗=1
I{𝜋 𝑗,𝑣 = 𝜋 𝑗,ℎ′}𝑞𝜋 𝑗,ℎ

′

ℎ
(𝑠, 𝑎)

)
∨ 1

≲ 𝐻𝑆𝐴𝜏,

where the last inequality follows [36][Lemma B.18]. □

Lemma C.9. Let ℎ′ ∈ [𝐻 ]. Under the good event,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}E𝑘


√︂

Var
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘,ℎ
′


≲

√︁
𝐻3𝑆𝐴𝐾𝜖𝜏 + 𝜏

√︁
𝐻3𝑆𝐴𝐾1/4 + 𝐻𝑆𝐴𝜏.



Proof. First we bound

√︂
Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1) by 𝐻 . Now, under the good event,

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}
𝐻∑︁
ℎ=1

E𝑘


1√︃

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘,ℎ
′
 =

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}
𝑞𝜋

𝑘,ℎ′

ℎ
(𝑠, 𝑎)√︃

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}

𝑞𝜋
𝑘,ℎ′

ℎ
(𝑠, 𝑎)√︂(

1

2

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗,𝑣

ℎ
(𝑠, 𝑎) − 𝜏

)
∨ 1

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋𝑘,ℎ
′

ℎ
(𝑠, 𝑎)√︂(

1

2

∑𝑘−1

𝑗=1
I{𝜋 𝑗,𝑣 = 𝜋 𝑗,ℎ′}𝑞𝜋 𝑗,ℎ

′

ℎ
(𝑠, 𝑎) − 𝜏

)
∨ 1

≲ 𝐻𝑆𝐴𝜏 +
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋𝑘,ℎ
′

ℎ
(𝑠, 𝑎)√︂(∑𝑘−1

𝑗=1
I{𝜋 𝑗,𝑣 = 𝜋 𝑗,ℎ′}𝑞𝜋 𝑗,ℎ

′

ℎ
(𝑠, 𝑎)

)
∨ 1

≤

√√√√√ 𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋𝑘,ℎ
′

ℎ
(𝑠, 𝑎)(∑𝑘−1

𝑗=1
I{𝜋 𝑗,𝑣 = 𝜋 𝑗,ℎ′}𝑞𝜋 𝑗,ℎ

′

ℎ
(𝑠, 𝑎)

)
∨ 1

√√√ 𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋𝑘,ℎ
′

ℎ
(𝑠, 𝑎)

+ 𝐻𝑆𝐴𝜏,

where the first inequality is by 𝐸𝑛2
, the second inequality is done by breaking the sum to 𝑘s such that

1

4

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗,𝑣

ℎ
(𝑠, 𝑎) ≤ 𝜏 and the rest of

the 𝑘s, as done in the proof of Lemma C.8 for example, and the last is Cauchy–Schwarz inequality. By Rosenberg et al. [36][Lemma B.18],

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋𝑘,ℎ
′

ℎ
(𝑠, 𝑎)(∑𝑘−1

𝑗=1
I{𝜋 𝑗,𝑣 = 𝜋 𝑗,ℎ′}𝑞𝜋 𝑗,ℎ

′

ℎ
(𝑠, 𝑎)

)
∨ 1

≲ 𝐻𝑆𝐴𝜏.

By the good event 𝐸𝜖 ,

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}𝑞𝜋

𝑘,ℎ′

ℎ
(𝑠, 𝑎) = 𝐻

𝐾∑︁
𝑘=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
} ≤ 𝐾𝜖 +

√
𝐾𝜏. □

Lemma C.10. Under the good event,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

𝐻∑︁
ℎ=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}E𝑘


√︂

Var
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


≲

√︂
𝐻4𝑆𝐴𝐾𝜏

𝑚
+

√︂
𝐻5𝑆𝐴𝜏2

𝑚𝜖
𝐾1/4 + 𝐻

3𝐴2𝑆𝜏

𝑚𝜖
.



Proof. By the event 𝐸𝑛1
, we have:

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

𝐻∑︁
ℎ=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}E𝑘


√︂

Var
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


=

=

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A
I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ

′
}
𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

√︂
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

≤
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A
I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ

′
}
𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

√︂
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)√︂
( 𝑚𝜖

4𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠) − 𝜏) ∨ 1

≲
𝐻3𝐴2𝑆𝜏

𝑚𝜖
+

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A
I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ

′
}
𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)

√︂
Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)√︂
(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

≤
√︄ ∑︁
𝑘,ℎ′,ℎ,𝑠,𝑎

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)

√√√√√ ∑︁
𝑘,ℎ′,ℎ,𝑠,𝑎

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)

(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

+ 𝐻
3𝐴2𝑆𝜏

𝑚𝜖

=

√︄∑︁
𝑘,ℎ′
I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}

∑︁
ℎ,𝑠,𝑎

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1)

√√√√√ ∑︁
𝑘,ℎ′,ℎ,𝑠

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋
𝑘

ℎ
(𝑠)

(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

+ 𝐻
3𝐴2𝑆𝜏

𝑚𝜖
,

where the last inequality is by Cauchy-Schwarz. By Equation (16) and the good event 𝐸𝜖 ,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞
𝜋𝑘

ℎ
(𝑠, 𝑎)Var𝑝ℎ ( · |𝑠,𝑎) (𝑉

𝜋𝑘

ℎ+1) ≤ 𝐻
2

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ′=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ
′
}

≤ 𝐻2𝐾𝜖 + 𝐻3

√︂
𝐾 log

𝑚𝐻

𝛿 ′
.

For last,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

𝐻∑︁
ℎ′=1

I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′}𝑞𝜋
𝑘

ℎ
(𝑠)

(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

≤
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

𝑞
𝜋𝑘

ℎ
(𝑠)

(𝑚𝜖
𝐻𝐴

∑𝑘−1

𝑗=1
𝑞
𝜋 𝑗

ℎ
(𝑠)) ∨ 1

≲
𝐻2𝑆𝐴𝜏

𝑚𝜖
,

where the first inequality is since

∑𝐻
ℎ′=1
I{𝜋𝑘,𝑣 = 𝜋𝑘,ℎ′} ≤ 1 and the last is as in Equation (17). Combining the last three inequalities completes

the proof. □



C.4 Bounding the regret of 𝜋𝑘,ℎ
′
and the optimistic policy

Lemma C.11. Under the good event, for every 𝑘 ∈ [𝐾] it holds that:

𝑉 𝜋
𝑘,ℎ′

1
(𝑠𝑘

1
) −𝑉★

1
(𝑠𝑘

1
) ≲ 𝐻

𝐻∑︁
ℎ=1

E𝑘


√︂
𝜏Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+ 𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘,ℎ
′


+ 𝐻2

𝐻∑︁
ℎ=1

E𝑘


√︂
𝜏Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+ 𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


.

Proof. Apply Lemma C.13 for every 𝑘 ∈ [𝐾] and then apply Lemmas C.16 to C.19 iteratively. □

Lemma C.12. Under the good event, for every 𝑘 ∈ [𝐾] it holds that:

𝑉
𝜋𝑘

1
(𝑠𝑘

1
) −𝑉★

1
(𝑠𝑘

1
) ≲ 𝐻

𝐻∑︁
ℎ=1

E𝑘


√︂
𝜏Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+ 𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


.

Proof. Similar to the proof of Lemma C.11. □

Lemma C.13. Let ℎ′ ∈ [𝐻 ]. Under the good event, for every 𝑘 ∈ [𝐾] it holds that:

𝑉 𝜋
𝑘,ℎ′

1
(𝑠𝑘

1
) −𝑉★

1
(𝑠𝑘

1
) ≤

𝐻∑︁
ℎ=1

E𝑘
[
𝑄
𝑘
ℎ (𝑠𝑘ℎ , 𝑎

𝑘
ℎ
) −𝑄𝑘

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) | 𝜋𝑘,ℎ

′ ]
+ E𝑘

[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) −𝑄

𝑘

ℎ′
(𝑠𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′
]
.

Proof. It holds that:

𝑉 𝜋
𝑘,ℎ′

1
(𝑠𝑘

1
) −𝑉★

1
(𝑠𝑘

1
) = 𝑉 𝜋

𝑘,ℎ′

1
(𝑠𝑘

1
) −𝑉★

1
(𝑠𝑘

1
) =

∑︁
ℎ

E𝑘
[
⟨𝑄★
ℎ
(𝑠𝑘
ℎ
, ·), 𝜋𝑘,ℎ

′
(· | 𝑠𝑘

ℎ
) − 𝜋★

ℎ
(· | 𝑠𝑘

ℎ
)⟩ | 𝜋𝑘,ℎ

′ ]
=

∑︁
ℎ

E𝑘
[
𝑄★
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) −𝑉★

ℎ
(𝑠𝑘
ℎ
) | 𝜋𝑘,ℎ

′ ]
≤

∑︁
ℎ

E𝑘
[
𝑄
𝑘
ℎ (𝑠𝑘ℎ , 𝑎

𝑘
ℎ
) −𝑉𝑘

ℎ
(𝑠𝑘
ℎ
) | 𝜋𝑘,ℎ

′ ]
=

∑︁
ℎ

E𝑘
[
𝑄
𝑘
ℎ (𝑠𝑘ℎ , 𝑎

𝑘
ℎ
) −𝑄𝑘

ℎ
(𝑠𝑘
ℎ
, 𝜋𝑘
ℎ
(𝑠𝑘
ℎ
)) | 𝜋𝑘,ℎ

′ ]
=

∑︁
ℎ≠ℎ′
E𝑘

[
𝑄
𝑘
ℎ (𝑠𝑘ℎ , 𝑎

𝑘
ℎ
) −𝑄𝑘

ℎ
(𝑠𝑘
ℎ
, 𝜋𝑘
ℎ
(𝑠𝑘
ℎ
)) | 𝜋𝑘,ℎ

′ ]
+ E𝑘

[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝑎

𝑘
ℎ′) −𝑄

𝑘

ℎ′
(𝑠𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′
]

=
∑︁
ℎ≠ℎ′
E𝑘

[
𝑄
𝑘
ℎ (𝑠𝑘ℎ , 𝑎

𝑘
ℎ
) −𝑄𝑘

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) | 𝜋𝑘,ℎ

′ ]
+ E𝑘

[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝑎

𝑘
ℎ′) −𝑄

𝑘

ℎ′
(𝑠𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′
]

≤
∑︁
ℎ

E𝑘
[
𝑄
𝑘
ℎ (𝑠𝑘ℎ , 𝑎

𝑘
ℎ
) −𝑄𝑘

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) | 𝜋𝑘,ℎ

′ ]
+ E𝑘

[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) −𝑄

𝑘

ℎ′
(𝑠𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′
]
.

The first inequality is by Lemma C.3, the last equality is since 𝜋𝑘,ℎ
′
= 𝜋𝑘 for any ℎ ≠ ℎ′ and the last inequality is by Lemma C.15. □

Lemma C.14. Under the good event, for every 𝑘 ∈ [𝐾] it holds that:

𝑉
𝜋𝑘

1
(𝑠𝑘

1
) −𝑉★

1
(𝑠𝑘

1
) ≤

𝐻∑︁
ℎ=1

E𝑘
[
𝑄
𝑘
ℎ (𝑠𝑘ℎ , 𝑎

𝑘
ℎ
) −𝑄𝑘

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) | 𝜋𝑘

]
.

Proof. Similar to the proof of Lemma C.13. □



C.5 Auxiliary lemmas
Lemma C.15. If 𝑎, 𝑎′ ∈ A𝑘

ℎ
(𝑠) then,

𝑄
𝑘
ℎ (𝑠, 𝑎) −𝑄𝑘ℎ (𝑠

𝑘
ℎ
, 𝑎′) ≤ 𝑄𝑘ℎ (𝑠, 𝑎) −𝑄𝑘ℎ (𝑠, 𝑎) +𝑄

𝑘
ℎ (𝑠, 𝑎′) −𝑄𝑘ℎ (𝑠, 𝑎

′) .

Proof. Since 𝑎, 𝑎′ ∈ A𝑘
ℎ
(𝑠), we have that 𝑄𝑘

ℎ
(𝑠, 𝑎) ≤ 𝑄𝑘ℎ (𝑠, 𝑎′). Thus:

𝑄
𝑘
ℎ (𝑠, 𝑎) −𝑄𝑘ℎ (𝑠, 𝑎

′) = 𝑄𝑘ℎ (𝑠, 𝑎) −𝑄𝑘ℎ (𝑠, 𝑎) +𝑄
𝑘
ℎ (𝑠, 𝑎′) −𝑄𝑘ℎ (𝑠, 𝑎

′) +𝑄𝑘
ℎ
(𝑠, 𝑎) −𝑄𝑘ℎ (𝑠, 𝑎′)︸                   ︷︷                   ︸

≤0

. □

Lemma C.16 (Recursion with Optimistic Next-Action). Let ℎ ≠ ℎ′ − 1. Under the good event, for every 𝑘 ∈ [𝐾] it holds that:

E𝑘
[
𝑄
𝑘
ℎ (𝑠𝑘ℎ , 𝑎

𝑘
ℎ
) −𝑄

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) | 𝜋𝑘,ℎ

′ ]
≤ E𝑘


8

√︂
𝜏Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+ 118𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘,ℎ
′


+

(
1 + 1

4𝐻

)
E𝑘

[
𝑄
𝑘
ℎ+1 (𝑠𝑘ℎ+1, 𝑎

𝑘
ℎ+1) −𝑄

𝑘

ℎ+1 (𝑠
𝑘
ℎ+1, 𝑎

𝑘
ℎ+1) | 𝜋

𝑘,ℎ′
]
.

