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ABSTRACT

We study cooperative online learning in stochastic and adversarial
Markov decision process (MDP). That is, in each episode, m agents
interact with an MDP simultaneously and share information in
order to minimize their individual regret. We consider environments
with two types of randomness: fresh — where each agent’s trajectory
is sampled i.i.d, and non-fresh — where the realization is shared by
all agents (but each agent’s trajectory is also affected by its own
actions). More precisely, with non-fresh randomness the realization
of every cost and transition is fixed at the start of each episode, and
agents that take the same action in the same state at the same time
observe the same cost and next state. We thoroughly analyze all
relevant settings, highlight the challenges and differences between
the models, and prove nearly-matching regret lower and upper
bounds. To our knowledge, we are the first to consider cooperative
reinforcement learning (RL) with either non-fresh randomness or
in adversarial MDPs.
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1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL; see Zhang
et al. [54]) achieved impressive empirical success in many applica-
tions such as cyber-physical systems [1, 46], finance [28, 29] and
sensor/communication networks [9, 11]. The theoretical work on
MARL has focused on either Markov Games (MGs) [23], where the
goal is to converge to an equilibrium, or stochastic MDPs [30].

In this paper we initiate the study of two topics not addressed
before in the MARL literature. First, we differentiate between two
types of randomness: fresh — where each agent’s trajectory is sam-
pled ii.d, and non-fresh — where at any time the cost and transition
kernel’s randomness is shared by all agents. More precisely, if at
the same time two different agents perform the same action in the
same state, they observe the same cost and the same next state.
Second, we consider cooperation in the challenging adversarial
MDP setting that generalizes stochastic MDPs and allows to model
temporal changes in the environment through costs that change
arbitrarily and are chosen by an adversary.

While previous works focus mostly on fresh randomness, non-
fresh randomness models are just as well-motivated since different
agents might experience the same dynamics and rewards when
visiting the same state simultaneously. Conceptually, non-fresh
randomness models cases where the randomness is more a function
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of the time than the agent. For example, drones that fly together ex-
perience similar weather conditions and autonomous vehicles that
drive on the same roads on the same time encounter the same traffic
congestion. Moreover, the non-fresh randomness model is theoreti-
cally highly challenging, as we show in this paper. We indicate a
gap in the lower bounds between fresh and non-fresh randomness
and identify the weaknesses of current optimistic approaches in
handling non-fresh randomness, thus requiring us to develop new
algorithmic techniques.

Our main contributions can be summarized as follows. First, we
derive multi-agent versions of known regret minimization algo-
rithms in stochastic and adversarial MDPs, and thoroughly analyze
their regret in the fresh randomness model. To complement our
bounds, we formally prove matching lower bounds (the adversarial
MDP with unknown transitions lower bound nearly-matches, as
optimal regret has not been achieved even for a single agent). Sec-
ond, we point to the failure of optimistic methods under non-fresh
randomness and prove lower bounds that reveal a significant gap
from the fresh randomness case. Our novel constructions for these
lower bounds carefully take advantage of the agents’ shared ran-
dom seed to make sure that they cannot explore different areas of
the environment simultaneously. Third, we develop a novel multi-
agent action-elimination based algorithm for stochastic MDP with
non-fresh randomness that forces the agents to scatter at a care-
fully chosen time so that exploration is maximized. Through novel
analysis of the relations between the policies of different agents
and the error propagation, we prove near-optimal regret for the
algorithm. Finally, for adversarial MDP (where action-elimination
is not possible) with non-fresh randomness, we design a novel ex-
ploration mechanism to replace optimism and show that it can
achieve near-optimal regret for a large number of agents. Table 1
summarizes all our regret lower and upper bounds.

1.1 Related Work

Multi-agent multi-armed bandit. Cooperation was previ-
ously studied in both stochastic [16, 27, 34, 45] and adversarial
[5, 7, 8, 19] multi-armed bandit (MAB). While we extend some ideas
from the MAB literature to RL, many of the challenges that this
paper faces do not arise in MAB. Notably, fresh vs. non-fresh ran-
domness, which is the main focus of the paper, is unique to MDPs
as it involves dynamics (i.e., state transitions) that do not exist in
MAB.

MARL.. There is a long line of research on the theoretical as-
pects of MARL, mainly focusing on MGs [3, 4, 23, 31, 32, 47, 52].
This literature is only partially related for two reasons: it aims to
converge to an equilibrium rather than minimize individual regret,
and MGs assume the agents share the current state while in our



Table 1: Summary of our regret upper and lower bounds for m agents facing K episode interaction with an MDP that has S
states, A actions and horizon H. The bounds ignore poly-logarithmic factors and lower order terms. (*) The algorithm requires

K agents.
l Algorithm ‘ Regret ‘ Lower Bound ‘ Randomness ‘ Cost ‘ Transition ‘

coop-ULCVI \/ Hslsni \/ &mAK fresh stochastic | unknown

coop-0-REPS VH2K + \/M VH2K + \/M fresh adversarial known
coop-UOB-REPS VH?K + \/ HIS?’AK VH?K + \/ HSAK fresh adversarial | unknown
coop-ULCAE H3SK + \/&\/gl( H2SK + 4/ &mAK non-fresh stochastic | unknown

coop-nf-0-REPS H2SK + \/% H2SK + \/&mfm non-fresh | adversarial | known
coop-nf-UOB-REPS VH4S2K (*) H2SK + \/&;‘K non-fresh | adversarial | unknown

model different agents traverse different trajectories (i.e., modelling
our setting in a MG requires exponentially large state space). More
related is the literature on decentralized MARL that considers sto-
chastic MDPs with fresh randomness. However, the theoretical
guarantees provided by these works are either asymptotic or less
tight than our bounds [30, 53, 55, 56].

Single-agent RL.. There is a rich literature on regret minimiza-
tion in both stochastic [2, 20-22, 24, 49-51] and adversarial [6,
25, 33, 37-39, 57] MDPs. Note that for a single agent, fresh and
non-fresh randomness are identical.

2 PRELIMINARIES

A finite-horizon episodic MDP M is defined as follows. M is a
tuple (S, A, H, p, {Ck}llle)’ where S (of size S) and A (of size A)
are finite state and action spaces, H is the horizon and K is the
number of episodes. p is a transition function such that the proba-
bility to move to state s’ when taking action a in state s at time h is
pr(s’ls,a). ck € [0,1]H54
adversarial setting the sequence of cost functions {c

is the cost function for episode k. In the
k}Iki is chosen
by an oblivious adversary before the interaction starts, while in the
stochastic setting the costs are sampled i.i.d from a stationary dis-
tribution (that does not depend on k) with mean cﬁ(s, a) = cp(s, a).
The adversarial MDP model generalizes stochastic MDPs.

A policy r is a function such that 7y, (als) gives the probability to
take action a in state s at time h. If 7 is deterministic we often abuse
notation and use 7y (s) for the action chosen by the policy. Given a
cost function c, the value V’f (s) of  is the expected cost when start-
BP0 i (shs ap) sk =
s] where the notation EP”"[-] means that actions are chosen by 7
and transitions are determined by p. We also define the Q-function
QZ(s, a) = EP’”[Zg:h cp (sprsap) | sp = s,ap = a] that satisfies
the Bellman equations [44]:

ing from state s at time A, i.e., V}f (s) =

Qp (s.@) = cu(s,0) +Ep, (-fsa) [Vi |
Vi (s) = (mp (- 9), Qp (5,9)),

where E, () [f] denotes the expectation of f(x) where x is sampled
from the distribution r, and (., -) is the dot product.