Proof. By definition of the optimistic and pessimistic 𝑄-functions, we have:

E𝑘 [𝑄𝑘ℎ (𝑠𝑘ℎ , 𝑎
𝑘
ℎ
) −𝑄

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) | 𝜋𝑘,ℎ

′
] =

= E𝑘 [2𝑏𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ

; 𝑐) + 2𝑏𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ

;𝑝) | 𝜋𝑘,ℎ
′
]

+ E𝑘
[
E
𝑝𝑘
ℎ
( · |𝑠𝑘

ℎ
,𝑎𝑘
ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1] | 𝜋

𝑘,ℎ′
]

≤ E𝑘 [2𝑏𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ

; 𝑐) + 2𝑏𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ

;𝑝) | 𝜋𝑘,ℎ
′
]

+ E𝑘
[

18𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+
(
1 + 1

16𝐻

)
E
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1] | 𝜋

𝑘,ℎ′
]

= E𝑘

[
2𝑏𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ

; 𝑐) + 2𝑏𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ

;𝑝) + 18𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘,ℎ
′
]

+
(
1 + 1

16𝐻

)
E𝑘

[
E
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) [𝑉

𝑘
ℎ+1 (𝑠𝑘ℎ+1) −𝑉

𝑘
ℎ+1 (𝑠

𝑘
ℎ+1)] | 𝜋

𝑘,ℎ′
]

≤ E𝑘


8

√︂
𝜏Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+ 118𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘,ℎ
′


+

(
1 + 1

4𝐻

)
E𝑘

[
E
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1] | 𝜋

𝑘,ℎ′
]



where the first inequality is by Cohen et al. [10, Lemma B.13], and the second one is by Cohen et al. [10, Lemma B.6]. Let 𝜋𝑘
ℎ
(𝑠) =

arg min𝑎 𝑄
𝑘
ℎ (𝑠, 𝑎). For the last term we have:

E𝑘
[
E
𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎

𝑘
ℎ
) [𝑉

𝑘
ℎ+1 −𝑉𝑘ℎ+1] | 𝜋

𝑘,ℎ′
]
=

=
∑︁

ℎ,𝑠,𝑎,𝑠′
𝑞𝜋

𝑘,ℎ′

ℎ
(𝑠, 𝑎)𝑝ℎ (𝑠 ′ | 𝑠, 𝑎)

(
𝑉
𝑘
ℎ+1 (𝑠 ′) −𝑉𝑘ℎ+1 (𝑠

′)
)

=
∑︁
ℎ,𝑠

𝑞𝜋
𝑘,ℎ′

ℎ+1 (𝑠)
(
𝑉
𝑘
ℎ+1 (𝑠) −𝑉𝑘ℎ+1 (𝑠)

)
= E𝑘

[
𝑉
𝑘
ℎ+1 (𝑠𝑘ℎ+1) −𝑉

𝑘
ℎ+1 (𝑠

𝑘
ℎ+1) | 𝜋

𝑘,ℎ′
]

= E𝑘
[
𝑄
𝑘
ℎ+1 (𝑠𝑘ℎ+1, 𝜋

𝑘
ℎ+1 (𝑠

𝑘
ℎ+1)) −𝑄

𝑘

ℎ+1 (𝑠
𝑘
ℎ+1, 𝜋

𝑘
ℎ+1 (𝑠

𝑘
ℎ+1)) | 𝜋

𝑘,ℎ′
]

≤ E𝑘
[
𝑄
𝑘
ℎ+1 (𝑠𝑘ℎ+1, 𝑎

𝑘
ℎ+1) −𝑄

𝑘

ℎ+1 (𝑠
𝑘
ℎ+1, 𝜋

𝑘
ℎ+1 (𝑠

𝑘
ℎ+1)) | 𝜋

𝑘,ℎ′
]

= E𝑘
[
𝑄
𝑘
ℎ+1 (𝑠𝑘ℎ+1, 𝑎

𝑘
ℎ+1) −𝑄

𝑘

ℎ+1 (𝑠
𝑘
ℎ+1, 𝑎

𝑘
ℎ+1) | 𝜋

𝑘,ℎ′
]
,

where the last equality follows because ℎ ≠ ℎ′ − 1. □

Lemma C.17 (Recursion with Non-Optimistic Next-Action). Let ℎ′ ∈ [𝐻 ]. Under the good event, for every 𝑘 ∈ [𝐾] it holds that:

E𝑘
[
𝑄
𝑘
ℎ′−1
(𝑠𝑘
ℎ′−1

, 𝑎𝑘
ℎ′−1
) −𝑄

ℎ′−1

(𝑠𝑘
ℎ′−1

, 𝑎𝑘
ℎ′−1
) | 𝜋𝑘,ℎ

′ ]
≤

≤ E𝑘


8

√︂
𝜏Var

𝑝ℎ′−1
( · |𝑠𝑘

ℎ′−1

,𝑎𝑘
ℎ′−1

) (𝑉
𝜋𝑘

ℎ′
)√︃

𝑛𝑘
ℎ′−1
(𝑠𝑘
ℎ′−1

, 𝑎𝑘
ℎ′−1
) ∨ 1

+ 118𝐻2𝑆𝜏

𝑛𝑘
ℎ′−1
(𝑠𝑘
ℎ′−1

, 𝑎𝑘
ℎ′−1
) ∨ 1

| 𝜋𝑘,ℎ
′


+

(
1 + 1

4𝐻

)
E𝑘

[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝑎

𝑘
ℎ′) −𝑄

𝑘

ℎ′
(𝑠𝑘
ℎ′, 𝑎

𝑘
ℎ′) | 𝜋

𝑘,ℎ′
]

+
(
1 + 1

4𝐻

)
E𝑘

[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) −𝑄

𝑘

ℎ′
(𝑠𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′
]
.

Proof. Similarly to Lemma C.16, we have,

E𝑘
[
𝑄
𝑘
ℎ′−1
(𝑠𝑘
ℎ′−1

, 𝑎𝑘
ℎ′−1
) −𝑄

ℎ′−1

(𝑠𝑘
ℎ′−1

, 𝑎𝑘
ℎ′−1
) | 𝜋𝑘,ℎ

′ ]
≤

≤ E𝑘


8

√︂
𝜏Var

𝑝ℎ′−1
( · |𝑠𝑘

ℎ′−1

,𝑎𝑘
ℎ′−1

) (𝑉
𝜋𝑘

ℎ′
)√︃

𝑛𝑘
ℎ′−1
(𝑠𝑘
ℎ′−1

, 𝑎𝑘
ℎ′−1
) ∨ 1

+ 118𝐻2𝑆𝜏

𝑛𝑘
ℎ′−1
(𝑠𝑘
ℎ′−1

, 𝑎𝑘
ℎ′−1
) ∨ 1

| 𝜋𝑘,ℎ
′


+

(
1 + 1

4𝐻

)
E𝑘

[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝑎

𝑘
ℎ′) −𝑉

𝑘
ℎ′ (𝑠

𝑘
ℎ′) | 𝜋

𝑘,ℎ′
]
.

Now, by Lemma C.15,

E𝑘
[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝑎

𝑘
ℎ′) −𝑉

𝑘
ℎ′ (𝑠

𝑘
ℎ′) | 𝜋

𝑘,ℎ′
]
= E𝑘

[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝑎

𝑘
ℎ′) −𝑄

𝑘

ℎ′
(𝑠𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′
]

≤ E𝑘
[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝑎

𝑘
ℎ′) −𝑄

𝑘

ℎ′
(𝑠𝑘
ℎ′, 𝑎

𝑘
ℎ′) | 𝜋

𝑘,ℎ′
]

+ E𝑘
[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) −𝑄

𝑘

ℎ′
(𝑠𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′
]
. □



Lemma C.18 (Exploration Penalty Term Recursion). Let ℎ′ ∈ [𝐻 ]. Under the good event, for every 𝑘 ∈ [𝐾] it holds that:

E𝑘
[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) −𝑄ℎ′ (𝑠

𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′
]
≤

≤ E𝑘


8

√︂
𝜏Var

𝑝ℎ′ ( · |𝑠𝑘ℎ′ ,𝑎
𝑘
ℎ′ )
(𝑉 𝜋

𝑘

ℎ′+1)√︃
𝑛𝑘
ℎ′
(𝑠𝑘
ℎ′
, 𝑎𝑘
ℎ′
) ∨ 1

+ 118𝐻2𝑆𝜏

𝑛𝑘
ℎ′
(𝑠𝑘
ℎ′
, 𝑎𝑘
ℎ′
) ∨ 1

| 𝜋𝑘


+

(
1 + 1

4𝐻

)
E𝑘

[
𝑄
𝑘
ℎ′+1 (𝑠𝑘ℎ′+1, 𝑎

𝑘
ℎ′+1) −𝑄

𝑘

ℎ′+1 (𝑠
𝑘
ℎ′+1, 𝑎

𝑘
ℎ′+1) | 𝜋

𝑘
]
.

Proof. Again, similar to Lemma C.16,

E𝑘
[
𝑄
𝑘
ℎ′ (𝑠𝑘ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) −𝑄ℎ′ (𝑠

𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′
]
≤

≤ E𝑘


8

√︂
𝜏Var

𝑝ℎ′ ( · |𝑠𝑘ℎ′ ,𝜋
𝑘
ℎ′ (𝑠

𝑘
ℎ′ ))
(𝑉 𝜋

𝑘

ℎ′+1)√︃
𝑛𝑘
ℎ′
(𝑠𝑘
ℎ′
, 𝜋𝑘
ℎ′
(𝑠𝑘
ℎ′
)) ∨ 1

+ 118𝐻2𝑆𝜏

𝑛𝑘
ℎ′
(𝑠𝑘
ℎ′
, 𝜋𝑘
ℎ′
(𝑠𝑘
ℎ′
)) ∨ 1

| 𝜋𝑘,ℎ
′


+

(
1 + 1

4𝐻

)
E𝑘

[
E
𝑝ℎ′ ( · |𝑠𝑘ℎ′ ,𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′ ))
[𝑉𝑘ℎ+1 −𝑉𝑘ℎ+1] | 𝜋

𝑘,ℎ′
]

Note that 𝑞𝜋
𝑘,ℎ′

ℎ′
(𝑠) = 𝑞𝜋

𝑘

ℎ′
(𝑠) since until step ℎ′ the policies are the same, i.e., 𝜋

ℎ′,𝑘
ℎ

= 𝜋𝑘
ℎ
for all ℎ < ℎ′. Hence, denoting the first term above

by E𝑘 [𝑥 (𝑠𝑘
ℎ′
, 𝜋𝑘
ℎ′
(𝑠𝑘
ℎ′
)) | 𝜋𝑘,ℎ′], we can write

E𝑘 [𝑥 (𝑠𝑘
ℎ′, 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′)) | 𝜋

𝑘,ℎ′] =
∑︁
𝑠

𝑞𝜋
𝑘,ℎ′

ℎ′ (𝑠)𝑥 (𝑠, 𝜋
𝑘
ℎ′ (𝑠)) =

∑︁
𝑠

𝑞
𝜋𝑘

ℎ′
(𝑠)𝑥 (𝑠, 𝜋𝑘

ℎ′ (𝑠))

=
∑︁
𝑠,𝑎

𝑞
𝜋𝑘

ℎ′
(𝑠, 𝑎)𝑥 (𝑠, 𝑎) = E𝑘 [𝑥 (𝑠𝑘

ℎ′, 𝑎
𝑘
ℎ′) | 𝜋

𝑘 ],

where the third equality is since 𝜋𝑘 is deterministic. In a similar way, the second term can bounded by,

E𝑘
[
E
𝑝ℎ′ ( · |𝑠𝑘ℎ′ ,𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′ ))
[𝑉𝑘ℎ+1 −𝑉𝑘ℎ+1] | 𝜋

𝑘,ℎ′
]
=

=
∑︁
𝑠,𝑠′

𝑞𝜋
𝑘,ℎ′

ℎ′ (𝑠)𝑝ℎ′ (· | 𝑠
𝑘
ℎ
, 𝜋𝑘
ℎ′ (𝑠

𝑘
ℎ′))

(
𝑉
𝑘
ℎ′+1 (𝑠 ′) −𝑉𝑘ℎ′+1 (𝑠

′)
)

=
∑︁
𝑠,𝑠′

𝑞
𝜋𝑘

ℎ′
(𝑠)𝑝ℎ′ (· | 𝑠𝑘ℎ , 𝜋

𝑘
ℎ′ (𝑠

𝑘
ℎ′))

(
𝑉
𝑘
ℎ′+1 (𝑠 ′) −𝑉𝑘ℎ′+1 (𝑠

′)
)

=
∑︁
𝑠

𝑞
𝜋𝑘

ℎ′+1 (𝑠)
(
𝑉
𝑘
ℎ′+1 (𝑠 ′) −𝑉𝑘ℎ′+1 (𝑠

′)
)

= E𝑘
[
𝑉
𝑘
ℎ′+1 (𝑠𝑘ℎ′+1) −𝑉

𝑘
ℎ′+1 (𝑠

𝑘
ℎ′+1) | 𝜋

𝑘
]

≤ E𝑘
[
𝑄
𝑘
ℎ′+1 (𝑠𝑘ℎ′+1, 𝑎

𝑘
ℎ′+1) −𝑉

𝑘
ℎ′+1 (𝑠

𝑘
ℎ′+1) | 𝜋

𝑘
]

= E𝑘
[
𝑄
𝑘
ℎ′+1 (𝑠𝑘ℎ′+1, 𝑎

𝑘
ℎ′+1) −𝑄

𝑘

ℎ′+1 (𝑠
𝑘
ℎ′+1, 𝑎

𝑘
ℎ′+1) | 𝜋

𝑘
]
. □

Lemma C.19 (Recursion Optimistic Policy). Let ℎ ∈ [𝐻 ]. Under the good event, for every 𝑘 ∈ [𝐾] it holds that:

E𝑘
[
𝑄
𝑘
ℎ (𝑠𝑘ℎ , 𝑎

𝑘
ℎ
) −𝑄

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) | 𝜋𝑘

]
≤ E𝑘


8

√︂
𝜏Var

𝑝ℎ ( · |𝑠𝑘ℎ ,𝑎
𝑘
ℎ
) (𝑉

𝜋𝑘

ℎ+1)√︃
𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

+ 118𝐻2𝑆𝜏

𝑛𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) ∨ 1

| 𝜋𝑘


+

(
1 + 1

4𝐻

)
E𝑘

[
𝑄
𝑘
ℎ+1 (𝑠𝑘ℎ+1, 𝑎

𝑘
ℎ+1) −𝑄

𝑘

ℎ+1 (𝑠
𝑘
ℎ+1, 𝑎

𝑘
ℎ+1) | 𝜋

𝑘
]
.

Proof. Similar to the proof of Lemma C.18. □



Algorithm 6 Cooperative O-REPS (coop-O-REPS)

1: input: state space S, action spaceA, horizon𝐻 , transition function 𝑝 , number of episodes 𝐾 , number of agents𝑚, exploration parameter

𝛾 , learning rate [.

2: initialize: 𝜋1

ℎ
(𝑎 | 𝑠) = 1/𝐴, 𝑞1

ℎ
(𝑠, 𝑎) = 𝑞𝜋1

ℎ
(𝑠, 𝑎) ∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

3: for 𝑘 = 1, . . . , 𝐾 do
4: for 𝑣 = 1, . . . ,𝑚 do
5: observe initial state 𝑠

𝑘,𝑣
1

.

6: for ℎ = 1, . . . , 𝐻 do
7: pick action 𝑎

𝑘,𝑣

ℎ
∼ 𝜋𝑘

ℎ
(· | 𝑠𝑘,𝑣

ℎ
).

8: suffer and observe cost 𝑐𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
).

9: observe next state 𝑠
𝑘,𝑣

ℎ+1 ∼ 𝑝ℎ (· | 𝑠
𝑘,𝑣

ℎ
, 𝑎
𝑘,𝑣

ℎ
).

10: end for
11: end for
12: compute𝑊 𝑘

ℎ
(𝑠, 𝑎) = Pr[∃𝑣 : 𝑠

𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎 | 𝜋𝑘 ] = 1 −

(
1 − 𝑞𝑘

ℎ
(𝑠, 𝑎)

)𝑚
∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

13: compute 𝑐𝑘
ℎ
(𝑠, 𝑎) = 𝑐𝑘

ℎ
(𝑠,𝑎)I{∃𝑣: 𝑠

𝑘,𝑣

ℎ
=𝑠,𝑎

𝑘,𝑣

ℎ
=𝑎}

𝑊 𝑘
ℎ
(𝑠,𝑎)+𝛾 ∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

14: compute 𝑞𝑘+1 = arg min𝑞∈Δ(M) [⟨𝑞, 𝑐𝑘 ⟩ + KL(𝑞 ∥ 𝑞𝑘 ).

15: compute 𝜋𝑘+1
ℎ
(𝑎 | 𝑠) = 𝑞𝑘

ℎ
(𝑠,𝑎)∑

𝑎′∈A 𝑞
𝑘
ℎ
(𝑠,𝑎′) ∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

16: end for

D THE COOP-O-REPS ALGORITHM FOR ADVERSARIAL MDPS WITH FRESH RANDOMNESS AND
KNOWN 𝑝

For the setting of adversarial MDPs with fresh randomness and known transitions we propose the Cooperative O-REPS algorithm

(coop-O-REPS; see Algorithm 6). The idea is simple: all the agents run the same O-REPS algorithm, but the estimated costs are updated based

on the trajectories of all of them. Since the randomness is fresh in this setting, we expect the agents to observe𝑚 times more information.

Next, we prove the following optimal regret bound for coop-O-REPS.
Similarly to Zimin and Neu [57], We use the notations Δ(M) and KL(· ∥ ·) for the set of occupancy measures of the MDPM and the

KL-divergence between occupancy measures, respectively.

Theorem D.1. With probability 1 − 𝛿 , setting [ = 𝛾 =

√︄
log

𝐻𝑆𝐴
𝛿(

1+ 𝑆𝐴
𝑚

)
𝐾
, the individual regret of each agent of coop-O-REPS is

𝑅𝐾 = 𝑂

(
𝐻

√︂
𝐾 log

𝐻𝑆𝐴

𝛿
+

√︂
𝐻2𝑆𝐴𝐾

𝑚
log

𝐻𝑆𝐴

𝛿
+ 𝐻𝑆𝐴

𝑚
log

𝐻𝑆𝐴

𝛿

)
.

D.1 The good event
Define the following events:

𝐸𝑐 =

{
𝐾∑︁
𝑘=1

⟨E𝑘 [𝑐𝑘 ] − 𝑐𝑘 , 𝑞𝑘 ⟩ ≤ 4𝐻

√︂
𝐾 log

3

𝛿

}
𝐸𝑐 =

{
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

) (
𝑐𝑘
ℎ
(𝑠, 𝑎) − 2𝑐𝑘

ℎ
(𝑠, 𝑎)

)
≤

10𝐻𝑆𝐴 log
3𝐻𝑆𝐴
𝛿

𝑚𝛾
+

10𝐻 log
3𝐻𝑆𝐴
𝛿

𝛾

}
𝐸★ =

{
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝜋
★

⟩ ≤
𝐻 log

3𝐻𝑆𝐴
𝛿

𝛾

}
The good event is the intersection of the above events. The following lemma establishes that the good event holds with high probability.

Lemma D.2 (The Good Event). Let G = 𝐸𝑐 ∩ 𝐸𝑐 ∩ 𝐸★ be the good event. It holds that Pr[G] ≥ 1 − 𝛿 .



Proof. We show that each of the events ¬𝐸𝑐 ,¬𝐸𝑐 ,¬𝐸★ occur with probability at most 𝛿/3. Then, by a union bound we obtain the

statement. Notice that:

⟨𝑐𝑘 , 𝑞𝑘 ⟩ =
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎) ≤

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)

I{∃𝑣 : 𝑠
𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)

1 −
(
1 − 𝑞𝑘

ℎ
(𝑠, 𝑎)

)𝑚 I{∃𝑣 : 𝑠
𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

)
I{∃𝑣 : 𝑠

𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

≤
𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎) + 1

𝑚

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A
I{∃𝑣 : 𝑠

𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎} ≤ 𝐻 + 1

𝑚
· 𝐻𝑚 = 2𝐻,

where the third inequality is by Lemma D.3, and the last inequality follows because for each step ℎ the agents visit at most𝑚 state-action

pairs. Thus, event 𝐸𝑐 holds by Azuma inequality.

Event 𝐸𝑐 holds by Cohen et al. [10, Lemma E.2] since

∑
ℎ,𝑠,𝑎

(
1

𝑚 + 𝑞
𝑘
ℎ
(𝑠, 𝑎)

)
𝑐𝑘
ℎ
(𝑠, 𝑎) ≤ 1

𝛾

(
𝐻𝑆𝐴
𝑚 + 𝐻

)
and E𝑘 [𝑐𝑘

ℎ
(𝑠, 𝑎)] ≤ 𝑐𝑘

ℎ
(𝑠, 𝑎). Event 𝐸★

holds by Jin et al. [22, Lemma 14]. □

D.2 Proof of Theorem D.1
Proof of Theorem D.1. By Lemma D.2, the good event holds with probability 1 − 𝛿 . We now analyze the regret under the assumption

that the good event holds. We start by decomposing the regret as follows:

𝑅𝐾 =

𝐾∑︁
𝑘=1

𝑉
𝑘,𝜋𝑘

1
(𝑠𝑘,𝑣

1
) −𝑉𝑘,𝜋

★

1
(𝑠𝑘,𝑣

1
) =

𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩

=

𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝑘 ⟩︸              ︷︷              ︸
(𝐴)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩︸                ︷︷                ︸
(𝐵)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝜋
★

⟩︸                ︷︷                ︸
(𝐶)

.

Term (𝐴) can be further decomposed as:

(𝐴) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝑘 ⟩ =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − E𝑘 [𝑐𝑘 ], 𝑞𝑘 ⟩ +
𝐾∑︁
𝑘=1

⟨E𝑘 [𝑐𝑘 ] − 𝑐𝑘 , 𝑞𝑘 ⟩.

The second term is bounded by 4𝐻

√︃
𝐾 log

3

𝛿
by the good event 𝐸𝑐 , and for the first term:

𝐾∑︁
𝑘=1

⟨𝑐𝑘 − E𝑘 [𝑐𝑘 ], 𝑞𝑘 ⟩ =
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎) ©«1 −

E𝑘 [I{∃𝑣 : 𝑠
𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}]

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

ª®¬
=

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)

(
1 −

𝑊 𝑘
ℎ
(𝑠, 𝑎)

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

)
≤ 𝛾

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

≤ 𝛾
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)

1 −
(
1 − 𝑞𝑘

ℎ
(𝑠, 𝑎)

)𝑚 ≤ 𝛾 ∑︁
𝑘,ℎ,𝑠,𝑎

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

)
= 𝛾𝐻𝐾

(
1 + 𝑆𝐴

𝑚

)
,

where the last inequality is by Lemma D.3.



Term (𝐵) is bounded by OMD (see, e.g., Zimin and Neu [57]) as follows:

(𝐵) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩ ≤ 𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)2

≤ 𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑐𝑘
ℎ
(𝑠, 𝑎)

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

≤ 𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑐𝑘
ℎ
(𝑠, 𝑎)

𝑞𝑘
ℎ
(𝑠, 𝑎)

1 −
(
1 − 𝑞𝑘

ℎ
(𝑠, 𝑎)

)𝑚
≤ 𝐻 log(𝐻𝑆𝐴)

[
+ [

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

)
𝑐𝑘
ℎ
(𝑠, 𝑎)

≤ 𝐻 log(𝐻𝑆𝐴)
[

+ 2[

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

)
𝑐𝑘
ℎ
(𝑠, 𝑎) +

10[𝐻𝑆𝐴 log
3𝐻𝑆𝐴
𝛿

𝑚𝛾
+

10[𝐻 log
3𝐻𝑆𝐴
𝛿

𝛾

≲
𝐻 log

𝐻𝑆𝐴
𝛿

[
+ [𝐻𝑆𝐴𝐾

𝑚
+ [𝐻𝐾 +

[𝐻𝑆𝐴 log
3𝐻𝑆𝐴
𝛿

𝑚𝛾
+
[𝐻 log

3𝐻𝑆𝐴
𝛿

𝛾
,

where the forth inequality is by Lemma D.3, and the fifth inequality is by the good event 𝐸𝑐 .

Term (𝐶) is bounded by

𝐻 log
3𝐻
𝛿

𝛾 by the good event 𝐸★. Putting the three terms together gives the final regret bound when setting

[ = 𝛾 =

√︄
log

𝐻𝑆𝐴
𝛿(

1+ 𝑆𝐴
𝑚

)
𝐾
. □

D.3 Auxiliary lemmas
Lemma D.3. Let 𝑥 ∈ (0, 1). Then, 𝑥

1−(1−𝑥)𝑚 ≤
1

𝑚 + 𝑥 .

Proof. Using AM-GM inequaility, (
(1 − 𝑥)𝑚 (1 + 𝑥𝑚)

) 1

𝑚+1 ≤ 𝑚(1 − 𝑥) + 1 + 𝑥𝑚
𝑚 + 1

= 1

=⇒(1 − 𝑥)𝑚 ≤ 1

1 + 𝑥𝑚
=⇒1 − (1 − 𝑥)𝑚 ≥ 𝑥𝑚

1 + 𝑥𝑚
=⇒ 𝑥

1 − (1 − 𝑥)𝑚 ≤
1

𝑚
+ 𝑥 .

□



Algorithm 7 Cooperative UOB-REPS (coop-UOB-REPS)

1: input: state space S, action space A, horizon 𝐻 , confidence parameter 𝛿 , number of episodes 𝐾 , number of agents𝑚, exploration

parameter 𝛾 , learning rate [.

2: initialize: 𝑛1

ℎ
(𝑠, 𝑎) = 0, 𝑛1

ℎ
(𝑠, 𝑎, 𝑠 ′) = 0, 𝜋1

ℎ
(𝑎 | 𝑠) = 1/𝐴, 𝑞1

ℎ
(𝑠, 𝑎, 𝑠 ′) = 1/𝑆2𝐴 ∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

3: for 𝑘 = 1, . . . , 𝐾 do
4: set 𝑛𝑘+1

ℎ
(𝑠, 𝑎) ← 𝑛𝑘

ℎ
(𝑠, 𝑎), 𝑛𝑘+1

ℎ
(𝑠, 𝑎, 𝑠 ′) ← 𝑛𝑘

ℎ
(𝑠, 𝑎, 𝑠 ′) ∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

5: for 𝑣 = 1, . . . ,𝑚 do
6: observe initial state 𝑠

𝑘,𝑣
1

.

7: for ℎ = 1, . . . , 𝐻 do
8: pick action 𝑎

𝑘,𝑣

ℎ
∼ 𝜋𝑘

ℎ
(· | 𝑠𝑘,𝑣

ℎ
).

9: suffer and observe cost 𝑐𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
).

10: observe next state 𝑠
𝑘,𝑣

ℎ+1 ∼ 𝑝ℎ (· | 𝑠
𝑘,𝑣

ℎ
, 𝑎
𝑘,𝑣

ℎ
).

11: update 𝑛𝑘+1
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ← 𝑛𝑘+1

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) + 1, 𝑛𝑘+1

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
, 𝑠
𝑘,𝑣

ℎ+1) ← 𝑛𝑘+1
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
, 𝑠
𝑘,𝑣

ℎ+1) + 1.

12: end for
13: end for
14: set 𝑝𝑘+1

ℎ
(𝑠 ′ | 𝑠, 𝑎) ← 𝑛𝑘+1

ℎ
(𝑠,𝑎,𝑠′)

𝑛𝑘+1
ℎ
(𝑠,𝑎)∨1

∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

15: compute confidence set for 𝜖𝑘+1
ℎ
(𝑠 ′ | 𝑠, 𝑎) = 4

√︂
𝑝𝑘+1
ℎ
(𝑠′ |𝑠,𝑎) ln

𝐻𝑆𝐴𝐾
4𝛿

𝑛𝑘+1
ℎ
(𝑠,𝑎)∨1

+ 10

ln
𝐻𝑆𝐴𝐾

4𝛿

𝑛𝑘+1
ℎ
(𝑠,𝑎)∨1

:

P𝑘+1 =

{
𝑝 ′ | ∀(𝑠, 𝑎, 𝑠 ′, ℎ) : |𝑝𝑘+1

ℎ
(𝑠 ′ | 𝑠, 𝑎) − 𝑝 ′

ℎ
(𝑠 ′ | 𝑠, 𝑎) | ≤ 𝜖𝑘+1

ℎ
(𝑠 ′ | 𝑠, 𝑎)

}
.

16: compute 𝑢𝑘
ℎ
(𝑠) = max𝑝′∈P𝑘 𝑞

𝑝′,𝜋𝑘

ℎ
(𝑠) = max𝑝′∈P𝑘 Pr[𝑠ℎ = 𝑠 | 𝜋𝑘 , 𝑝 ′] ∀𝑠 ∈ S.

17: compute𝑈 𝑘
ℎ
(𝑠, 𝑎) = 1 −

(
1 − 𝑢𝑘

ℎ
(𝑠, 𝑎)

)𝑚
∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

18: compute 𝑐𝑘
ℎ
(𝑠, 𝑎) = 𝑐𝑘

ℎ
(𝑠,𝑎)I{∃𝑣: 𝑠

𝑘,𝑣

ℎ
=𝑠,𝑎

𝑘,𝑣

ℎ
=𝑎}

𝑈 𝑘
ℎ
(𝑠,𝑎)+𝛾 ∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

19: compute 𝑞𝑘+1 = arg min𝑞∈Δ(M,𝑘+1) [⟨𝑞, 𝑐𝑘 ⟩ + KL(𝑞 ∥ 𝑞𝑘 ).

20: compute 𝜋𝑘+1
ℎ
(𝑎 | 𝑠) = 𝑞𝑘+1

ℎ
(𝑠,𝑎)∑

𝑎′∈A 𝑞
𝑘+1
ℎ
(𝑠,𝑎′) ∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ], where 𝑞

𝑘+1
ℎ
(𝑠, 𝑎) = ∑

𝑠′∈S 𝑞
𝑘+1
ℎ
(𝑠, 𝑎, 𝑠 ′).

21: end for

E THE COOP-UOB-REPS ALGORITHM FOR ADVERSARIAL MDPS WITH FRESH RANDOMNESS AND
UNKNOWN 𝑝

For the setting of adversarial MDPs with fresh randomness and unknown transitions we propose the Cooperative UOB-REPS algorithm

(coop-UOB-REPS; see Algorithm 7). The idea is simple: all the agents run the same UOB-REPS algorithm, but the estimated costs and

transitions are updated based on the trajectories of all of them. Since the randomness is fresh in this setting, we expect the agents to observe

𝑚 times more information. Next, we prove the following regret bound for coop-UOB-REPS. Note that this bound is optimal up to a

√
𝐻𝑆

factor. Removing this extra

√
𝐻𝑆 is an open-problem even for adversarial MDPs with a single agent.

Similarly to Rosenberg and Mansour [37], We use the notation Δ(M, 𝑘) for the set of occupancy measures whose induced transition

function is within the confidence set P𝑘 .

Theorem E.1. With probability 1 − 𝛿 , setting [ = 𝛾 =

√︄
log

𝑚𝐾𝐻𝑆𝐴
𝛿(

1+ 𝑆𝐴
𝑚

)
𝐾

, the individual regret of each agent of coop-UOB-REPS is

𝑅𝐾 = 𝑂

(
𝐻

√︂
𝐾 log

𝑚𝐾𝐻𝑆𝐴

𝛿
+

√︂
𝐻4𝑆2𝐴𝐾

𝑚
log

3
𝑚𝐾𝐻𝑆𝐴

𝛿
+ 𝐻3𝑆3𝐴 log

3
𝑚𝐾𝐻𝑆𝐴

𝛿

)
.