Multi-agent interaction. A team of m agents interacts with
the MDP M. At the beginning of episode k, every agent v € [m]
= Sinit- At
k,o

picks a policy 7%? and starts in the initial state sf’v

time h = 1,...,H, each agent observes its current state sp and
samples an action alhc’u ~ }]:’U(-|slg’v). In the fresh randomness

model, the next state is sampled independently for each agent,

k.0
i s ~ paClsy
is sampled once for each state-action pair 51}; (s,a) ~ pp(-|s, a) ahead
of the episode, and then every agent v that takes action ain s at time

_ cks ko kv
h+1 =S (s ’ )-

suffered by the agent is either sampled in-

’v). For non-fresh randomness, the next state

h transitions to the same state S (s,a), ie., sk

Similarly, the cost Ch
dependently when randomness is fresh, or sampled once for each
state-action pair (s, a) ahead of the episode when randomness is
non-fresh. Note that for adversarial MDPs the costs are not sto-
chastic so it is always the case that CZ’U = cﬁ (sZ’v, a]];’v). At the end
of the episode, the team observes the trajectories and costs of all

agents {sk ° k v Ck ¢ ™ (i.e., bandit feedback).

}h lvl

Regret. Let V57 be the value function of 7 with respect to c¥.
The pseudo-regret of an agent v is the cumulative difference be-
tween the values of its policies and the values of the best fixed
policy in hindsight. The performance of the team is measured by
the maximal individual pseudo-regret (note that this criterion is
stronger than the average regret):

K
K
Ry = max ZVlk’” °
ve[m] =i

K
2 . k,
(Sinit) — min Z Vi (Sinit)-
k=1

For stochastic MDP, we use the more common definition of the
regret in which, for k € [K], Vf’”(s) = V}f(s) for the cost function
¢ (the mean of the costs distribution).

Occupancy measures. For policy 7, let g™ be its occupancy mea-
sure such that gy (s) is the probability to visit s at time h playing =
and q;f(s, a) = qZ(s)nh(a | s). By definition, V " (sinit) = {q
so we can write the regret in terms of occupancy measures as

nk>



follows:

K K
_ ke k : k
Rk Jnax, ;«1 ) g kZ:‘{@, ),
where A(M) is the set of valid occupancy measures which corre-
sponds to the set of stochastic policies and is a convex polytope in
RHSA defined by O(HSA) linear inequalities.

Additional notations. The notation O(-) hides constants, lower
order terms and poly-logarithmic factors, including log(K/§) for
some confidence parameter . The indicator of event E is denoted
by I{E}. In addition, we denote [n] = {1,2,...,n} for n € N and
x Vy = max{x,y} for x,y € R. 7* denotes the optimal policy (best
in hindsight for the adversarial case).

3 FRESH RANDOMNESS

The main principle that guides us in the design of algorithms for
fresh randomness is the following: even if all agents play the same
policy, the team still gathers “m times more data”. Thus, we take
a single-agent regret minimization algorithm ALG and let all the
agents play the policy that it outputs. ALG is then updated based on
the observations of all agents.

For the stochastic setting we propose an optimistic algorithm
we call coop-ULCVI based on the single-agent algorithms of Azar
et al. [2], Dann et al. [13]. The algorithm maintains empirical esti-
mates of the transition probabilities and costs, based on samples
from all agents. At the beginning of episode k it constructs an
optimistic estimate Qk of the optimal Q-function Q" so that with

high probability (w.h.p) g];l (s,a) < QZ (s, a). The agents all play
the same deterministic policy which is greedy with respect to gk:

71'];’“(5) = arg max, gﬁ(s a). Even if agents arrive together at the
same state and take the same action, we still get multiple i.i.d sam-
ples. Hence, the empirical estimates are based on m times more
samples compared to the non-cooperative (single-agent) setting.
This is the key property that allows us to prove the following
improved regret bound. Detailed description of the coop-ULCVI
algorithm and the proof of Theorem 3.1 appear in Appendix B.

THEOREM 3.1. For stochastic MDP with fresh randomness, the
coop-ULCVI algorithm ensures w.h.p Rg = O( HS%)

This bound improves upon Lidard et al. [30] by a factor of VH,
and is in fact optimal up to logarithmic factors as shown by our
lower bound in Appendix A. The lower bound is built on a simple
observation [19]: minimizing the sum of regrets of m agents in K
episodes is harder than minimizing the regret of a single agent in
mK episodes. By single-agent lower bound [15], the sum of regrets
is Q(VH3SAKm), so that the lower bound on the average regret
matches our regret bound in Theorem 3.1.

For the adversarial setting we propose coop-0-REPS which is
based on the single-agent O-REPS algorithm [57]. Essentially, this is
Online Mirror Descent [41] on the set of occupancy measures with
entropy regularization. More specifically, in episode k all agents
play policy K computed as follows:

k ) e k-1
q" =argminn(g, &) +KL(q | ¢" ), (1)
geA(M)

where KL(- || -) is the KL-divergence, 7 is a learning rate and ek
is an importance sampling estimator. The main difference in our
algorithm is the new estimator that incorporates the observations
from all the different agents as follows:

k, k,
F(s.a) = cllz(s,a)]I{EIv : shZJ = s,ahv =a}
h> Wf(s, a)+y

: ()

where y is a bias added for high-probability regret [35], and W}{‘ (s,a)
is the probability that some agent visits state s and takes action a
at time h — this quantity will play a major role in the analysis of
all our algorithms. Conveniently, W}{‘ (s,a)=1-(1- q;l’k (s,a))™
as it is the complement of the event that all agents do not visit
(s, a) at time h. Thus, the algorithm can be implemented efficiently
similarly to the single-agent algorithm [57].

For unknown transitions we propose coop-UOB-REPS based on
single-agent UOB-REPS [22], which is similar to coop-0-REPS but
uses an estimate A(M, k) of the set of occupancy measures which
contains the true set A(M) with high probability. Note that without
knowing p, we cannot compute W}f, Instead, we use an optimistic

estimate Uf]: which bounds W}’lc from above with high probability.
The full algorithms and analysis for the adversarial setting with
fresh randomness appear in Appendices D and E.

THEOREM 3.2. For adversarial MDP with fresh randomness, the

coop-0-REPS algorithm ensures w.h.p Rg = O(HVK + HzS%)for
known dynamics, and the coop-UOB-REPS algorithm ensures w.h.p

Rk = O(HVK + %K) for unknown dynamics.

In Appendix A we show these bounds are optimal, except for
an extra VHS factor in the second term of our unknown dynamics
bound which we cannot hope to remove here since it is still an open
problem even for single-agent. Notice the additional HVK term
that does not appear in the stochastic setting. It follows from the
lower bound for single-agent adversarial MDP with full-information
feedback (not bandit feedback), which is equivalent to our setting
in the best case scenario where the agents manage to visit all state-
actions.

PROOF SKETCH FOR THEOREM 3.2. By standard analysis, the re-
gret scales with two terms: penalty of order H/n, and stability of
ordern Yk h.s.a q;f g (s, a)éﬁ (s, a)%. We show that the stability (which
accounts for the estimator’s variance) decreases as the number of
agents increases. In particular we prove that,

g (s.a) < (% +qf (5.0 | Wi (s.0). (3)

This implies that either the probability to observe cost cﬁ (s,a) is
m times the probability of a single agent to observe it , or that this

k A
probability is at least a constant. Hence, g7 (s, a)cﬁ (s,a)® < (1/m+

q;lfk (s, a))éﬁ (s, a). Then, by concentration, the stability amounts to
nHK (1 + SA/m), and optimizing over n gives the desired bound.
With unknown dynamics, there is an additional error term that
comes from the estimation of the occupancy measures set and
the bias of the estimator (in particular U;f) This error is handled
similarly to the stochastic case. O



4 THE CHALLENGES OF NON-FRESH
RANDOMNESS

Unlike fresh randomness, in the non-fresh randomness setting the
total amount of feedback is not necessarily m times the feedback
of a single agent. In fact, any algorithm that uses deterministic
policies (e.g., optimistic algorithms) simply fails in this setting. The
reason is that all agents follow the exact same trajectory since the
policy does not introduce any randomness and the transitions are
fixed ahead of the episode. Thus, the total amount of feedback is
exactly the same as a single-agent would have gathered, which
means Q(VH3SAK) regret with no benefit from multiple agents.

The next theorem shows that the non-fresh randomness setting
is significantly harder than fresh randomness even in terms of
the statistical lower bound. While the regret for stochastic MDP
with fresh randomness scales only logarithmically with K for large
enough m, HVSK regret is unavoidable under non-fresh randomness
even if m — oo.