E.1 The good event

Denote 𝜖𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎) =

√︂
2𝑝𝑘
ℎ
(𝑠′ |𝑠,𝑎) log

30𝐾𝐻𝑆𝐴
𝛿

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

+ 2 log
30𝐾𝐻𝑆𝐴

𝛿

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

, 𝜖𝑘
ℎ
(𝑠, 𝑎) =

∑
𝑠′∈S 𝜖

𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎), 𝜖𝑘

ℎ
(𝑠 ′ | 𝑠, 𝑎) = 8

√︂
𝑝ℎ (𝑠′ |𝑠,𝑎) log

30𝐾𝐻𝑆𝐴
𝛿

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

+
100 log

30𝐾𝐻𝑆𝐴
𝛿

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

, and 𝜖𝑘
ℎ
(𝑠, 𝑎) = ∑

𝑠′ 𝜖
𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎). Define the following events:

𝐸𝑝 =

{
∀(𝑘, 𝑠, 𝑎, 𝑠 ′, ℎ) : |𝑝ℎ (𝑠 ′ |𝑠, 𝑎) − 𝑝𝑘ℎ (𝑠

′ |𝑠, 𝑎) | ≤ 𝜖𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎)

}
𝐸𝑜𝑛1 =

∀𝑣 ∈ [𝑚] :

∑︁
𝑘,ℎ,𝑠,𝑎

(
𝑞𝜋

𝑘

ℎ
(𝑠, 𝑎) − I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

)
min{2, 𝜖𝑘

ℎ
(𝑠, 𝑎)} ≤ 10

√︂
𝐾 log

30𝐾𝐻𝑆𝐴𝑚

𝛿


𝐸𝑜𝑛2 =

∀𝑣 ∈ [𝑚] :

∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)𝜖𝑘

ℎ
(𝑠, 𝑎) ≤ 2

∑︁
𝑘,ℎ,𝑠,𝑎

I{𝑠𝑘,𝑣
ℎ

= 𝑠, 𝑎
𝑘,𝑣

ℎ
= 𝑎}𝜖𝑘

ℎ
(𝑠, 𝑎) + 100𝐻𝑆 log

2
30𝐾𝐻𝑆𝐴𝑚

𝛿


𝐸𝑜𝑛3 =

∀𝑣 ∈ [𝑚] :

∑︁
𝑘,𝑠,𝑎,ℎ

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎)

≤ 2

∑︁
𝑘,𝑠,𝑎,ℎ

I{𝑠𝑘,𝑣
ℎ

= 𝑠, 𝑎
𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎)

+ 𝐻 log

𝑚

𝛿


𝐸𝑐 =

{
𝐾∑︁
𝑘=1

⟨E𝑘 [𝑐𝑘 ] − 𝑐𝑘 , 𝑞𝑘 ⟩ ≤ 4𝐻

√︂
𝐾 log

6

𝛿

}
𝐸𝑐 =

{
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

) (
𝑐𝑘
ℎ
(𝑠, 𝑎) − 𝑐𝑘

ℎ
(𝑠, 𝑎)

)
≤
𝐻𝑆𝐴 log

3𝐻𝑆𝐴
𝛿

𝛾

}
𝐸★ =

{
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝜋
★

⟩ ≤
𝐻 log

3𝐻𝑆𝐴
𝛿

𝛾

}

The good event is the intersection of the above events. The following lemma establishes that the good event holds with high probability.

Lemma E.2 (The Good Event). Let G = 𝐸𝑝 ∩ 𝐸𝑜𝑛1 ∩ 𝐸𝑜𝑛2 ∩ 𝐸𝑜𝑛3 ∩ 𝐸𝑐 ∩ 𝐸𝑐 ∩ 𝐸★ be the good event. It holds that Pr[G] ≥ 1 − 𝛿 .

Proof. 𝐸𝑜𝑛2
and 𝐸𝑜𝑛3

follows Cohen et al. [10, Lemma E.2]. The rest are similar to the proofs of Lemmas B.4 and D.2 and to proofs in Jin

et al. [22]. □

E.2 Proof of Theorem E.1
Proof of Theorem E.1. By Lemma E.2, the good event holds with probability 1 − 𝛿 . We now analyze the regret under the assumption

that the good event holds. We start by decomposing the regret as follows:

𝑅𝐾 =

𝐾∑︁
𝑘=1

𝑉
𝑘,𝜋𝑘

1
(𝑠𝑘,𝑣

1
) −𝑉𝑘,𝜋

★

1
(𝑠𝑘,𝑣

1
) =

𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝜋
𝑘

− 𝑞𝜋
★

⟩

=

𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝜋
𝑘

− 𝑞𝑘 ⟩︸                ︷︷                ︸
(𝐴)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝑘 ⟩︸              ︷︷              ︸
(𝐵)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩︸                ︷︷                ︸
(𝐶)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝜋
★

⟩︸                ︷︷                ︸
(𝐷)

.



Let 𝜏 = log
𝐾𝐻𝑆𝐴𝑚

𝛿
be a logarithmic term. Term (𝐴) can be decomposed using the value difference lemma (see, e.g., Shani et al. [42]):

(𝐴) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝜋
𝑘

− 𝑞𝑘 ⟩ ≤ 2𝐻

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)∥𝑝ℎ (· | 𝑠, 𝑎) − 𝑝𝑘ℎ (· | 𝑠, 𝑎)∥1

≤ 2𝐻

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)min{2, 𝜖𝑘

ℎ
(𝑠, 𝑎)}

≲
𝐻

𝑚

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑚∑︁
𝑣=1

I{𝑠𝑘,𝑣
ℎ

= 𝑠, 𝑎
𝑘,𝑣

ℎ
= 𝑎}𝜖𝑘

ℎ
(𝑠, 𝑎) + 𝐻

√
𝐾𝜏

≲
𝐻
√
𝑆𝜏

𝑚

∑︁
𝑘,ℎ,𝑠,𝑎

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}√︃

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 𝐻𝑆𝜏
𝑚

∑︁
𝑘,ℎ,𝑠,𝑎

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 𝐻
√
𝐾𝜏,

where the second inequality is by event 𝐸𝑝 , and the third inequality uses event 𝐸𝑜𝑛1
and Cauchy–Schwarz inequality. We now bound each

of the two sums separately. For the second sum recall that 𝑛𝑘
ℎ
(𝑠, 𝑎) = ∑𝑘−1

𝑗=1

∑𝑚
𝑣=1
I{𝑠 𝑗,𝑣

ℎ
= 𝑠, 𝑎

𝑗,𝑣

ℎ
= 𝑎}, thus we have:

∑︁
𝑘,ℎ,𝑠,𝑎

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤ 2𝐻𝑆𝐴𝑚 +
∑︁
ℎ,𝑠,𝑎

∑︁
𝑘 :𝑛𝑘

ℎ
(𝑠,𝑎) ≥𝑚

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎)

= 2𝐻𝑆𝐴𝑚 +
∑︁
ℎ,𝑠,𝑎

∑︁
𝑘 :𝑛𝑘

ℎ
(𝑠,𝑎) ≥𝑚

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}∑𝑘−1

𝑗=1

∑𝑚
𝑣=1
I{𝑠 𝑗,𝑣

ℎ
= 𝑠, 𝑎

𝑗,𝑣

ℎ
= 𝑎}

≤ 2𝐻𝑆𝐴𝑚 + 𝐻𝑆𝐴 log(𝐾𝑚), (18)

where the last inequality is by Rosenberg et al. [36, Lemma B.18]. For the first term:

∑︁
𝑘,ℎ,𝑠,𝑎

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}√︃

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤ 2𝐻𝑆𝐴𝑚 +
∑︁
ℎ,𝑠,𝑎

∑︁
𝑘 :𝑛𝑘

ℎ
(𝑠,𝑎) ≥𝑚

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}√︃

𝑛𝑘
ℎ
(𝑠, 𝑎)

= 2𝐻𝑆𝐴𝑚 +
∑︁
ℎ,𝑠,𝑎

∑︁
𝑘 :𝑛𝑘

ℎ
(𝑠,𝑎) ≥𝑚

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}√︃

𝑛𝑘+1
ℎ
(𝑠, 𝑎)

√√√
𝑛𝑘+1
ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎)

≤ 2𝐻𝑆𝐴𝑚 +
∑︁
ℎ,𝑠,𝑎

∑︁
𝑘 :𝑛𝑘

ℎ
(𝑠,𝑎) ≥𝑚

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}√︃

𝑛𝑘+1
ℎ
(𝑠, 𝑎)

√√√
𝑛𝑘
ℎ
(𝑠, 𝑎) +𝑚

𝑛𝑘
ℎ
(𝑠, 𝑎)

≤ 2𝐻𝑆𝐴𝑚 + 2

∑︁
ℎ,𝑠,𝑎

∑︁
𝑘 :𝑛𝑘

ℎ
(𝑠,𝑎) ≥𝑚

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}√︃

𝑛𝑘+1
ℎ
(𝑠, 𝑎)

= 2𝐻𝑆𝐴𝑚 + 2

∑︁
ℎ,𝑠,𝑎

∑︁
𝑘 :𝑛𝑘

ℎ
(𝑠,𝑎) ≥𝑚

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}√︃∑𝑘

𝑗=1

∑𝑚
𝑣=1
I{𝑠 𝑗,𝑣

ℎ
= 𝑠, 𝑎

𝑗,𝑣

ℎ
= 𝑎}

≤ 2𝐻𝑆𝐴𝑚 + 4

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

√√√ 𝐾∑︁
𝑘=1

𝑚∑︁
𝑣=1

I{𝑠𝑘,𝑣
ℎ

= 𝑠, 𝑎
𝑘,𝑣

ℎ
= 𝑎}

≤ 2𝐻𝑆𝐴𝑚 + 4

𝐻∑︁
ℎ=1

√√√
𝑆𝐴

𝐾∑︁
𝑘=1

𝑚∑︁
𝑣=1

∑︁
𝑠∈S

∑︁
𝑎∈A
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

= 2𝐻𝑆𝐴𝑚 + 4𝐻
√
𝑆𝐴𝐾𝑚, (19)

where the forth inequality is by Streeter and McMahan [43, Lemma 1], and the last inequality is by Jensen’s inequality. Putting these together

we get that: (𝐴) ≲
√︃
𝐻 4𝑆2𝐴𝐾𝜏

𝑚 + 𝐻2𝑆2𝐴𝜏2 + 𝐻
√
𝐾𝜏 .



Term (𝐵) can be further decomposed as:

(𝐵) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝑘 ⟩ =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − E𝑘 [𝑐𝑘 ], 𝑞𝑘 ⟩ +
𝐾∑︁
𝑘=1

⟨E𝑘 [𝑐𝑘 ] − 𝑐𝑘 , 𝑞𝑘 ⟩.

The second term is bounded by 4𝐻

√︃
𝐾 log

6

𝛿
by the good event 𝐸𝑐 , and for the first term:

𝐾∑︁
𝑘=1

⟨𝑐𝑘 − E𝑘 [𝑐𝑘 ], 𝑞𝑘 ⟩ =
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎) ©«1 −

E𝑘 [I{∃𝑣 : 𝑠
𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}]

𝑈 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

ª®¬
=

∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)

(
1 −

𝑊 𝑘
ℎ
(𝑠, 𝑎)

𝑈 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

)
≤

∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑊 𝑘
ℎ
(𝑠, 𝑎)

(𝑈 𝑘
ℎ
(𝑠, 𝑎) −𝑊 𝑘

ℎ
(𝑠, 𝑎) + 𝛾)

≤
∑︁
𝑘,ℎ,𝑠,𝑎

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

)
(𝑈 𝑘
ℎ
(𝑠, 𝑎) −𝑊 𝑘

ℎ
(𝑠, 𝑎) + 𝛾)

=
∑︁
𝑘,ℎ,𝑠,𝑎

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

) (
(1 − 𝑞𝑘

ℎ
(𝑠, 𝑎))𝑚 − (1 − 𝑢𝑘

ℎ
(𝑠, 𝑎))𝑚

)
+ 𝛾𝐻𝑆𝐴𝐾

𝑚
+ 𝛾𝐻𝐾

≤
∑︁
𝑘,ℎ,𝑠,𝑎

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

)
𝑚(1 − 𝑞𝑘

ℎ
(𝑠, 𝑎))𝑚 (𝑢𝑘

ℎ
(𝑠, 𝑎) − 𝑞𝑘

ℎ
(𝑠, 𝑎)) + 𝛾𝐻𝑆𝐴𝐾

𝑚
+ 𝛾𝐻𝐾

≤
∑︁
𝑘,ℎ,𝑠,𝑎

𝑢𝑘
ℎ
(𝑠, 𝑎) − 𝑞𝑘

ℎ
(𝑠, 𝑎) + 𝛾𝐻𝑆𝐴𝐾

𝑚
+ 𝛾𝐻𝐾

+
∑︁
𝑘,ℎ,𝑠,𝑎

𝑚𝑞𝑘
ℎ
(𝑠, 𝑎) (1 − 𝑞𝑘

ℎ
(𝑠, 𝑎))𝑚 (𝑢𝑘

ℎ
(𝑠, 𝑎) − 𝑞𝑘

ℎ
(𝑠, 𝑎))

≤ 3

∑︁
𝑘,ℎ,𝑠,𝑎

(𝑢𝑘
ℎ
(𝑠, 𝑎) − 𝑞𝑘

ℎ
(𝑠, 𝑎)) log𝑚 + 𝛾𝐻𝑆𝐴𝐾

𝑚
+ 𝛾𝐻𝐾,

where the second inequality is by Lemma D.3, the third inequality is by convexity of the function 𝑓 (𝑥) = (1 − 𝑥)𝑚 for 𝑥 ∈ [0, 1], and the last

inequality follows because𝑚𝑥 (1 − 𝑥)𝑚 ≤ log𝑚 for every 𝑥 ∈ [0, 1] since if 1 − 𝑥 ≤ 1 − 2 log𝑚
𝑚 then (1 − 𝑥)𝑚 ≤ 1

𝑚2
; otherwise 𝑥 ≤ 2 log𝑚

𝑚 .

Finally,

∑
𝑘,ℎ,𝑠,𝑎 (𝑢𝑘ℎ (𝑠, 𝑎) − 𝑞

𝑘
ℎ
(𝑠, 𝑎)) is bounded by Lemma E.5.

Term (𝐶) is bounded by OMD (see, e.g., Rosenberg and Mansour [37]) as follows:

(𝐵) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩ ≤ 2𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)2

≤ 2𝐻 log(𝐻𝑆𝐴)
[

+ [
∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑐𝑘
ℎ
(𝑠, 𝑎)

𝑈 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

≤ 2𝐻 log(𝐻𝑆𝐴)
[

+ [
∑︁
𝑘,ℎ,𝑠,𝑎

𝑐𝑘
ℎ
(𝑠, 𝑎)

𝑞𝑘
ℎ
(𝑠, 𝑎)

1 −
(
1 − 𝑞𝑘

ℎ
(𝑠, 𝑎)

)𝑚
≤ 2𝐻 log(𝐻𝑆𝐴)

[
+ [

∑︁
𝑘,ℎ,𝑠,𝑎

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

)
𝑐𝑘
ℎ
(𝑠, 𝑎)

≤ 2𝐻 log(𝐻𝑆𝐴)
[

+ [
∑︁
𝑘,ℎ,𝑠,𝑎

(
1

𝑚
+ 𝑞𝑘

ℎ
(𝑠, 𝑎)

)
𝑐𝑘
ℎ
(𝑠, 𝑎) +

[𝐻𝑆𝐴 log
3𝐻𝑆𝐴
𝛿

𝛾

≤
2𝐻 log

𝐻𝑆𝐴
𝛿

[
+ [𝐻𝑆𝐴𝐾

𝑚
+ [𝐻𝐾 +

[𝐻𝑆𝐴 log
3𝐻𝑆𝐴
𝛿

𝛾
,

where the forth inequality is by Lemma D.3, and the fifth inequality is by the good event 𝐸𝑐 .

Term (𝐷) is bounded by

𝐻 log
3𝐻
𝛿

𝛾 by the good event 𝐸★. Putting the three terms together gives the final regret bound when setting

[ = 𝛾 = 1/
√︂(

1 + 𝑆𝐴𝑚
)
𝐾 . □

E.3 Auxiliary Lemmas
The following Lemma is by Jin et al. [22, Lemma 8], Cohen et al. [10, Lemma B.13].



Lemma E.3. Under the good event we have,

∀(𝑘, 𝑠, 𝑎, 𝑠 ′, ℎ) : |𝑝ℎ (𝑠 ′ |𝑠, 𝑎) − 𝑝𝑘ℎ (𝑠
′ |𝑠, 𝑎) | ≤ 𝜖𝑘

ℎ
(𝑠 ′ | 𝑠, 𝑎) .

The following Lemma is part of the proof of Jin et al. [22, Lemma 4]. We provide the proof here for completeness.

Lemma E.4. Let 𝑞𝑘
˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ) be the probability to visit (𝑠, 𝑎) in time ˜ℎ given that we visited 𝑠 ′ in time ℎ. Under the good event,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A
|𝑢𝑘
ℎ
(𝑠, 𝑎) − 𝑞𝑘

ℎ
(𝑠, 𝑎) | ≲ 𝐻

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S,𝑎∈A

𝜖𝑘
ℎ
(𝑠, 𝑎)𝑞𝑘

ℎ
(𝑠, 𝑎) (20)

+ 𝐻𝑆
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠∈S,𝑎∈A,𝑠′∈S

∑︁
𝑠∈S,�̃�∈A

𝜖𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎)𝑞𝑘

ℎ
(𝑠, 𝑎)min

{
2,

∑︁
𝑠′∈S

𝜖𝑘
˜ℎ
(𝑠 ′ | 𝑠, 𝑎)

}
𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1) .

Proof. Let 𝑞𝑘,𝑠,ℎ be the occupancy measure such that 𝑞
𝑘,𝑠,ℎ

ℎ
(𝑠) = 𝑢𝑘

ℎ
(𝑠), and let 𝑝𝑘,𝑠,ℎ be the transition that corresponds to 𝑞𝑘,𝑠,ℎ . Let

𝜎ℎ (𝑠) be the set of all trajectories that end in 𝑠 in time ℎ, i.e., 𝜎ℎ (𝑠) = {𝑠1, 𝑎1, . . . , 𝑠ℎ−1
, 𝑎ℎ−1

, 𝑠ℎ} where 𝑠ℎ = 𝑠 . We have:

𝑢𝑘
ℎ
(𝑠, 𝑎) = 𝑞𝑘,𝑠,ℎ

ℎ
(𝑠, 𝑎) = 𝜋𝑘

ℎ
(𝑎 | 𝑠)

∑︁
𝜎ℎ (𝑠)

ℎ−1∏
ℎ′=1

𝜋𝑘
ℎ′ (𝑎ℎ′ | 𝑠ℎ′)𝑝

𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

𝑞𝑘
ℎ
(𝑠, 𝑎) = 𝜋𝑘

ℎ
(𝑎 | 𝑠)

∑︁
𝜎ℎ (𝑠)

ℎ−1∏
ℎ′=1

𝜋𝑘
ℎ′ (𝑎ℎ′ | 𝑠ℎ′)𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′) .

Then,

|𝑢𝑘
ℎ
(𝑠, 𝑎) − 𝑞𝑘

ℎ
(𝑠, 𝑎) | = 𝜋𝑘

ℎ
(𝑎 | 𝑠)

∑︁
𝜎ℎ (𝑠)

ℎ−1∏
ℎ′=1

𝜋𝑘
ℎ′ (𝑎ℎ′ | 𝑠ℎ′)

�����ℎ−1∏
ℎ′=1

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′) −

ℎ−1∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
����� .

We can rewrite the following term as,����� ℎ−1∏
ℎ′=1

𝑝𝑘,𝑠,ℎ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′) −
ℎ−1∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
�����

=

�����ℎ−1∑︁
𝑙=2

𝑙−1∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
ℎ−1∏
ℎ′=𝑙

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′) +

ℎ−1∏
ℎ′=1

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

−
ℎ−1∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′) −
ℎ−1∑︁
𝑙=2

𝑙−1∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
ℎ−1∏
ℎ′=𝑙

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

�����
=

�����ℎ−1∑︁
𝑙=1

𝑙−1∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
ℎ−1∏
ℎ′=𝑙

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

−
ℎ∑︁
𝑙=2

𝑙−1∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
ℎ−1∏
ℎ′=𝑙

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

�����
=

�����ℎ−1∑︁
𝑙=1

𝑙−1∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
ℎ−1∏
ℎ′=𝑙

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

−
ℎ−1∑︁
𝑙=1

𝑙∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
ℎ−1∏
ℎ′=𝑙+1

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

�����
=

ℎ−1∑︁
𝑙=1

���𝑝𝑘,𝑠,ℎ
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 ) − 𝑝𝑙 (𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )

��� 𝑙−1∏
ℎ′=1

𝑝ℎ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
ℎ−1∏
ℎ′=𝑙+1

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′) .



Hence,

|𝑢𝑘
ℎ
(𝑠, 𝑎) − 𝑞𝑘

ℎ
(𝑠, 𝑎) |

≤ 𝜋𝑘
ℎ
(𝑎 | 𝑠)

∑︁
𝜎ℎ (𝑠)

ℎ−1∏
ℎ′=1

𝜋𝑘
ℎ′ (𝑎ℎ′ | 𝑠ℎ′)

ℎ−1∑︁
𝑙=1

���𝑝𝑘,𝑠,ℎ
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 ) − 𝑝𝑙 (𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )

���
·
𝑙−1∏
ℎ′=1

𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)
ℎ−1∏
ℎ′=𝑙+1

𝑝
𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

≤
ℎ−1∑︁
𝑙=1

∑︁
𝜎ℎ (𝑠)

���𝑝𝑘,𝑠,ℎ
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 ) − 𝑝𝑙 (𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )

��� (𝜋𝑘𝑙 (𝑎𝑙 | 𝑠𝑙 ) 𝑙−1∏
ℎ′=1

𝜋𝑘
ℎ′ (𝑎ℎ′ | 𝑠ℎ′)𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

)

·
(
𝜋𝑘
ℎ
(𝑎 | 𝑠)

ℎ−1∏
ℎ′=𝑙+1

𝜋𝑘
ℎ′ (𝑎ℎ′ | 𝑠ℎ′)𝑝

𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

)
=

ℎ−1∑︁
𝑙=1

∑︁
𝑠𝑙 ∈S,𝑎𝑙 ∈A,𝑠𝑙+1∈S

���𝑝𝑘,𝑠,ℎ
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 ) − 𝑝𝑙 (𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )

��� ©«
∑︁
𝜎𝑙 (𝑠𝑙 )

𝜋𝑘
𝑙
(𝑎𝑙 | 𝑠𝑙 )

𝑙−1∏
ℎ′=1

𝜋𝑘
ℎ′ (𝑎ℎ′ | 𝑠ℎ′)𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

ª®¬
·
©«

∑︁
𝑎𝑙+1∈A

∑︁
{𝑠ℎ′′ ∈S,𝑎ℎ′′ ∈A}ℎ−1

ℎ′′=𝑙+2

𝜋𝑘
ℎ
(𝑎 | 𝑠)

ℎ−1∏
ℎ′=𝑙+1

𝜋𝑘
ℎ′ (𝑎ℎ′ | 𝑠ℎ′)𝑝

𝑘,𝑠,ℎ

ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

ª®®¬
=

ℎ−1∑︁
𝑙=1

∑︁
𝑠𝑙 ∈S,𝑎𝑙 ∈A,𝑠𝑙+1∈S

���𝑝𝑘,𝑠,ℎ
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 ) − 𝑝𝑙 (𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )

���𝑞𝑘𝑙 (𝑠𝑙 , 𝑎𝑙 ) · 𝑞𝑘,𝑠,ℎℎ
(𝑠, 𝑎 | 𝑠𝑙+1),

where we ease notation and denote 𝑞
𝑘,𝑠,ℎ

ℎ
(𝑠, 𝑎 | 𝑠𝑙+1) = 𝑞𝑘,𝑠,ℎℎ

(𝑠, 𝑎 | 𝑠𝑙+1; 𝑙 + 1). Similarly, we can show that,

|𝑞𝑘,𝑠,ℎ
ℎ
(𝑠, 𝑎 | 𝑠𝑙+1) − 𝑞𝑘ℎ (𝑠, 𝑎 | 𝑠𝑙+1) |

≲
ℎ−1∑︁
ℎ′=𝑙+1

∑︁
𝑠ℎ′ ∈S,𝑎ℎ′ ∈A,𝑠ℎ′+1∈S

���𝑝𝑘,𝑠,ℎ
ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′) − 𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

���𝑞𝑘ℎ′ (𝑠ℎ′, 𝑎ℎ′ | 𝑠𝑙+1)𝑞𝑘,𝑠,ℎℎ′
(𝑠, 𝑎 | 𝑠ℎ′+1)

≤ 𝜋𝑘
ℎ
(𝑎 | 𝑠)

ℎ−1∑︁
ℎ′=𝑙+1

∑︁
𝑠ℎ′ ∈S,𝑎ℎ′ ∈A,𝑠ℎ′+1∈S

���𝑝𝑘,𝑠,ℎ
ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′) − 𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

���𝑞𝑘ℎ′ (𝑠ℎ′, 𝑎ℎ′ | 𝑠𝑙+1),

where the last is since 𝑞
𝑘,𝑠,ℎ

ℎ′
(𝑠, 𝑎 | 𝑠ℎ′+1) ≤ 𝜋𝑘ℎ (𝑎 | 𝑠). Combining the last two,



∑︁
ℎ,𝑠,𝑎,𝑘

|𝑢𝑘
ℎ
(𝑠, 𝑎) − 𝑞𝑘

ℎ
(𝑠, 𝑎) |

≲
∑︁
ℎ,𝑠,𝑎,𝑘

ℎ−1∑︁
𝑙=1

∑︁
𝑠𝑙 ∈S,𝑎𝑙 ∈A,𝑠𝑙+1∈S

���𝑝𝑘,𝑠,ℎ
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 ) − 𝑝𝑙 (𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )

���𝑞𝑘𝑙 (𝑠𝑙 , 𝑎𝑙 ) · 𝑞𝑘,𝑠,ℎℎ
(𝑠, 𝑎 | 𝑠𝑙+1)

≤
∑︁
ℎ,𝑠,𝑎,𝑘

ℎ−1∑︁
𝑙=1

∑︁
𝑠𝑙 ∈S,𝑎𝑙 ∈A,𝑠𝑙+1∈S

𝜖𝑘
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )𝑞𝑘𝑙 (𝑠𝑙 , 𝑎𝑙 ) · 𝑞

𝑘
ℎ
(𝑠, 𝑎 | 𝑠𝑙+1)

+
∑︁
ℎ,𝑠,𝑎,𝑘

ℎ−1∑︁
𝑙=1

∑︁
𝑠𝑙 ∈S,𝑎𝑙 ∈A,𝑠𝑙+1∈S

𝜖𝑘
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )𝑞𝑘𝑙 (𝑠𝑙 , 𝑎𝑙 )𝜋

𝑘
ℎ
(𝑎 | 𝑠)

· ©«
ℎ−1∑︁
ℎ′=𝑙+1

∑︁
𝑠ℎ′ ∈S,𝑎ℎ′ ∈A,𝑠ℎ′+1∈S

���𝑝𝑘,𝑠,ℎ
ℎ′
(𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′) − 𝑝ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

���𝑞𝑘ℎ′ (𝑠ℎ′, 𝑎ℎ′ | 𝑠𝑙+1)ª®¬
≤

∑︁
𝑘,ℎ

ℎ−1∑︁
𝑙=1

∑︁
𝑠𝑙 ∈S,𝑎𝑙 ∈A,𝑠𝑙+1∈S

𝜖𝑘
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )𝑞𝑘𝑙 (𝑠𝑙 , 𝑎𝑙 ) ·

(∑︁
𝑠,𝑎

𝑞𝑘
ℎ
(𝑠, 𝑎 | 𝑠𝑙+1)

)
+

∑︁
ℎ,𝑠,𝑘

ℎ−1∑︁
𝑙=1

∑︁
𝑠𝑙 ∈S,𝑎𝑙 ∈A,𝑠𝑙+1∈S

𝜖𝑘
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )𝑞𝑘𝑙 (𝑠𝑙 , 𝑎𝑙 )

∑︁
𝑎

𝜋𝑘
ℎ
(𝑎 | 𝑠)

· ©«
ℎ−1∑︁
ℎ′=𝑙+1

∑︁
𝑠ℎ′ ∈S,𝑎ℎ′ ∈A

min

2,
∑︁

𝑠ℎ′+1∈S
𝜖𝑘
ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

 𝑞𝑘ℎ′ (𝑠ℎ′, 𝑎ℎ′ | 𝑠𝑙+1)ª®¬
≤ 𝐻

𝐾∑︁
𝑘=1

∑︁
1≤𝑙≤𝐻

∑︁
𝑠𝑙 ∈S,𝑎𝑙 ∈A,𝑠𝑙+1∈S

𝜖𝑘
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )𝑞𝑘𝑙 (𝑠𝑙 , 𝑎𝑙 )

+ 𝐻𝑆
𝐾∑︁
𝑘=1

∑︁
1≤𝑙<ℎ′≤𝐻

∑︁
𝑠𝑙 ∈S,𝑎𝑙 ∈A,𝑠𝑙+1∈S

∑︁
𝑠ℎ′ ∈S,𝑎ℎ′ ∈A

𝜖𝑘
𝑙
(𝑠𝑙+1 | 𝑠𝑙 , 𝑎𝑙 )𝑞𝑘𝑙 (𝑠𝑙 , 𝑎𝑙 )

·min

2,
∑︁

𝑠ℎ′+1∈S
𝜖𝑘
ℎ′ (𝑠ℎ′+1 | 𝑠ℎ′, 𝑎ℎ′)

 𝑞𝑘ℎ′ (𝑠ℎ′, 𝑎ℎ′ | 𝑠𝑙+1)
= 𝐻

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S,𝑎∈A,𝑠′∈S

𝜖𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎)𝑞𝑘

ℎ
(𝑠, 𝑎)

+ 𝐻𝑆
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠∈S,𝑎∈A,𝑠′∈S

∑︁
𝑠∈S,�̃�∈A

𝜖𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎)𝑞𝑘

ℎ
(𝑠, 𝑎)min

{
2,

∑︁
𝑠′∈S

𝜖𝑘
˜ℎ
(𝑠 ′ | 𝑠, 𝑎)

}
𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1),

where the last inequality is by Lemma E.3 and since 𝑝
𝑘,𝑠,ℎ

𝑙
(·|𝑠, 𝑎), 𝑝𝑙 (·|𝑠, 𝑎) are probability distributions ∀(𝑠, 𝑎, 𝑙). □

Lemma E.5. Under the good event,

∑︁
ℎ,𝑠,𝑎,𝑘

|𝑢𝑘
ℎ
(𝑠, 𝑎) − 𝑞𝑘

ℎ
(𝑠, 𝑎) | ≲

√︂
𝐻4𝑆2𝐴𝐾𝜏

𝑚
+ 𝐻3𝑆3𝐴𝜏2 .