THEOREM 4.1. For any S,A,H,m € N and K > SAH, and for
any algorithm ALG, there exists a stochastic MDP with non-fresh
randomness such that ALG suffers expected average regret of at least

A/ H3SAK

Proor skeTCH. We construct the following MDP illustrated in
Figure 1. All agents start in sy. Taking action a; transitions to one
of the MAB states s, ..., ss with probability 1/S to each. Taking
any other action a # ap transitions to a bad state s, which is a
sink with maximal cost 1. Each MAB state encodes a hard MAB
instance: one action gives cost 0 with probability 1/2 + ¢ and cost
1 otherwise, while the rest of the actions give cost 0 or 1 with
probability 1/2. From the MAB states all actions transition back to
so with probability 1.

Since the bad state has higher cost than every MAB state and does
not contribute to exploration at all, we can assume that all agents
choose action a; every time they arrive to sp. Recall that transitions
are non-fresh, so all agents visit exactly the same states. This is
the critical point in our construction, as it means that exploration
is limited to the A actions in the states that all agents visit (and
cannot remove S from the regret).

Choosing € as in standard MAB lower bounds, we get that the
regret from each of MAB state is Q(+/(1 + A/m)X), where X is the
total number of visits to that state. For last, X ~ K/S with high
probability which implies that the regret from each MAB state is
Q(y/(1+ A/m)K/S). Summing over all states and time steps, we get
the desired lower bound. We note that this is a simplified version,
missing a factor of VH in the second term. For the full construction
and other lower bounds, see Appendix A. O

In Section 5 we face non-fresh randomness in stochastic MDP
and present the coop-ULCAE algorithm based jointly on optimism
and action-elimination. It is important to note that, much like opti-
mistic algorithms, existing RL action elimination algorithms (e.g.,
Xu et al. [48]) are deterministic and thus fail in the cooperative non-
fresh randomness setting, even though they achieve optimal regret
for single-agent. Moreover, naive ways to make these algorithms
use stochastic policies that succeed in cooperative MAB, such as

MAB MAB

k(sp) =1

Figure 1: Lower bound construction for non-fresh random-
ness.

uniform exploration of non-eliminated arms, lead to sub-optimal re-
gret in RL because exploration must be controlled more carefully to
ensure important states are reached with large enough probability.
Hence, we develop a novel exploration method for our algorithm
which guarantees that agents can deviate from the optimistic policy
and explore potentially optimal actions with minimal effect on the
regret.

For adversarial MDP, non-fresh randomness introduces an ad-
ditional challenge. Due to correlations between the trajectories
of different agents, there is no clear and simple relation between
W]f (s,a) and qzk (s, a) as in the fresh randomness setting. In fact,
Equation (3) does not hold anymore. In Section 6.1 we present a
sophisticated technique for bounding the ratio qz g (s,a)/ Wf (s,a)
through a Linear Programming formulation. This allows us to prove
optimal regret bounds for adversarial cost and known dynamics.

Existing algorithms for adversarial cost and unknown dynam-
ics are optimistic in essence, and as mentioned before, such algo-
rithms fail to utilize cooperation under non-fresh randomness. In
Section 6.2 we overcome this challenge with a novel exploration
mechanism and prove regret that does not depend on A (up to log-
arithmic factors) if there are at least VK agents. However, finding
the optimal regret for general m still remains an important open
question.

5 NON-FRESH RANDOMNESS - STOCHASTIC
MDP

As outlined in Section 4, under non-fresh randomness, we cannot let
all agents play the optimistic policy as in the fresh randomness case.
Hence, we want agents to occasionally deviate from the optimistic
policy for the purpose of exploration. A naive approach would be to
let agents explore a random action with probability € and to follow
the optimistic policy with probability 1 — e. That way, we get me
more feedback for m > 1/e and the regret of playing the optimistic
policy would scale as y/SAK/(me) (ignoring dependency in H). On
the other hand, deviating with an arbitrary action can lead to cost
of order of H, which happens for approximately €K episodes, so
one would have to set € < 4/SA/K in order to obtain improvement
over single agent regret. Thus, the number of agents must be at
least m > 1/e > \/K/(SA) for an improvement. In this section we
significantly reduce the number of agents required for a gain in the
regret, and show that it can depend on A alone.

Another natural approach, which leads to optimal regret in co-
operative MAB, is action-elimination, i.e., eliminate all actions that



Algorithm 1 coor-ULCAE

1: initialize: ﬂz(s) = A foreverys € Sand h € [H].

2: fork=1,...,Kdo

32 Compute gk,ék based on empirical estimates.

4. Set optimistic policy gﬁ(s) € argmin, ¢ 4 Qﬁ(s a).

5. Eliminate sub-optimal actions: remove a from ﬂﬁ(s) if
Ja’ € fr’ll}j(s) s.t. gﬁ(s, a) > éz(s, a’).

6:  Set policies for agents: for every v € [m] sample h, € [H]
uniformly at random and set:

Ek with probability 1 — e

ko _
7=, kh . e
" with probability e,

where n}li’h/ = EIZ for any h # h’ and uniform over &’(ﬁ (s) at

(h,s).
7. Play episode k, observe feedback and update empirical esti-

mates.
8: end for

are clearly sub-optimal and explore uniformly at random over non-
eliminated actions. However, this approach would also fail in RL be-
cause it does not explore efficiently enough. More precisely, agents
deviate too much from the optimistic policy so we cannot guarantee
that they visit important states. A closer look at action-elimination
algorithms for RL [48] reveals that they use deterministic policies
for this very reason.

Our algorithm, cooperative upper lower confidence action elim-
ination (coop-ULCAE), is presented in Algorithm 1 and in its full
version (together with the full analysis) in Appendix C. It takes
inspiration from the two previous approaches but utilizes multi-
agent exploration in a nearly optimal way. It explores only over
non-eliminated actions, but also makes sure that deviation from the
optimistic policy is minimal, thus avoiding “non-important” states.
This is achieved by playing a random non-eliminated action only
at one step during the episode, selected uniformly at random.

Formally, the algorithm maintains a set of active actions in each
state .7[5 (s), consisting of only potentially optimal actions. In each
episode k, it computes optimistic and pessimistic estimates of Q*,

Qk and @k, respectively, such that w.h.p glfl(s a) < QZ(s, a) <

@ﬁ(s, a). Hence, if for actions a and a’, Q];l(s, a) > @Z(s, a’), then
a is clearly sub-optimal and we can eliminate it. The policies of
the agents are determined as follows: agent v plays the optimistic
policy (greedy with respect to Q) with probability 1 — €, and with
probability € she plays the optir_nistic policy except for one random
time step h, where she takes a uniformly random active action. The
key idea is that deviating on a single time step with an active arm
would have only minor affect on the regret, so we can set e much
larger compared to the naive e-exploration approach described in
the beginning of this section.

THEOREM 5.1. For stochastic MDP with non-fresh randomness,

-~ 7
coop-ULCAE ensures w.h.p R = O( HS5SK + [}L‘/EAK)

If m > H*A? the first term is dominant, in which case the regret
is nearly optimal and matches our lower bound (Theorem 4.1) up

to H3/2. Otherwise, we have optimal dependence in S, A, K but
there is still a gap of H? and more importantly 1/+/m. Determining
the optimal dependency in m for this setting is an important open
question.

PROOF SKETCH FOR THEOREM 5.1. To simplify presentation, we
ignore poly(H) factors in the proof sketch and use the notation
V7 = V[ (sinit) For agent v, we first break the regret into episodes
in which she plays the optimistic policy K, and episodes in which
she plays an exploration policy K,

EXP’
Sovr oy oyt oy
keks, keXe
RgP RgXP

Then, we show that the regret of playing gk is bounded by the dif-
ference between the optimistic and pessimistic estimates of Q* over
the trajectory of gk. This difference shrinks with the confidence
radius and mainly scales as,

k
K H s
q, (s.a)
meySyy AL
k=1h=1seSacA nh(s, a)Vv1
where nlhC (s,a) = Zf;ll {3 : si’v =s, a{l’v = a} is the number of
times some agent visited (s, a) at time h before episode k. Now, one
can show that nﬁ (s, a) is approximately the sum of probabilities that

some agent visits (h, s, a), i.e., nﬁ (s,a) = 21;:11 W}{(s, a). Trivially

; j
W}{ (s,a) = q% (s, @), but we can further utilize the exploration of

all the agents to bound W}{ (s, @) in terms oqu (s) and not qf (s, a),
as follows: With probability 1 — (1 — ¢/HA)™ some agent plays the
policy /" and takes action a at time h. In that case, she would
arrive to s in time h with probability qZ]'h (s). Recall that /" and

Ej are identical up to time h, and so qzj'h (s) = q%j (s). Also, it is
possible to show that 1 — (1 — €/A)™ ~ me/A whenever € < A/m.
Thus, we get the better bound:

k-1 k-1 .
k ~ j me g
i (s.0) ~ le Wi(s.a)x — ; @ ().

Combining this with Equation (4), we obtain:

k
e < A Zaqy (50 _ [sAK

OP ~ ~ >
me i me
khs [yk-1 7
S Zj:1 q ()

K K
where the last relation uses Y ,c qf (s,a) = q% (s), together
with the Cauchy-Schwarz inequality and standard arguments [36,

Lemma B.18] to bound i qfk (9)/zkd qu (s) < logK.

For R, we utilize the fact that when the agent plays an ex-
ploration policy, she deviates from the optimistic policy using an
active action. Particularly, we show that similar to the regret of the
optimistic policy, the regret of the exploration episodes scales with

the difference between the optimistic and pessimistic estimates of

(©)



Q* over the trajectory of 7%/%, but with additional penalty due to
the deviation which is overall bounded recursively by R, i.e.,

k.h
IR
kERZ, hsia Ik (s,a) V 1

J
While we can bound n}]i(s, a) as before in terms ofq% (s), it can be

0 0
Rexp < Rop +

(6)

very different than q;lrk'hv (s). Intuitively, once the agent deviated
from the optimal policy, we have a much weaker guarantee on
the quality of our confidence sets in the states that she reaches
since the cooperative exploration is done over the trajectory of
the optimistic policy. Thus, we cannot use similar arguments to
the ones we used to bound RY,, and in particular Equation (4).

0P’
Instead, we only utilize samples gathered by v in K7, ,, and bound

EXP’
nz(s, a) 2 ZJEWE’XP,K/C q;lrj’hv (s, a). Using the fact that the number
of exploration episodes for v is approximately [KZ,| ~ €K and
standard arguments, the second term in Equation (6) is bounded by
VSAKe. To finish, combine the bounds and set ¢ = min{%, \/%}

6 NON-FRESH RANDOMNESS - ADVERSARIAL
MDP

6.1 Known Transitions

Before tackling the most challenging model - adversarial MDP with
non-fresh randomness and unknown transitions, we first study the
case of known transitions. While some of the challenges that we
tackled in Section 5 are alleviated when transitions are known, in
this section we face additional challenges that stem from the fact
that now an adversary is choosing the sequence of cost functions
instead of them being sampled from a fixed distribution.

More precisely, under non-fresh randomness there are strong
correlations between the trajectories of different agents. This is in
stark contrast to the fresh randomness setting where, by playing
the same policy for all agents, we obtained different i.i.d samples
which enabled us to prove that our estimator has reduced variance
and therefore get an improved regret bound (Theorem 3.2). The
correlations between the agents’ trajectories introduce two main
challenges: a statistical challenge and a computational challenge.

The statistical challenge resembles the ones we faced in the sto-
chastic case (Section 5) — whenever the policy is close to being deter-
ministic, the trajectories of the agents are almost identical. However,
since costs are adversarial, here we need different techniques that
are compatible with adversarial online learning. More formally, for
anear-deterministic policy ¥, we have W}]: (s,a) = q;l’ . (s, @) which
means that there is almost no benefit from the cooperation between
the agents. Even though algorithms for adversarial environments
inherently choose stochastic policies, it is still unclear a-priori how
to bound the ratio qzk (s,a)/ W,f (s, a), except for the trivial bound
of 1 which leads to single-agent regret guarantees. Recall that for
fresh randomness we bounded this ratio in Equation (3) which relies
on the independence of the agents’ trajectories given the policy 7%.
However, this bound no longer holds and we develop a new bound
that is suitable to the non-fresh randomness setting and builds on
a novel LP formulation.

The computational challenge follows because we no longer have
a closed-form expression to compute W}I: (s, a) like we had under
fresh randomness. We propose to solve this challenge by Monte
Carlo estimation of W}f (s, a) which we show does not damage the
final regret guarantees.

For this setting we propose coop-nf-0-REPS, presented (to-
gether with its analysis) in Appendix F. It follows the same up-
date rule (Equation (1)) of coop-0-REPS, but instead of Wf(s, a)
(which is now hard to compute) in the definition of the importance
sampling estimator (Equation (2)), it uses a Monte Carlo estimate
147}’: (s, a). The estimate is computed by simulating the run of multi-
ple agents playing policy 7K over the MDP for O(K) times and tak-
ing the fraction of times where some agent visited the state-action
pair (s, a) at time h. The approximation error adds a small bias of
order O(1/VK) which affects the total regret by only a constant
factor. We note that the computational complexity of this algorithm
is similar to standard O-REPS-based algorithms which are known to
have poly(K, H, S, A) per-episode computational complexity [14].

THEOREM 6.1. For adversarial MDP with non-fresh randomness
and known dynamics, the coop-nf-0-REPS algorithm ensures w.h.p

N H2SAK
Ry = O(HVSK + |/ 124K,

The above regret bound is optimal up logarithmic factors. The
lower bound can be found in Appendix A, and features a similar
construction to the one in the proof of Theorem 4.1. Note that in
Theorem 4.1 there is an extra VH factor in the second term, which
only appears for unknown dynamics.

PROOF SKETCH FOR THEOREM 6.1. Similarly to the proof of The-
orem 3.2, the regret scale with the penalty term H/n, and the stabil-
ity term 17 X g hs.a qZk (s, a)él}i (s, a)?. Bounding the approximation
error of I/T//:(s, a) by y/2 gives us:

k
q, (s.a)

(stability) < n Z éﬁ(s, a) (7)

k
k,h,s,a Wh (s,a)

To further bound the right-hand-side we use a standard concen-
tration bound of éz(s, a) around cﬁ(s, a) < 1. It remains to bound
the ratio qzk (s,a)/ W}f (s, a) which is our main technical novelty
in this proof. Let M}]f(s) be the random variable that represents
the number of agents that arrive at state s in time h and denote
pi=Pr [M}]l‘ (s) = i]. Let EX[] denote an expectation conditioned on
everything that occurred before the start of episode k. By definition,

W}’f(s, a) = Ek[l -(1- ﬂz(a | 3))M;’f(5)]

Ek

®)

1+ My (s)7f (a | s)

ME(s)r(a] 5) ] $ piin(a s)
S 1+inf(als)
where the inequality holds deterministically for every realization
ofM}]f (s) (see Lemma D.3). Note that the expected value ofM}’: (s)is
quk (s), so the right-hand-side of Eq. (8) is bounded by the value



of the following linear program:

m iﬂ'z (als)
min

pi—
PosPm £47 1 4 iif]h‘(a | s)
m m
s.t. Zpii = mqlfl(s) ; ZP;’ =1
i=0 i=0

Now, we can solve the LP by considering the dual problem (see
K k

k mqy (s)m, (als)

Lemma F.3), and get that W,"(s,a) > Temafals)

(7) is bounded by nHSK(1 + A/m), and we obtain the claim by

optimizing over 7. o

. Hence, Eq.