Proof. We first bound

∑
ℎ,𝑠,𝑎,𝑘 |𝑢𝑘ℎ (𝑠, 𝑎) − 𝑞

𝑘
ℎ
(𝑠, 𝑎) | using Lemma E.4. Now, for the first term in Equation (20):

∑︁
𝑘,ℎ,𝑠,𝑎

𝜖𝑘
ℎ
(𝑠, 𝑎)𝑞𝑘

ℎ
(𝑠, 𝑎) = 1

𝑚

𝑚∑︁
𝑣=1

∑︁
𝑘,ℎ,𝑠,𝑎

𝜖𝑘
ℎ
(𝑠, 𝑎)𝑞𝑘

ℎ
(𝑠, 𝑎) ≤ 2

𝑚

𝑚∑︁
𝑣=1

∑︁
𝑘,ℎ,𝑠,𝑎

I{𝑠𝑘,𝑣
ℎ

= 𝑠, 𝑎
𝑘,𝑣

ℎ
= 𝑎}𝜖𝑘

ℎ
(𝑠, 𝑎) + 18𝐻𝑆𝜏2

≲

√
𝑆𝜏

𝑚

∑︁
𝑘,ℎ,𝑠,𝑎

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}√︃

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 𝑆𝜏
𝑚

∑︁
𝑘,ℎ,𝑠,𝑎

∑𝑚
𝑣=1
I{𝑠𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 𝐻𝑆𝜏2

≲

√︂
𝐻2𝑆2𝐴𝐾𝜏

𝑚
+ 𝐻𝑆2𝐴𝜏2,

where the first inequality is by event 𝐸𝑜𝑛2
and the last inequality is by Equations (18) and (19). Plugging the definition of 𝜖 , we break the

second sum in Eq. (20) as follows:

𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,𝑎,𝑠′

∑︁
𝑠,�̃�

𝜖𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎)𝑞𝑘

ℎ
(𝑠, 𝑎) ·min

{
2,

∑︁
𝑠′
𝜖𝑘

˜ℎ
(𝑠 ′ | 𝑠, 𝑎)

}
𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)

≲
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,𝑎,𝑠′

∑︁
𝑠,�̃�,𝑠′

√√√
𝑝𝑘
ℎ
(𝑠 ′ |𝑠, 𝑎)𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
ℎ
(𝑠, 𝑎) ·

√√√√ 𝑝𝑘
˜ℎ
(𝑠 ′ |𝑠, 𝑎)𝜏

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)

+
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,𝑎,𝑠′

∑︁
𝑠,�̃�

√√√
𝑝𝑘
ℎ
(𝑠 ′ |𝑠, 𝑎)𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
ℎ
(𝑠, 𝑎) ·min

2,
𝑆𝜏

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

 𝑞𝑘˜ℎ (𝑠, 𝑎 | 𝑠 ′;ℎ + 1)

+
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,𝑎,𝑠′

∑︁
𝑠,�̃�

𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
ℎ
(𝑠, 𝑎) ·min

{
2,

∑︁
𝑠′
𝜖𝑘

˜ℎ
(𝑠 ′ | 𝑠, 𝑎)

}
𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)

≲
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,𝑎,𝑠′

∑︁
𝑠,�̃�,𝑠′

√√√
𝑝𝑘
ℎ
(𝑠 ′ |𝑠, 𝑎)𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
ℎ
(𝑠, 𝑎) ·

√√√√ 𝑝𝑘
˜ℎ
(𝑠 ′ |𝑠, 𝑎)𝜏

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)︸                                                                                                     ︷︷                                                                                                     ︸

(𝑖)

+
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,𝑎,𝑠′

∑︁
𝑠,�̃�,𝑠′

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑝𝑘

ℎ
(𝑠 ′ |𝑠, 𝑎) · 𝜏

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)︸                                                                                            ︷︷                                                                                            ︸

(𝑖𝑖)

+
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,𝑎,𝑠′

∑︁
𝑠,�̃�

𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
ℎ
(𝑠, 𝑎) · 𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)︸                                                                            ︷︷                                                                            ︸

(𝑖𝑖𝑖)

,

where the last inequality follows because

√
𝑥𝑦 ≤ 𝑥 + 𝑦 for every 𝑥,𝑦 ≥ 0. Term (𝑖) is bounded as follows:



(𝑖) = 𝜏
∑︁

1≤ℎ< ˜ℎ≤𝐻

𝐾∑︁
𝑘=1

∑︁
𝑠,𝑎,𝑠′

∑︁
𝑠,�̃�,𝑠′

√√√√𝑞𝑘
ℎ
(𝑠, 𝑎)𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)𝑝𝑘

ℎ
(𝑠 ′ |𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

·

√√√√𝑞𝑘
ℎ
(𝑠, 𝑎)𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)𝑝𝑘

ℎ
(𝑠 ′ |𝑠, 𝑎)

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

≤ 𝜏
∑︁

1≤ℎ< ˜ℎ≤𝐻

√√√√ ∑︁
𝑘,𝑠,𝑎,𝑠′,𝑠,�̃�,𝑠′

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)𝑝𝑘

ℎ
(𝑠 ′ |𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

·

√√√√ ∑︁
𝑘,𝑠,𝑎,𝑠′,𝑠,�̃�,𝑠′

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)𝑝𝑘

ℎ
(𝑠 ′ |𝑠, 𝑎)

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

= 𝜏
∑︁

1≤ℎ< ˜ℎ≤𝐻

√√√
𝑆

𝐾∑︁
𝑘=1

∑︁
𝑠,𝑎

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

·

√√√√ 𝐾∑︁
𝑘=1

∑︁
𝑠′,𝑠,�̃�,𝑠′

𝑞𝑘
ℎ+1 (𝑠

′)𝑞𝑘
˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

≤ 𝐻𝑆𝜏

√√√√ 𝐾∑︁
𝑘=1

∑︁
𝑠,𝑎,ℎ

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

·

√√√√√ 𝐾∑︁
𝑘=1

∑︁
𝑠,�̃�, ˜ℎ

𝑞𝑘
˜ℎ
(𝑠, 𝑎)

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

≤ 𝐻𝑆𝜏
𝐾∑︁
𝑘=1

∑︁
𝑠,𝑎,ℎ

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≲ 𝐻2𝑆2𝐴𝜏2,

where the last inequality is by event 𝐸𝑜𝑛3
and Equation (18). Term (𝑖𝑖) is bounded as follows:

(𝑖𝑖) = 𝑆
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,�̃�,𝑠′

𝜏

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)

∑︁
𝑠,𝑎

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑝𝑘

ℎ
(𝑠 ′ |𝑠, 𝑎)

= 𝑆

𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,�̃�

𝜏

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

∑︁
𝑠′
𝑞𝑘

˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)𝑞𝑘

ℎ+1 (𝑠
′)

= 𝐻𝑆𝜏

𝐾∑︁
𝑘=1

∑︁
˜ℎ

∑︁
𝑠,�̃�

𝑞𝑘
˜ℎ
(𝑠, 𝑎)

𝑛𝑘
˜ℎ
(𝑠, 𝑎) ∨ 1

≲ 𝐻2𝑆2𝐴𝜏2 .

Term (𝑖𝑖𝑖) is bounded as follows:

(𝑖𝑖𝑖) ≤
𝐾∑︁
𝑘=1

∑︁
1≤ℎ< ˜ℎ≤𝐻

∑︁
𝑠,𝑎,𝑠′

𝜏

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

𝑞𝑘
ℎ
(𝑠, 𝑎)

∑︁
𝑠,�̃�

𝑞𝑘
˜ℎ
(𝑠, 𝑎 | 𝑠 ′;ℎ + 1)

≤ 𝐻𝑆𝜏2

𝐾∑︁
𝑘=1

∑︁
𝑠,𝑎,ℎ

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≲ 𝐻2𝑆2𝐴𝜏2 . □



Algorithm 8 Cooperative O-REPS with non-fresh randomness (coop-nf-O-REPS)

1: input: state space S, action spaceA, horizon𝐻 , transition function 𝑝 , number of episodes 𝐾 , number of agents𝑚, exploration parameter

𝛾 , learning rate [, confidence parameter 𝛿 .

2: initialize: 𝜋1

ℎ
(𝑎 | 𝑠) = 1/𝐴, 𝑞1

ℎ
(𝑠, 𝑎) = 𝑞𝜋1

ℎ
(𝑠, 𝑎) ∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

3: for 𝑘 = 1, . . . , 𝐾 do
4: for 𝑣 = 1, . . . ,𝑚 do
5: observe initial state 𝑠

𝑘,𝑣
1

.

6: for ℎ = 1, . . . , 𝐻 do
7: pick action 𝑎

𝑘,𝑣

ℎ
∼ 𝜋𝑘

ℎ
(· | 𝑠𝑘,𝑣

ℎ
), suffer cost 𝑐𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) and observe next state 𝑠

𝑘,𝑣

ℎ+1.
8: end for
9: end for
10: For every (𝑠, 𝑎, ℎ) compute𝑊 𝑘

ℎ
(𝑠, 𝑎) – the estimate of𝑊 𝑘

ℎ
(𝑠, 𝑎) = Pr[∃𝑣 : 𝑠

𝑘,𝑣

ℎ
= 𝑠, 𝑎𝑘,𝑣 = 𝑎 | 𝜋𝑘 ] using 𝑁 = 10𝛾−2

log
𝐾𝐻𝑆𝐴𝑚

𝛿
samples

(Algorithm 9).

11: compute 𝑐𝑘
ℎ
(𝑠, 𝑎) = 𝑐𝑘

ℎ
(𝑠,𝑎)I{∃𝑣: 𝑠

𝑘,𝑣

ℎ
=𝑠,𝑎

𝑘,𝑣

ℎ
=𝑎}

𝑊 𝑘
ℎ
(𝑠,𝑎)+𝛾

∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

12: compute 𝑞𝑘+1 = arg min𝑞∈Δ(M) [⟨𝑞, 𝑐𝑘 ⟩ + KL(𝑞 ∥ 𝑞𝑘 ).

13: compute 𝜋𝑘+1
ℎ
(𝑎 | 𝑠) = 𝑞𝑘

ℎ
(𝑠,𝑎)∑

𝑎′∈A 𝑞
𝑘
ℎ
(𝑠,𝑎′) ∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

14: end for

F THE COOP-NF-O-REPS ALGORITHM FOR ADVERSARIAL MDPS WITH NON-FRESH RANDOMNESS
AND KNOWN 𝑝

For the setting of adversarial MDPs with non-fresh randomness and known transitions we propose the Cooperative O-REPS with non-fresh

randomness algorithm (coop-nf-O-REPS; see Algorithm 8). The idea is similar to the coop-O-REPS algorithm for fresh randomness, but the

key difference is that the probability to reach some state-action pair that the algorithm uses (i.e.,𝑊 𝑘
ℎ
(𝑠, 𝑎)) must be computed differently in

order to suit non-fresh randomness. In fact, computing𝑊 𝑘
ℎ
(𝑠, 𝑎) becomes a difficult challenge once the randomness is non-fresh, and a naive

computation takes exponential time. Instead we propose to estimate𝑊 𝑘
ℎ
(𝑠, 𝑎) from samples. That is, we simulate 𝑁 = 10𝛾−2

log
𝐾𝐻𝑆𝐴𝑚

𝛿
i.i.d

episodes in which all agents use policy 𝜋𝑘 and then estimate𝑊 𝑘
ℎ
(𝑠, 𝑎) by the fraction of episodes in which (𝑠, 𝑎) was reached in step ℎ by at

least one of the𝑚 agents. This way our algorithm keeps polynomial running time.

Theorem F.1. With probability 1 − 𝛿 , setting [ = 𝛾 = 1/
√︂(

1 + 𝑆𝐴𝑚
)
𝐾 , the individual regret of each agent of coop-nf-O-REPS is

𝑅𝐾 = 𝑂

(
𝐻

√︂
𝑆𝐾 log

𝐻𝑆𝐴

𝛿
+

√︂
𝐻2𝑆𝐴𝐾

𝑚
log

𝐻𝑆𝐴

𝛿
+ 𝐻𝑆𝐴

𝑚
log

𝐻𝑆𝐴

𝛿
+ 𝐻𝑆 log

𝐻𝑆𝐴

𝛿

)
.

F.1 The good event
Define the following events:

𝐸𝑎𝑝𝑝 =

{
∀(𝑠, 𝑎, ℎ, 𝑘) ∈ S × A × [𝐻 ] × [𝐾] : |𝑊 𝑘

ℎ
(𝑠, 𝑎) −𝑊 𝑘

ℎ
(𝑠, 𝑎) | ≤ 𝛾/2

}
𝐸𝑐 =

{
𝐾∑︁
𝑘=1

⟨E𝑘 [𝑐𝑘 ] − 𝑐𝑘 , 𝑞𝑘 ⟩ ≤ 4𝐻

√︂
𝐾 log

6

𝛿

}
𝐸𝑐 =

{
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

(
1

𝑚
+ 𝜋𝑘

ℎ
(𝑎 | 𝑠)

) (
𝑐𝑘
ℎ
(𝑠, 𝑎) − 2𝑐𝑘

ℎ
(𝑠, 𝑎)

)
≤

10𝐻𝑆𝐴 log
6𝐻𝑆𝐴
𝛿

𝑚𝛾
+

10𝐻𝑆 log
6𝐻𝑆𝐴
𝛿

𝛾

}
𝐸★ =

{
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝜋
★

⟩ ≤
2𝐻 log

6𝐻𝑆𝐴
𝛿

𝛾

}
The good event is the intersection of the above events. The following lemma establishes that the good event holds with high probability.

Lemma F.2 (The Good Event). Let G = 𝐸𝑎𝑝𝑝 ∩ 𝐸𝑐 ∩ 𝐸𝑐 ∩ 𝐸★ be the good event. It holds that Pr[G] ≥ 1 − 𝛿 .