6.2 Unknown Transitions

When facing adversarial MDPs with unknown transitions and non-
fresh randomness, we encounter all the challenges presented in
previous sections. The combination of these challenges makes this
model especially hard from an algorithmic perspective. Specifically,
the only way (currently) to obtain regret bounds in adversarial
MDPs with unknown dynamics is via optimism. Unfortunately, as
discussed in Sections 4 and 5, optimistic methods fail under non-
fresh randomness. Moreover, our solution for the stochastic case
is based on action-elimination so it cannot be extended to adver-
sarial costs. Instead, in this section we present a novel exploration
mechanism which guarantees near-optimal regret for large enough
number of agents. Importantly, if we used optimism, regret would
not improve even for m — co.

We propose the coop-nf-UOB-REPS algorithm, presented in Al-
gorithm 2 and in full version (together with analysis) in Appendix G.
Similarly to coop-0-REPS and coop-nf-0-REPS, it maintains a pol-
icy 7% through the O-REPS update rule (Equation (9)), however
unlike the previous algorithms, some agents play a different policy
than 7% for the purpose of exploration. We now present the two key
features that allow our algorithm to perform efficient exploration
in this challenging setting.

First, we equip the algorithm with a novel exploration mech-
anism: for every (h, a, k) we assign an agent o(h, a, k) to follow
7% up to time h, and then take action a. The rest of the agents
follow the policy 7%, This exploration mechanism is motivated by
coop-ULCAE, but since costs are adversarial, we cannot eliminate
actions and thus have much weaker guarantees on the regret of the
exploration policies. As a result, we require many agents so that
each agent would explore less often. In particular, there are HAK tar-
gets to explore and whenever m > VK we can choose o so that each
agent performs exploration for at most HAVK episodes. Second, to
avoid the complex dependencies between the agents’ trajectories,
we use a new importance sampling estimator that ignores all agents
c}’; (s,a)]I{s]I:’ﬁ(h’a’k> =s}

here
Ly

except for o(h,a, k), ie., éi(s, a) =

k
ul}j (s) = q;l’ (s). Notice that this estimator is approximately unbi-

ased (up to y and approximation errors) since H{a:’g(h’a’k) =a}=1

Finally, since we do not know the set occupancy measures under
unknown dynamics, we use an approximation A(M, k) based on
empirical estimates.

Algorithm 2 coor-Nr-UOB-REPS

1: initialize: define a mapping o : [H] X A X [K] — [m].
2: fork=1,...,Kdo
3  Compute n}lf(a | s) = qﬁ(s, a)/qllz(s) for:

¢ = argmin n(g,¢*"') +KL(q || 7). )
qeA(Mk)
4 Set policies for agents: For every (h, a, k) set the policy of
agento = o(h, a, k) to be:
k. {a’'=a} K =h
mp @ 1) =9 ¢, ,
nh,(a |s) h" #h,
and for the rest of the agents set 75? = 7k
5. Play episode k, observe feedback, update transition empiri-
cal estimates, and compute cost estimator ek,
6: end for

THEOREM 6.2. AssumeS > A and m > VK. For adversarial MDP
with non-fresh randomness and unknown dynamics, coop-nf-0-REPS
ensures wh.p Rg = O(H%SVK).

The above result shows that optimal regret is attainable up to
factor of VHS. Recall that the extra factor VHS compared to the
lower bound of Theorem 4.1 also appear in the state-of-the-art
upper bound for single-agent. There is still a significant gap on
the number of agents required for optimal regret, and finding the
minimal number of agents to ensure such regret still remains an
important open problem.

PROOF SKETCH FOR THEOREM 6.2. The proof focuses on bound-
ing the regret of the O-REPS policies {r¥ }Ik(:l’ since the number
of episodes that each agent does not play these policies is at most
HAVK, resulting in extra regret of at most H2SVK. Similarly to the
proof of Theorem 6.1 we need to bound the stability term, but here
the unknown dynamics also introduce additional approximation
errors. The analysis of the stability term resembles the proof of
Theorem 6.1 but utilizes the fact that qZk (s, a)/u],;(s) S JT}I:(LZ | s).
The analysis of the approximation errors takes inspiration from
the proof of Theorem 5.1, and shows that it scales with the sum of
confidence radius over the trajectory of 7*:

(- 3 SR e B 60

hs,ak 4 lnﬁ(s, a)

We then utilize agents’ exploration to lower bound W’f (s, a). Recall
k

h,s,a.k Z§=_11 W}{ (s,a)

that agent o (h, s, k) follows 7" until time A, so she arrives at s with

probability qg . (s) and then takes action a deterministically. Hence,
W/:(S, a) > qzk (s), yielding:

k
HVS20 09 e o

(*) s Z k-1 7/

h,s,k j=1 q;, (S)

7 CONCLUSIONS AND FUTURE WORK

In this paper we studied cooperation in multi-agent RL. We in-
troduced the non-fresh randomness model and characterized its



challenges compared to standard fresh randomness. We provided
nearly-matching regret lower and upper bounds in all relevant set-
tings, and developed novel techniques for handling different types
of randomness in various models.

Our work leaves two important directions for future work. First,
our regret bounds for non-fresh randomness with unknown transi-
tions are not tight for both stochastic and adversarial MDPs. Second,
we assume agents communicate through a fully-connected graph.
Extending our results to general communication graphs (as in MAB)
is an interesting future direction that would also require analyzing
delayed feedback [18, 26].
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Additional notations. While in the main paper the notation < hides lower order terms and logarithmic factors, in the appendix it only
hides constant factors, i.e., x < y if and only if x = O(y). We use the notation EK[-] to denote an expectation conditioned on everything
that occurred before the beginning of episode k. Furthermore, EX[- | 7] denotes an expectation conditioned on everything that occurred
before the beginning of episode k, and when playing episode k using the policy 7. nfl (s, a) denotes the numbe? of samples we have from
| 3
=5, ail’v = a}. Finally, Var,(.)[f] denotes the variance of f(x) where x is sampled from the

(s, a, h) in the beginning of episode k. More precisely, for fresh randomness nﬁ(s, a) = Z?;ll P ]I{slji’u =s,a

v
h ’

distribution r. For transition function p’ and policy 7, ’”(s, a,s’) =Pr[sy, =s,ap = a,s = s’ | p’, 7] denotes its occupancy measure,
p’ and policy =, g, h h = @ She1 p pancy

= a}, and for non-fresh

randomness n’;l(s, a) = Z;?;ll I{Fo : s

', ', ' ¥ e L .
qi (s,a) =X qi (s,a,s") and qi (s) =24 qi (s, a). When the transition function is p, we often use the shorter notation ¢q” = gP-”.

7* denotes the optimal policy (or best in hindsight), V* denotes its values function and g* its occupancy measure.

A LOWER BOUNDS

In this section we provide proofs for the lower bounds that appear in Table 1.

A.1 Fresh randomness

THEOREM A.1 (LOWER BOUND FOR STOCHASTIC MDP WITH FRESH RANDOMNESS). LetS,A,H,m € N and K > SAH. For any algorithm ALG
there exists a stochastic MDP M with fresh randomness such that: (i) M has ©(S) states, ©(A) actions and horizon ®(H); (ii) Running ALG with
m agents for K episodes suffers expected average regret of at least Q(+/ %).

ProorF. The proof is similar to the proof of Ito et al. [19, Theorem 4]. Notice that cooperative regret minimization with m agents for K
episodes is harder than single agent regret minimization for Km episodes, because we can solve the second problem using an algorithm for

the first problem. Simply let the agents play the first m episodes one by one, feed the feedback to the algorithm and then again let the agents
play sequentially. This implies that the cumulative expected regret of the agents is at least Q(VH3SAKm) by standard lower bounds for

H3SAK )
N}

MDPs [15]. Thus, the average expected regret is at least Q( O

THEOREM A.2 (LOWER BOUND FOR ADVERSARIAL MDP WITH FRESH RANDOMNESS AND KNOWN TRANSITION). Let S,A,H,m € N and
K > SAH. For any algorithm ALG there exists an adversarial MDP M with fresh randomness such that: (i) M has ©(S) states, ©(A) actions and
horizon ©(H); (ii) Running ALG with m agents for K episodes, when the transition function is known, suffers expected average regret of at least

Q(VHZK + 4/ H2S4K)

Proor. The lower bound is obtained by a combination of the following two constructions, i.e., with probability 1/2 the MDP has the
structure of the first construction and with probability 1/2 of the other one:

(1) Similarly to the proof of Theorem A.1, cooperative regret minimization with m for K episodes is harder than single agent regret
minimization for Km episodes. Invoking the Q(VH2SAKm) lower bound of Zimin and Neu [57] for adversarial MDP with bandit

feedback and known transition, this gives us the Q(4/ HZ%AK) lower bound.

(2) Cooperative regret minimization with bandit feedback is harder than single agent regret minimization with full-information feedback
because the transition function is known so the agents share information only about the cost function (which is fully revealed under
full-information feedback). Thus, for the second construction we can simply use the construction of Zimin and Neu [57] for the
Q(VH?K) lower bound of single agent adversarial MDP with known transition and full-information feedback. O

THEOREM A.3 (LOWER BOUND FOR ADVERSARIAL MDP WITH FRESH RANDOMNESS AND UNKNOWN TRANSITION). LetS, A, H,m € N and
K > SAH. For any algorithm ALG there exists an adversarial MDP M with fresh randomness such that: (i) M has ©(S) states, ©(A) actions and
horizon ©(H); (ii) Running ALG with m agents for K episodes, when the transition function is unknown, suffers expected average regret of at least

Q(VHZK + 4/ H2S4K)
ProoF. Similarly to the proof of Theorem A.2 we use a combination of two constructions. The first one is the construction from

Theorem A.1 which gives the Q(4/ &me) lower bound, and the second one is the construction from Theorem A.2 which gives the Q(VH?2K)
lower bound. O

A.2 Non-fresh randomness

THEOREM A.4 (LOWER BOUND FOR ADVERSARIAL MDP WITH NON-FRESH RANDOMNESS AND KNOWN TRANSITION). LetS, A, H,m € N and
K > SAH. For any algorithm ALG there exists an adversarial MDP M with non-fresh randomness such that: (i) M has ©(S) states, ©(A) actions
and horizon ©(H); (ii) Running ALG with m agents for K episodes, when the transition function is known, suffers expected average regret of at

least Q(VHZSK + || H25AK)



Proor. Consider the following MDP with horizon 2H. There are A actions aj, a, ..., a4 and S + 2 states: the initial state so, a bad state s,
and the MAB states s1, 52, . . ., ss. The agent starts in the initial state s) where action a; transitions to each of the MAB states sy, . .., ss with
probability 1/S, and all the other actions ag, ..., a4 transition to the bad state sp. In the bad state the cost is always 1 and all the actions just
stay in it with probability 1. Each MAB state s; encodes a hard multi-arm bandit problem for each horizon step h. That is, all the actions
transition back to the initial state sp, but one action (sampled uniformly at random) suffers cost 0 with probability 1/2 + € (and otherwise 1)
while the other actions suffer cost 0 with probability 1/2, where € ~ 4/SA/K which is standard for MAB/RL lower bounds.

Without loss of generality we can assume that all of the agents always choose action a; in the initial state because otherwise they
transition to the bad state and suffer maximal cost. Critically, this means that all of the agents visit the same state in every time step (because
of non-fresh randomness).

Denote by T; j, the number of visits to MAB state s; in step h. We utilize the lower bound for cooperation in multi-arm bandit [19, 40] in

order to bound the average expected regret from below by
A
SHA[1+ —E[\/X]),
m

for X ~ Bin(n = K, p = 1/S) because in each even step size 2h one of the MAB states is sampled uniformly at random. By Lemma A.7, we

have E[VX] > Q(4/np) for n > 1/p? which proves the lower bound Q(VH2SK + HZSTAK) for K > S?. We note that a more involved proof
of the lower bound in each state reveals that the standard assumption K > HSA is sufficient. For more details see the proof of Rosenberg
et al. [36, Theorem 2.7]. O

THEOREM A.5 (LOWER BOUND FOR STOCHASTIC MDP WITH NON-FRESH RANDOMNESS). Let S, A, H,m € N and K > SAH. For any algorithm
ALG there exists a stochastic MDP M with non-fresh randomness such that: (i) M has ©(S) states, ©(A) actions and horizon ©(H); (ii) Running
. . 2 H3SAK
ALG with m agents for K episodes suffers expected average regret of at least Q(VH2SK + | Z222%).
ProorF. Similarly to the proof of Theorem A.2 we use a combination of two constructions. The first one is presented in the rest of the

HSSTAK) lower bound, and the second one is the construction from Theorem A.4 which gives the Q(VH2SK) lower

proof and gives the Q(
bound.

Consider the following MDP with horizon 2H + 1. There are A actions ay, aa, . . ., a4 and 25 + 3 states: the initial state sg, a bad state sp, a
good state Sgs the MAB states s1, s2, . . ., S5, and the wait states s1 V.. .,s;’ . The agent starts in the initial state sy where action a; transitions
to each of the wait states s1 ey s%" W1th probability 1/S, and all the other actions ay, ..., a4 transition to the bad state sp. In the bad state
the cost is always 1 and all the actions just stay in it with probability 1, while in the good state the cost is always 0 and all the actions just
stay in it with probability 1.

For each i € [S], the pair of states (s;,s;") encodes a hard multi-arm bandit problem with HA actions and costs either 0 or Q(H). In
the next paragraph we describe how the MAB problem is encoded, but first notice that this achieves the desired lower bound. In each
episode all of the agents visit the same MAB problem and do not obtain any information about the other ones. Thus, similarly to the proof of

Theorem A.4, we can utilize the lower bound for cooperation in MAB [40] in order to prove the lower bound:

A

Finally, we describe how to encode a hard MAB instance through the pair of state (s;, siw ). In the wait state siw the action a; transitions to
s; with probability 1, and the action a; stays in state s} if the step h is at most H + 2, otherwise it transitions to the bad state s;,. All the other
actions as, ..., a4 always transition to the bad state. In state s; all the actions transition to the good state s, with probability 1/2 and to the
bad state s, with probability 1/2, except for one action in a specific time step (both sampled uniformly at random) that transition to the good
state with probability 1/2 + € (and to the bad state with probability 1/2 — €) for some € ~ 4/SA/K which is standard for MAB/RL lower
bounds.

Notice that this is in fact MAB with HA actions since the learner needs to pick both the right action and the right horizon step. Moreover,
the cost is either 0 if the agents is successful in transitioning to the good state, or ®(H) if the learner transitions to the bad state (in any case
that the good state is not reached, the bad state will be reached before time step H + 2). O

THEOREM A.6 (LOWER BOUND FOR ADVERSARIAL MDP WITH NON-FRESH RANDOMNESS AND UNKNOWN TRANSITION). LetS,A,H,m € N
and K > SAH. For any algorithm ALG there exists an adversarial MDP M with non-fresh randomness such that: (i) M has ©(S) states, ©(A)
actions and horizon ©(H); (ii) Running ALG with m agents for K episodes, when the transition function is unknown, suffers expected average

2 H3SAK
regret of at least Q(VHSK + [ 7=).

Proor. Follows immediately from Theorem A.5 since adversarial MDPs generalize stochastic MDPs. O



A.3 Auxiliary lemmas
LEMMA A.7. Let X ~ Bin(n, p) and assume that n > 1/p®. Then, E[VX] > 0.014/np.

Proor. By Markov inequality we have:

\/_

BV = Y pr &2% VP pfxs B2 VR (1 p[x < 22]).

10 ~ 100 10 100

Thus, it suffices to show that Pr [X < %] < 9/10 which follows immediately from Hoeffding inequality and the assumption that n >
1/p%. o



Algorithm 3 CooPERATIVE UPPER LOWER CONFIDENCE VALUE ITERATION (cooP-ULCVI)

1: input: state space S, action space A, horizon H, confidence parameter §, number of episodes K, number of agents m.

2: initialize: n}ll(s, a) =0, n;l(s, a,s’) =0, C,ll(s, a) =0VY(s,a,s",h) € SXAXS X [H].

3: fork=1,...,Kdo
] N nh (s,a,s") ok

4 setp, (s"|s,a) « —k(s V1

Ck(s,a)
Z(s,a)vl

p(s,a)

5. compute {n,’: (s)}s,n via OPTIMISTIC-PESSIMISTIC VALUE ITERATION (Algorithm 4).