Proof. By Hoeffding inequality we have that Pr[¬𝐸𝑎𝑝𝑝 ] ≤ 𝛿/6, and the other events are similar to Lemma D.2. □



Algorithm 9 Estimate reachability probability for non-fresh randomness

1: input: state space S, action spaceA, transition function 𝑝 , number of agents𝑚, policy 𝜋 , number of samples 𝑁 , state-action-step triplet

to estimate (𝑠, 𝑎, ¯ℎ).
2: initialize indicator for reaching 𝐼 (𝑛) ← 0 for 𝑛 ∈ [𝑁 ].
3: for 𝑛 = 1, . . . , 𝑁 do
4: initialize realized transitions 𝑝𝑟

ℎ
(𝑠 ′ | 𝑠, 𝑎) = 0 ∀(𝑠, 𝑎, 𝑠 ′, ℎ).

5: for ℎ = 1, . . . , ¯ℎ do
6: for (𝑠, 𝑎) ∈ S × A do
7: sample 𝑠 ′ ∼ 𝑝ℎ (· | 𝑠, 𝑎) and set 𝑝𝑟

ℎ
(𝑠 ′ | 𝑠, 𝑎) = 1.

8: end for
9: end for
10: for 𝑣 = 1, . . . ,𝑚 do
11: observe initial state 𝑠𝑣

1
= 𝑠init.

12: for ℎ = 1, . . . , ¯ℎ do
13: pick action 𝑎𝑣

ℎ
∼ 𝜋ℎ (· | 𝑠𝑣ℎ) and observe next state 𝑠𝑣

ℎ+1 ∼ 𝑝
𝑟
ℎ
(· | 𝑠, 𝑎).

14: end for
15: if 𝑠𝑣

¯ℎ
= 𝑠, 𝑎𝑣

¯ℎ
= 𝑎 then

16: set 𝐼 (𝑛) ← 1.

17: break
18: end if
19: end for
20: end for
21: return

1

𝑁

∑𝑁
𝑛=1

𝐼 (𝑛).

F.2 Proof of Theorem F.1
Proof of Theorem F.1. By Lemma F.2, the good event holds with probability 1 − 𝛿 . We now analyze the regret under the assumption

that the good event holds. We start by decomposing the regret as follows:

𝑅𝐾 =

𝐾∑︁
𝑘=1

𝑉
𝑘,𝜋𝑘

1
(𝑠𝑘,𝑣

1
) −𝑉𝑘,𝜋

★

1
(𝑠𝑘,𝑣

1
) =

𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩

=

𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝑘 ⟩︸              ︷︷              ︸
(𝐴)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩︸                ︷︷                ︸
(𝐵)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝜋
★

⟩︸                ︷︷                ︸
(𝐶)

.

Term (𝐴) can be further decomposed as:

(𝐴) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝑘 ⟩ =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − E𝑘 [𝑐𝑘 ], 𝑞𝑘 ⟩ +
𝐾∑︁
𝑘=1

⟨E𝑘 [𝑐𝑘 ] − 𝑐𝑘 , 𝑞𝑘 ⟩.

The second term is bounded by 4𝐻

√︃
𝐾 log

6

𝛿
by the good event 𝐸𝑐 , and for the first term:

𝐾∑︁
𝑘=1

⟨𝑐𝑘 − E𝑘 [𝑐𝑘 ], 𝑞𝑘 ⟩ =
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎) ©«1 −

E𝑘 [I{∃𝑣 : 𝑠
𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}]

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

ª®¬
≤

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎) ©«1 −

E𝑘 [I{∃𝑣 : 𝑠
𝑘,𝑣

ℎ
= 𝑠, 𝑎

𝑘,𝑣

ℎ
= 𝑎}]

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾/2

ª®¬
=

∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)

(
1 −

𝑊 𝑘
ℎ
(𝑠, 𝑎)

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾/2

)
≤ 𝛾

∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾/2

≤ 𝛾
∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝑘
ℎ
(𝑠)𝜋𝑘

ℎ
(𝑎 | 𝑠)

𝑊 𝑘
ℎ
(𝑠, 𝑎)

≤ 𝛾
∑︁
𝑘ℎ,𝑠,𝑎

∑︁
𝑎∈A

(
1

𝑚
+ 𝜋𝑘

ℎ
(𝑎 | 𝑠)

)
=
𝛾𝐻𝑆𝐴𝐾

𝑚
+ 𝛾𝐻𝑆𝐾,

where the first inequality is by the event 𝐸𝑎𝑝𝑝 , and the last inequality is by Lemma F.3.



Term (𝐵) is bounded by OMD (see, e.g., Zimin and Neu [57]) as follows:

(𝐵) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩ ≤ 𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)2

≤ 𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑐𝑘
ℎ
(𝑠, 𝑎)

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾

≤ 𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)

𝑐𝑘
ℎ
(𝑠, 𝑎)

𝑊 𝑘
ℎ
(𝑠, 𝑎) + 𝛾/2

≤ 𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠)𝜋𝑘

ℎ
(𝑎 | 𝑠)

𝑊 𝑘
ℎ
(𝑠, 𝑎)

𝑐𝑘
ℎ
(𝑠, 𝑎)

≤ 𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

(
1

𝑚
+ 𝜋𝑘

ℎ
(𝑎 | 𝑠)

)
𝑐𝑘
ℎ
(𝑠, 𝑎)

≤ 𝐻 log(𝐻𝑆𝐴)
[

+ 2[

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

(
1

𝑚
+ 𝜋𝑘

ℎ
(𝑎 | 𝑠)

)
𝑐𝑘
ℎ
(𝑠, 𝑎) +

10[𝐻𝑆𝐴 log
6𝐻𝑆𝐴
𝛿

𝑚𝛾
+

10[𝐻𝑆 log
6𝐻𝑆𝐴
𝛿

𝛾

≲
𝐻 log

𝐻𝑆𝐴
𝛿

[
+ [𝐻𝑆𝐴𝐾

𝑚
+ [𝐻𝑆𝐾 +

[𝐻𝑆𝐴 log
6𝐻𝑆𝐴
𝛿

𝑚𝛾
+
[𝐻𝑆 log

6𝐻𝑆𝐴
𝛿

𝛾
,

where the forth inequality is by Lemma F.3, and the fifth inequality is by the good event 𝐸𝑐 .

Term (𝐶) is bounded by

2𝐻 log
6𝐻
𝛿

𝛾 by the good event 𝐸★. Putting the three terms together gives the final regret bound when setting

[ = 𝛾 =

√︄
log

𝐻𝑆𝐴
𝛿(

1+ 𝐴
𝑚

)
𝑆𝐾

. □

F.3 Auxiliary lemmas
Lemma F.3. Let 𝜋 be a policy and denote by 𝑞𝜋

ℎ
(𝑠) the probability to reach state 𝑠 in time ℎ when playing policy 𝜋 . Assume that𝑚 agents use

the same policy 𝜋 in an MDPM with non-fresh randomness, and denote by𝑊ℎ (𝑠, 𝑎) the probability that at least one agent to reaches (𝑠, 𝑎) in
time ℎ. Then, for every (𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ], it holds that:

𝑞𝜋
ℎ
(𝑠)𝜋ℎ (𝑎 | 𝑠)
𝑊ℎ (𝑠, 𝑎)

≤ 1

𝑚
+ 𝜋ℎ (𝑎 | 𝑠) .

Proof. Let𝑀ℎ (𝑠) be the number of agents that arrive at state 𝑠 in time ℎ. We have that,

𝑊ℎ (𝑠, 𝑎) = Pr[∃𝑣 ∈ [𝑚] : 𝑠𝑣
ℎ
= 𝑠, 𝑎𝑣

ℎ
= 𝑎 | 𝜋] = E

[
1 − (1 − 𝜋ℎ (𝑎 | 𝑠))𝑀ℎ (𝑠) | 𝜋

]
≥ E

[
𝜋ℎ (𝑎 | 𝑠)

1

𝑀ℎ (𝑠) + 𝜋ℎ (𝑎 | 𝑠)
| 𝜋

]
= E

[
𝑀ℎ (𝑠)𝜋ℎ (𝑎 | 𝑠)

1 +𝑀ℎ (𝑠)𝜋ℎ (𝑎 | 𝑠)
| 𝜋

]
, (21)

where the inequality is by Lemma D.3.

Notice that E[𝑀ℎ (𝑠) | 𝜋] = 𝑚𝑞𝜋ℎ (𝑠) by linearity of expectation. Therefore, Equation (21) is bounded from below by the value of the

following optimization problem:

min

𝑝0,...,𝑝𝑚

𝑚∑︁
𝑖=0

𝑝𝑖
𝑖𝜋ℎ (𝑎 | 𝑠)

1 + 𝑖𝜋ℎ (𝑎 | 𝑠)
,

𝑠 .𝑡 .

𝑚∑︁
𝑖=0

𝑝𝑖𝑖 =𝑚𝑞
𝜋
ℎ
(𝑠),

𝑚∑︁
𝑖=0

𝑝𝑖 = 1,

𝑝𝑖 ≥ 0 ∀𝑖 ∈ [𝑚],



where 𝑝𝑖 represents Pr[𝑀ℎ (𝑠) = 𝑖]. Since the coefficient of 𝑝𝑖 in the constrains and the objective are non-negative, we can substitute the

equality constrains with “ ≥ ” constrains. We get the following standard form Linear Programming:

min

𝑝∈R𝑚+1
𝑏𝑇 𝑝,

𝑠 .𝑡 𝐴𝑇 𝑝 ≥ 𝑐,
𝑝 ≥ 0,

where,

𝑏 =

©«

0

𝜋ℎ (𝑎 |𝑠)
1+𝜋ℎ (𝑎 |𝑠)

.

.

.
𝑚𝜋ℎ (𝑎 |𝑠)

1+𝑚𝜋ℎ (𝑎 |𝑠)

ª®®®®®®¬
, 𝐴 =

©«

1 0

1 1

1 2

.

.

.
.
.
.

1 𝑚

ª®®®®®®¬
, 𝑐 =

(
1,𝑚𝑞𝜋

ℎ
(𝑠)

)
.

The dual problem is,

max

𝑥1,𝑥2

(𝑥1 + 𝑥2𝑚𝑞
𝜋
ℎ
(𝑠))

𝑠 .𝑡 𝑥1 ≤ 0,

𝑥1 + 𝑥2 ≤
𝜋ℎ (𝑎 | 𝑠)

1 + 𝜋ℎ (𝑎 | 𝑠)
,

𝑥1 + 2𝑥2 ≤
2𝜋ℎ (𝑎 | 𝑠)

1 + 2𝜋ℎ (𝑎 | 𝑠)
,

.

.

.

𝑥1 +𝑚𝑥2 ≤
𝑚𝜋ℎ (𝑎 | 𝑠)

1 +𝑚𝜋ℎ (𝑎 | 𝑠)
,

𝑥1, 𝑥2 ≥ 0.

From the first and the last constrains we have 𝑥1 = 0 and the rest of the constrains are equivalent to 𝑥2 ≤ 𝜋ℎ (𝑎 |𝑠)
1+𝑚𝜋ℎ (𝑎 |𝑠) . Hence the maximum

value is
𝑚𝜋ℎ (𝑎 |𝑠)

1+𝑚𝜋ℎ (𝑎 |𝑠) 𝑞
𝜋
ℎ
(𝑠), which completes the proof. □



Algorithm 10 Cooperative UOB-REPS with non-fresh randomness (coop-nf-UOB-REPS)

1: input: state space S, action space A, horizon 𝐻 , number of episodes 𝐾 , number of agents𝑚 =
√
𝐾 , exploration parameter 𝛾 , learning

rate [, confidence parameter 𝛿 .

2: initialize: 𝑛1

ℎ
(𝑠, 𝑎) = 0, 𝑛1

ℎ
(𝑠, 𝑎, 𝑠 ′) = 0, 𝜋1

ℎ
(𝑎 | 𝑠) = 1/𝐴, 𝑞1

ℎ
(𝑠, 𝑎, 𝑠 ′) = 1/𝑆2𝐴 ∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

3: initialize: define a mapping 𝜎 : [𝐻 ] × A × [𝐾] → [𝑚] such that 𝜎 (ℎ, 𝑎, 𝑘) ≠ 𝜎 (ℎ′, 𝑎′, 𝑘) whenever ℎ ≠ ℎ′ or 𝑎 ≠ 𝑎′, and such that each

agent is assigned by 𝜎 exactly 𝐻𝐴
√
𝐾 times (i.e., |𝜎−1 (𝑣) | = 𝐻𝐴

√
𝐾 for every 𝑣 ∈ [𝑚]).

4: for 𝑘 = 1, . . . , 𝐾 do
5: set 𝐼𝑘

ℎ
(𝑠, 𝑎, 𝑠 ′) = 0, 𝐼𝑘

ℎ
(𝑠, 𝑎) = 0 ∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

6: for 𝑣 = 1, . . . ,𝑚 do
7: observe initial state 𝑠

𝑘,𝑣
1

.

8: for ℎ = 1, . . . , 𝐻 do
9: if ∃𝑎 ∈ A : 𝜎 (ℎ, 𝑎, 𝑘) = 𝑣 then
10: pick action 𝑎

𝑘,𝑣

ℎ
= 𝑎.

11: else
12: pick action 𝑎

𝑘,𝑣

ℎ
∼ 𝜋𝑘

ℎ
(· | 𝑠𝑘,𝑣

ℎ
).

13: end if
14: suffer cost 𝑐𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) and observe next state 𝑠

𝑘,𝑣

ℎ+1.

15: update 𝐼𝑘
ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
) ← 1, 𝐼𝑘

ℎ
(𝑠𝑘,𝑣
ℎ
, 𝑎
𝑘,𝑣

ℎ
, 𝑠
𝑘,𝑣

ℎ+1) ← 1.

16: end for
17: set 𝑛𝑘+1

ℎ
(𝑠, 𝑎) ← 𝑛𝑘

ℎ
(𝑠, 𝑎) + 𝐼𝑘

ℎ
(𝑠, 𝑎), 𝑛𝑘+1

ℎ
(𝑠, 𝑎, 𝑠 ′) ← 𝑛𝑘

ℎ
(𝑠, 𝑎, 𝑠 ′) + 𝐼𝑘

ℎ
(𝑠, 𝑎, 𝑠 ′) ∀(𝑠, 𝑎, 𝑠 ′, ℎ).

18: set 𝑝𝑘+1
ℎ
(𝑠 ′ | 𝑠, 𝑎) ← 𝑛𝑘+1

ℎ
(𝑠,𝑎,𝑠′)

𝑛𝑘+1
ℎ
(𝑠,𝑎)∨1

∀(𝑠, 𝑎, 𝑠 ′, ℎ) ∈ S × A × S × [𝐻 ].

19: compute confidence set for 𝜖𝑘+1
ℎ
(𝑠 ′ | 𝑠, 𝑎) = 4

√︂
𝑝𝑘+1
ℎ
(𝑠′ |𝑠,𝑎) ln

𝐻𝑆𝐴𝐾
4𝛿

𝑛𝑘+1
ℎ
(𝑠,𝑎)∨1

+ 10

ln
𝐻𝑆𝐴𝐾

4𝛿

𝑛𝑘+1
ℎ
(𝑠,𝑎)∨1

:

P𝑘+1 =

{
𝑝 ′ | ∀(𝑠, 𝑎, 𝑠 ′, ℎ) : |𝑝𝑘+1

ℎ
(𝑠 ′ | 𝑠, 𝑎) − 𝑝 ′

ℎ
(𝑠 ′ | 𝑠, 𝑎) | ≤ 𝜖𝑘+1

ℎ
(𝑠 ′ | 𝑠, 𝑎)

}
.