Y(s,a,s",h) € SX A xS x [H].

6 set nZH (s,a) « nﬁ(s, a), nﬁ“ (s,a,8") « nz(s, a,s’), CZH (s,a) « CZ(S, a)V(s,a,s’,h) € SX A xS x [H].

7. forv=1,....mdo

8: observe initial state slf’v

o: forh=1,...,Hdo

10: pick action aZ’U = 7l'k (sk’v) suffer cost C’;’U ~cp (sﬁ’ *%) and observe next state s: L pr( | s aﬁ 9).
1 update nk+1 (sz 0’ ak ?) nk+1 (Sk v k,v) 1, nk+1 (SZ v al;l v s h+1) - nk+1( Zv’ I;v, ’Ix}l) 1

12: update CkJr1 (s a U) — Ck+1 (s k U) Ck ¢

13: end for

14:  end for

15: end for

B THE COOP-ULCVI ALGORITHM FOR STOCHASTIC MDPS WITH FRESH RANDOMNESS

For the setting of stochastic MDPs with fresh randomness we propose the Cooperative Upper Lower Confidence Value Iteration algorithm
(coop-ULCVI; see Algorithm 3). The idea is simple: all the agents run the same optimistic policy, but the estimated costs and transition
models are updated based on the trajectories of all of them. Since the randomness is fresh in this setting, we expect the agents to observe m
times more information. Next, we prove the following optimal regret bound for coop-ULCVI.

THEOREM B.1. With probability 1 — &, the individual regret of each agent of coop-ULCVI is
H3SAK . mKHSA .,  , mKHSA
Rg =0 log —— +H’$?Alog? ———
m

B.1 The good event, optimism and pessimism
SSAHKm .

Define the following events (for 7 = 3log

. 2 s, 2
BP0 = {Vis.a s ¢ Ipp(slsa) — ph(/ls o) < [ 2ERDT, 20
nh(s, a) V1 nh(s, a) V1

2Vary, sa) (Vi)™ SHr
nﬁ(s, a) V1 nﬁ(s, a) V1

EPY2(k) = {V(s,a h) : | Vary, (1s.a) (Vo) — 4/ Var; (. 1s.0) (V7 >l < 12—HZT
+ + nlhc(s,a) Vi

The basic good event, which is the intersection of the above events, is the one used in Efroni et al. [17]. The following lemma establishes
that the good event holds with high probability. The proof is supplied in Efroni et al. [17, Lemma 13] by applying standard concentration
results.

EPUL(K) = Y (s.ah) ¢ | (B C1s.@) = piCls@) - Vi, | <

LemMA B.2 (THE FirsT Goop EVENT). Let Gy = ﬂszlEc(k) ﬂllle EP (k) ﬂle EPYL(K) ﬂllle EPY2(k) be the basic good event. It holds that
Pr(Gi) > 1- 6/2.

Under the first good event, we can prove that the value is optimistic using standard techniques (similar to Efroni et al. [17, Lemma 14]).

LeEmMA B.3 (UppPER VALUE FUNCTION 1S PEssimisTIC, LOWER VALUE FuncTION 1s OpTIMISTIC). Conditioned on the first good event Gy, it
=k
holds thatzﬁ(s) < V;(s) < V}fk(s) < Vy(s) foreveryk=1,...,K,s€ Sandh=1,...,H.



Algorithm 4 OpTIMISTIC-PESSIMISTIC VALUE ITERATION

1: input: state space S, action space A, horizon H, confidence parameter §, number of episodes K, number of agents m, visit counters nk,

empirical transition function p¥, empirical cost function éX.

2: initialize: Zlfﬂl(s) = V’;{H(s) =0forallseS.
3: forh=H H-1,...,1do

4 forse Sdo

5: fora € Ado

6: set the bonus blli (s,a) = bi(s, a,c) + bﬁ(s, a; p) defined as follows (for 7 = 3log 651‘\#)’
2
bﬁ(s, ac) = k—T
nh(s, a) V1
2Var Ak (V )T 2
% (1s.a) “—h+1 44H=S 1 —
bﬁ(s’ a;p) = k s - k ) + EAk(~|s a) [V§+l _Zﬁﬂ] :
nh(s, a) V1 nh(s’ a)v1 16H Py ls,
7: compute optimistic and pessimistic Q-functions:

QZ(s,a):éh(s,m bK(s,a) +E 4 ko

—k N j—
On(s.a) = & (s, @) + by (5, @) + Bgr g 0) [V .

8: end for

9: set JT}I;(S) € argming . g 211;(5’ a).

00 set VE(s) = max(Q¥ (s, mf(5)), 0}, Vi(s) = min{Q (s, 7k (s)), H}.
11:  end for

12: end for

Finally, using similar techniques to Efroni et al. [17, Lemma 21], we can prove an additional high probability event which hold alongside
the basic good event G1. To that end, we define the filtration {F¥} k>1 as the g-algebra that contains the information on all observed data
until the beginning of episode k (including the initial state of episode k). In addition, we define the filtration {7—‘hk} k>1,h>1 as the o-algebra
that contains the information on all observed data until step h of episode k (including the h-th state of episode k).

LEmMA B.4 (THE GooD EVENT). Let Gy be the event defined in Lemma B.2. The second good event is the intersection of two events Gy =
EOP 0 EVar defined as follows:

K K
E© {Vh e [Hloe[m]: > E[Vh(sE) - VE(Ee) | 7] < 1802 + (1+ —) RACS) —zﬁ(s,’j’”)}
k=1 k=1
K H K H
Var _ 3 k
Ear_{Vve kz_l;\farph(lsku kv)( 1)S4H r+2kz_;};E[Varp (1sk, kU)( 1)|7‘_]}-

Then, the good event G = G1 N Gy holds with probability at least 1 — 6.

B.2 Proof of Theorem B.1
LemMA B.5 (KEY REcursion BounD). Conditioning on the good event G, the following bound holds for allh € [H| andv € [m].

K 2 K
— 226H S 2V2
> Vh(sh?) — vE(sko) < 18H2T+Z ) ’

nk ,v
- sk \ B k(Ko ko
k=1 AEN ) k=1 q[my (s, a,") V 1

ok
\/Varp 2 IS,’:v,a’j")(VhH) K
(1 + ) z : +1(sh+l +1(sh+1)

k=1

K
+ZZ\/Z

— ko ko ko
k=1 nh(sh .a, )V



Proor. We bound each of the terms in the sum as follows:

=k k k, k —k
Vi(s?) = VR(sv?) < 2bK (5%, % 0) + 265 ()0, al “P)* By ko ghoy Vit = Vi

k, ko ko, k kv ko,
=2bh(sh .a, ,c)+2bh(sh .a, ;p)

Vi k 5k ko Koy Sk
+Ep ¢ |Sku ku) (Ve _Kh+1] + (ph _Ph)('|3h v a . (VK —v
k. ko
<2bk($ o C)+2bk(s 4 hzy,p)
SHZST )
: W * (1 " E) EPh( Isk?,ak?) [Vh+1 Vil

where the last relation holds by Cohen et al. [10, Lemma B.13] which upper bounds

8H%St 1

k
(ph ) (- |S ) (Vh+1 Kh+1) < —k( o ]I;u) V1 iH ph( Is;®.a

—k k
k.0 kv)[Vh+1 Vh+1]

k
—h+1)

(10)

by setting @ = 4H,C; = Cy = 2 and bounding Hr(2C; + aSC;/2) < 8H2St (the assumption of the lemma holds since the event N E? (k)

holds). Taking the sum over k € [K] we get that

K k K K 8H%St
D Vi(sp?) = Vh(sp?) < Z 2bK (s, ay %) + Z 2bK (s aptip) + )
k=1 k=

k,
k=1 k(s ?