20: compute 𝑢𝑘
ℎ
(𝑠) = max𝑝′∈P𝑘 𝑞

𝑝′,𝜋𝑘

ℎ
(𝑠) = max𝑝′∈P𝑘 Pr[𝑠ℎ = 𝑠 | 𝜋𝑘 , 𝑝 ′] ∀𝑠 ∈ S.

21: compute 𝑐𝑘
ℎ
(𝑠, 𝑎) = 𝑐𝑘

ℎ
(𝑠,𝑎)I{𝑠𝑘,𝜎 (ℎ,𝑎,𝑘 )

ℎ
=𝑠 }

𝑢𝑘
ℎ
(𝑠)+𝛾 ∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ].

22: compute 𝑞𝑘+1 = arg min𝑞∈Δ(M,𝑘+1) [⟨𝑞, 𝑐𝑘 ⟩ + KL(𝑞 ∥ 𝑞𝑘 ).

23: compute 𝜋𝑘+1
ℎ
(𝑎 | 𝑠) = 𝑞𝑘+1

ℎ
(𝑠,𝑎)∑

𝑎′∈A 𝑞
𝑘+1
ℎ
(𝑠,𝑎′) ∀(𝑠, 𝑎, ℎ) ∈ S × A × [𝐻 ], where 𝑞

𝑘+1
ℎ
(𝑠, 𝑎) = ∑

𝑠′∈S 𝑞
𝑘+1
ℎ
(𝑠, 𝑎, 𝑠 ′).

24: end for
25: end for

G THE COOP-NF-UOB-REPS ALGORITHM FOR ADVERSARIAL MDPS WITH NON-FRESH
RANDOMNESS AND UNKNOWN 𝑝

For the setting of adversarial MDPs with non-fresh randomness and unknown transitions we propose the Cooperative UOB-REPS with

non-fresh randomness algorithm (coop-nf-UOB-REPS; see Algorithm 10). The idea is to combine the coop-nf-O-REPS algorithm for known

transitions with ideas from the coop-ULCAE algorithm in order to handle unknown transitions under non-fresh randomness. The main

challenge is that, unlike the stochastic case, we cannot eliminate sub-optimal actions. Thus, our method requires

√
𝐾 agents to attain

near-optimal regret as opposed to the stochastic case where only 𝐻2𝐴2
agents are required.

Theorem G.1. Assume that coop-nf-UOB-REPS is run with 𝑚 =
√
𝐾 agents. With probability 1 − 𝛿 , setting [ = 𝛾 =

√︂
log

𝐾𝐻𝑆𝐴
𝛿

𝑆𝐾
, the

individual regret of each agent of coop-nf-O-REPS is

𝑅𝐾 = 𝑂

(
𝐻2𝑆

√︂
𝐾 log

𝐾𝐻𝑆𝐴

𝛿
+ 𝐻3𝑆3

log
2
𝐾𝐻𝑆𝐴

𝛿

)
.



G.1 The good event

Denote 𝜖𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎) =

√︂
2𝑝𝑘
ℎ
(𝑠′ |𝑠,𝑎) log

30𝐾𝐻𝑆𝐴
𝛿

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

+ 2 log
30𝐾𝐻𝑆𝐴

𝛿

𝑛𝑘
ℎ
(𝑠,𝑎)∨1

and 𝜖𝑘
ℎ
(𝑠, 𝑎) = ∑

𝑠′∈S 𝜖
𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎). Define the following events:

𝐸𝑝 =

{
∀(𝑘, 𝑠, 𝑎, 𝑠 ′, ℎ) : |𝑝ℎ (𝑠 ′ |𝑠, 𝑎) − 𝑝𝑘ℎ (𝑠

′ |𝑠, 𝑎) | ≤ 𝜖𝑘
ℎ
(𝑠 ′ | 𝑠, 𝑎)

}
𝐸𝑜𝑛 =

∀(𝑘, ℎ, 𝑠, 𝑎, 𝑣) ∈ [𝐾] × [𝐻 ] × S × A : 𝑛𝑘
ℎ
(𝑠, 𝑎) ≥ 1

2

𝑘−1∑︁
𝑗=1

𝑞𝜋
𝑗

ℎ
(𝑠) − log

6𝑚𝐻𝑆𝐴

𝛿


𝐸𝑐 =

{
𝐾∑︁
𝑘=1

⟨E𝑘 [𝑐𝑘 | 𝜋𝑘 ] − 𝑐𝑘 , 𝑞𝑘 ⟩ ≤ 4𝐻𝑆

√︂
𝐾 log

6

𝛿

}
𝐸𝑐 =

{
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝜋𝑘
ℎ
(𝑎 | 𝑠)

(
𝑐𝑘
ℎ
(𝑠, 𝑎) − 2𝑐𝑘

ℎ
(𝑠, 𝑎)

)
≤

10𝐻𝑆 log
3𝐻𝑆𝐴
𝛿

𝛾

}
𝐸★ =

{
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝜋
★

⟩ ≤
𝐻 log

3𝐻𝑆𝐴
𝛿

𝛾

}
The good event is the intersection of the above events. The following lemma establishes that the good event holds with high probability.

Lemma G.2 (The Good Event). Let G = 𝐸𝑝 ∩ 𝐸𝑜𝑛 ∩ 𝐸𝑐 ∩ 𝐸𝑐 ∩ 𝐸★ be the good event. It holds that Pr[G] ≥ 1 − 𝛿 .

Proof. Similar to the proofs of Lemmas C.5 and F.2 and to proofs in Jin et al. [22]. □

G.2 Proof of Theorem G.1
Proof of Theorem G.1. By Lemma G.2, the good event holds with probability 1 − 𝛿 . We now analyze the regret under the assumption

that the good event holds. Note that each agent plays the OMD policy 𝜋𝑘 in all except for 𝐻𝐴
√
𝐾 episodes. Thus, the regret is bounded by

the regret of the policies {𝜋𝑘 }𝐾
𝑘=1

plus a 𝐻2𝐴
√
𝐾 term which is at most 𝐻2𝑆

√
𝐾 . Next, we focus on bounding the regret of {𝜋𝑘 }𝐾

𝑘=1
, starting

with the following decomposition:

𝐾∑︁
𝑘=1

𝑉
𝑘,𝜋𝑘

1
(𝑠𝑘,𝑣

1
) −𝑉𝑘,𝜋

★

1
(𝑠𝑘,𝑣

1
) =

𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝜋
𝑘

− 𝑞𝜋
★

⟩

=

𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝜋
𝑘

− 𝑞𝑘 ⟩︸                ︷︷                ︸
(𝐴)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝑘 ⟩︸              ︷︷              ︸
(𝐵)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩︸                ︷︷                ︸
(𝐶)

+
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝜋
★

⟩︸                ︷︷                ︸
(𝐷)

.

Let 𝜏 = log
𝐾𝐻𝑆𝐴𝑚

𝛿
be a logarithmic term. Term (𝐴) can be decomposed using the value difference lemma (see, e.g., Shani et al. [42]):

(𝐴) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝜋
𝑘

− 𝑞𝑘 ⟩ ≤ 2𝐻

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)∥𝑝ℎ (· | 𝑠, 𝑎) − 𝑝𝑘ℎ (· | 𝑠, 𝑎)∥1

≲ 𝐻
√
𝑆𝜏

∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)√︃

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

+ 𝐻𝑆𝜏
∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

,

where the second inequality is by event 𝐸𝑝 . We now bound each of the two sums separately using the event 𝐸𝑜𝑛 . For the second sum we

have: ∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤
∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)

( 1
2

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠) − log

6𝑚𝐻𝑆𝐴
𝛿
) ∨ 1

=
∑︁
𝑘,ℎ,𝑠

𝑞𝜋
𝑘

ℎ
(𝑠)∑𝑎 𝜋𝑘ℎ (𝑎 | 𝑠)

( 1
2

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠) − log

6𝑚𝐻𝑆𝐴
𝛿
) ∨ 1

≤ 2𝐻𝑆𝜏 + 2

∑︁
ℎ,𝑠

∑︁
𝑘 :

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠) ≥2 log

6𝑚𝐻𝑆𝐴
𝛿

𝑞𝜋
𝑘

ℎ
(𝑠)∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠)
≲ 𝐻𝑆𝜏,



where the last inequality is by Rosenberg et al. [36, Lemma B.18]. For the first term:

∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)√︃

𝑛𝑘
ℎ
(𝑠, 𝑎) ∨ 1

≤
∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝜋
𝑘

ℎ
(𝑠, 𝑎)√︃

( 1
2

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠) − log

6𝑚𝐻𝑆𝐴
𝛿
) ∨ 1

=
∑︁
𝑘,ℎ,𝑠

𝑞𝜋
𝑘

ℎ
(𝑠)∑𝑎 𝜋𝑘ℎ (𝑎 | 𝑠)√︃

( 1
2

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠) − log

6𝑚𝐻𝑆𝐴
𝛿
) ∨ 1

≤ 2𝐻𝑆𝜏 + 2

∑︁
ℎ,𝑠

∑︁
𝑘 :

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠) ≥2 log

6𝑚𝐻𝑆𝐴
𝛿

𝑞𝜋
𝑘

ℎ
(𝑠)√︃∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠)

= 2𝐻𝑆𝜏 + 2

∑︁
ℎ,𝑠

∑︁
𝑘 :

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠) ≥2 log

6𝑚𝐻𝑆𝐴
𝛿

𝑞𝜋
𝑘

ℎ
(𝑠)√︃∑𝑘

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠)

√√√√∑𝑘
𝑗=1

𝑞𝜋
𝑗

ℎ
(𝑠)∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠)

= 2𝐻𝑆𝜏 + 4

∑︁
ℎ,𝑠

∑︁
𝑘 :

∑𝑘−1

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠) ≥2 log

6𝑚𝐻𝑆𝐴
𝛿

𝑞𝜋
𝑘

ℎ
(𝑠)√︃∑𝑘

𝑗=1
𝑞𝜋

𝑗

ℎ
(𝑠)

≤ 2𝐻𝑆𝜏 + 8

∑︁
ℎ,𝑠

√√√ 𝐾∑︁
𝑘=1

𝑞𝜋
𝑘

ℎ
(𝑠) ≤ 2𝐻𝑆𝜏 + 8

√√√√
𝐻𝑆

𝐾∑︁
𝑘=1

∑︁
ℎ,𝑠

𝑞𝜋
𝑘

ℎ
(𝑠) = 2𝐻𝑆𝜏 + 8𝐻

√
𝑆𝐾,

where the third inequality is by Streeter and McMahan [43, Lemma 1], and the last inequality is by Jensen’s inequality. Putting these together

we get that: (𝐴) ≲ 𝐻2𝑆
√
𝐾𝜏 + 𝐻2𝑆2𝜏2

.

Term (𝐵) can be further decomposed as:

(𝐵) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − 𝑐𝑘 , 𝑞𝑘 ⟩ =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 − E𝑘 [𝑐𝑘 | 𝜋𝑘 ], 𝑞𝑘 ⟩ +
𝐾∑︁
𝑘=1

⟨E𝑘 [𝑐𝑘 | 𝜋𝑘 ] − 𝑐𝑘 , 𝑞𝑘 ⟩.

The second term is bounded by 4𝐻𝑆

√︃
𝐾 log

6

𝛿
by the good event 𝐸𝑐 , and for the first term:

𝐾∑︁
𝑘=1

⟨𝑐𝑘 − E𝑘 [𝑐𝑘 | 𝜋𝑘 ], 𝑞𝑘 ⟩ =
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎) ©«1 −

E𝑘 [I{𝑠𝑘,𝜎 (ℎ,𝑎,𝑘)
ℎ

= 𝑠} | 𝜋𝑘 ]

𝑢𝑘
ℎ
(𝑠) + 𝛾

ª®¬
=

∑︁
𝑘,ℎ,𝑠,𝑎

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎) ©«1 −

𝑞𝜋
𝑘

ℎ
(𝑠)

𝑢𝑘
ℎ
(𝑠) + 𝛾

ª®¬ ≤ ‘

∑︁
𝑘,ℎ,𝑠

𝑞𝑘
ℎ
(𝑠) ©«1 −

𝑞𝜋
𝑘

ℎ
(𝑠)

𝑢𝑘
ℎ
(𝑠) + 𝛾

ª®¬
≤ 2

∑︁
𝑘,ℎ,𝑠

𝑞𝑘
ℎ
(𝑠)

𝑢𝑘
ℎ
(𝑠)
(𝑢𝑘
ℎ
(𝑠) − 𝑞𝜋

𝑘

ℎ
(𝑠) + 𝛾) ≤ 2

∑︁
𝑘,ℎ,𝑠

(𝑢𝑘
ℎ
(𝑠) − 𝑞𝜋

𝑘

ℎ
(𝑠)) + 𝛾𝐻𝑆𝐾,

where the second equality is because agent 𝜎 (ℎ, 𝑎, 𝑘) plays policy 𝜋𝑘 until step ℎ. Finally,
∑
𝑘,ℎ,𝑠 (𝑢𝑘ℎ (𝑠) − 𝑞

𝑘
ℎ
(𝑠)) is bounded by similarly to

Lemma E.5.



Term (𝐶) is bounded by OMD (see, e.g., Rosenberg and Mansour [37]) as follows:

(𝐵) =
𝐾∑︁
𝑘=1

⟨𝑐𝑘 , 𝑞𝑘 − 𝑞𝜋
★

⟩ ≤ 2𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠, 𝑎)𝑐𝑘

ℎ
(𝑠, 𝑎)2

≤ 2𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑞𝑘
ℎ
(𝑠)𝜋𝑘

ℎ
(𝑎 | 𝑠)

𝑐𝑘
ℎ
(𝑠, 𝑎)

𝑢𝑘
ℎ
(𝑠) + 𝛾

≤ 2𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝜋𝑘
ℎ
(𝑎 | 𝑠)𝑐𝑘

ℎ
(𝑠, 𝑎)

≤ 2𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝜋𝑘
ℎ
(𝑎 | 𝑠)𝑐𝑘

ℎ
(𝑠, 𝑎) +

[𝐻𝑆 log
3𝐻𝑆𝐴
𝛿

𝛾

≤ 2𝐻 log(𝐻𝑆𝐴)
[

+ [
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

∑︁
𝑠∈S

∑︁
𝑎∈A

𝜋𝑘
ℎ
(𝑎 | 𝑠) +

[𝐻𝑆 log
3𝐻𝑆𝐴
𝛿

𝛾

=
2𝐻 log(𝐻𝑆𝐴)

[
+ [𝐻𝑆𝐾 +

[𝐻𝑆 log
3𝐻𝑆𝐴
𝛿

𝛾
,

where the forth inequality is by the good event 𝐸𝑐 .

Term (𝐷) is bounded by

𝐻 log
3𝐻
𝛿

𝛾 by the good event 𝐸★. Putting the three terms together gives the final regret bound when setting

[ = 𝛾 =

√︂
log

𝐾𝐻𝑆𝐴
𝛿

𝑆𝐾
. □
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