K
Tk k
k=1
The first sum is bounded by definition by
Z k, k i 2T
by (s°, aysc) < -
;¢) < ko k. 5
= n’;l(sh ° a, 9vi

and the second sum is bounded in Efroni et al. [17, Lemma 24] by

Var ku kU
N Bk (k0 ooy < & 109H2St VI K \/ on (150 o) ( 4]
kz W) < ) S fg
=1 1

k(K 8
ERAUELRAS = nk(sp?,ay?) v 1

K
ok k
* el ; Bt IsE2,ak?) Vi1 = Vil

Plugging this into (11) and rearranging the terms we get

K K \/Varp (- |Sku,akv ( h+1)
( ) —zﬁ(sf”) < Z 2—‘5”«/27

k=1 k=1 nﬁ(si’v, a];l’u) V1 k=1 nk(sk’v, ak’v) V1

k 2
226H%St
+Z ko K ( )
1

= n]’z(sh’v, ah’v) V1

Mw

K
k
;Eph( Iskv ko) [Vh+1 Vil

227 k 226H2St

< 18H?r + + o T
k=1 nﬁ(s:’v, ai’u) V1 k=1 nh(sh’ s ay )V1

K \/V&rp (- |s’<”a’<”)( h+1)
+ZZ\/2_T " +( !

— ko ko ko —
k=1 nh(sh ,ay )vi k=1

where the last inequality follows since the second good event holds.

ko
WA )V1

2 K
l+§-[) Z thl(sh+1) V+1(sh+1)

(11)



ProoF oF THEOREM B.1. Start by conditioning on the good event which holds with probability greater than 1 — §. Applying the optimism-
pessimism of the upper and lower value function we get

[

K k 1 m K

k k,
> V() = V(s E§ > Vi (s59) - vk (sb2). (12)
k=1 =

=1 k=1

Iteratively applying Lemma B.5 and bounding the exponential growth by (1 + ﬁ)ZH < e < 3, the following upper bound on the cumulative
regret is obtained.

ZTVarP (|3kv kz,)( h+1)

| m K H VI | m K H 6\/
+ZZZZ ko ko +;ZZZ kv) A 13)

2y vl o=1 k=1 h=1 k(s

We now bound each of the three sums in Equation (13). We bound the first sum in Equation (13) via standard analysis as follows:

v=1 k=1 h=1 " ) V1 hiseSacAk=1

> ]I{s}]:’zJ =s, aﬁ’v =a}

n];l (s,a) V1

>m ]I{sk’u =5,a"" = a}

H K
- Z Z Zﬂ{nl’;(s’ @ 2 m) == n’fj‘(s, a) Vil

TR =5 a8 = a)

H K
+ZZ Zl{nﬁ(s’a)<m} = n:(s a)vill
1 (s,

h=1s€S acAk=1
H K »m ]I{sk’v =5,a" = a}
< 2HSAT + Z Z Z]I{nlhc(s, a) < m} o1 /:' h
=1se€eS acA k=1 nh(s’ a) vl
< 2HSAT + 2mHSA < 4mHSAt, (14)

where the first inequality is by Lemma B.6.
The second sum in Equation (13) is bounded as follows,

m K H 1 m K H H{ k(skv’ kv)Zm}
ZZZWSZZZ +2mHSA
h*"h > "h

nk(sp a?) v 1

&

i an(s W)= }+2 HSA
m

v=1 k=1 h=1 nZ(sh! ’ah’ ) V1

KHmV2HSAT + 24HSA7T = V2mH?2SAK7 + 2mHSA,

IA

where the first inequality is similar to Equation (14), the second is by Cauchy-Schwarz, and the third is by Lemma B.6.



The third sum in Equation (13) is bounded by applying the Cauchy-Schwarz inequality as follows,

\/V&rph(~l,’f” oy ( h+1) m K R \/Varph(‘ligv kv)( h+1)
SZZ Iy, (s,", ;") = m}

0=1k=1h=1 nk(sZ’v, aﬁ’v) 0=1k=1h=1 k(s ﬁ %)

M=

+2mH2SA

—
>
]

Hnk (sp%, %) > m}

m K H
r;Dh( Isk” ’”’)( h+1 ZZZ +2mH2%SA

kv
1h=1 v=1 k=1 h=1 h(S »ay )

S

™M=
M=
=

m K H
7Tk 2
= \ Z Z Z Var .. 15, kv)(Vh+1)V2H5AT+ 2mH*SA

E[Varp (1859.d2) ( h+1) | F%| + 4H37 + 2mH%SA

P h+1) | 7% | + 5mH?SAT

E[Var ko ku)(

H 2
(Vlﬂk (slf’u) - Z ch(s , ZU)) | 75| + 5mH?SAr
h=1

where the first inequality is similar to Equation (14), the third inequality is by Lemma B.6, the forth is by event EV2", and () is by the law of

total variance [10, Lemma B.14]. O

B.3 Auxiliary lemmas
LEmmA B.6. It holds that

H K m ko _ : ko _
Z Z Z Zl[{nfl(s, a) > m}szl {sh > 4 < 2HSAlog(Km).

k
h=1s€S aeA k=1 ny(s,a) V1
ProoF. By Rosenberg et al. [36, Lemma B.18], we have that

H K . o, {sk”—saZ”—a} H Kom .
ZZ Z Z]I{nh(s,a) > m} < ZZ Z 2log ZZ]I{sh’U:s,ah’”:a}
h=1
2

k
h=1s€S aeA k=1 ny(s,a) V1
< 2H



Algorithm 5 CooPERATIVE UPPER LOWER CONFIDENCE ACTION ELIMINATION (COOP-ULCAE)

1: input: state space S, action space A, horizon H, confidence parameter §, number of episodes K, number of agents m, exploration
parameter € > 0.
2: initialize: n}l(s, a) =0, n}ll(s, a,s’) =0, C}ll(s, a) = O,ﬂz(s) =AV(s,a,s’,h) € SXAXS x[H].
3: fork=1,...,Kdo
C (s )
" (sa)vi

A ’ ( ) ¢
4 setpl}j(s |'s,a) « % k( a) —

Y(s,a,s",h) € SX A xS x [H].
5. compute {gﬁ(s)} s,h Via OPTIMISTIC—PESSIMISTIC VALUE ITERATION (Algorithm 4).
6 set ﬂﬁ(s) — ﬂi_l (s) for every s, h.
7. remove sub-optimal actions for every s, h: if 3a,a” € ﬂZ(s) s.t. QZ (s,a) > @ﬁ(s, a’), then ﬂlg (s) « ﬂﬁ(s)\{a}.
8 setIf(s,a,s") =0,If(s,a) = 0,ICK(s,a) =0 V(s,a,5, h) € S X A XS x [HI.
90 foruo=1,...,mdo
10: sample h, € [H] uniformly at random.
{nk with probability 1 — e k(als) h#W
set 1% =47

11: , where: ;""" (a|s) =
7kt with probability e noals) {% h="h.

12: observe initial state sk g

13: forh=1,. H do

14: pick action a 7r 2 s '), suffer cost C ® and observe next state sthl
k k, k, k ko k,

15: update I}]f(sh °a ”) —1, Ik(s ¢ a’ h+1) —1, ICk(s “ap?) Ch

16: end for

17:  end for

18 set nIh‘Jr1 (s,a) — n];l(s, a) + I}]:(s, a), nﬁ“ (s,a,s") « n];l(s, a,s’) +I}I:(s, a,s")VY(s, a5’ h).
9.  set Cﬁ“ (s,a) « C’}f (s,a) + IC}]i(s, a) V(s,a, h).

20: end for

=

C THE COOP-ULCAE ALGORITHM FOR STOCHASTIC MDPS WITH NON-FRESH RANDOMNESS

For the setting of stochastic MDPs with non-fresh randomness we propose the Cooperative Upper Lower Confidence Action Elimination
algorithm (coop-ULCAE; see Algorithm 5). Recall that if all the agents play the optimistic policy (like coop-ULCVI), the regret will not improve
since the randomness is non-fresh. Thus, we want each agent to diverge from the trajectory of the optimistic policy at some point. To that
end, at some step each agent takes a random action. At the other steps it follows the optimistic policy to make sure that its regret does not
increase. Finally, since all actions have probability to be explored, we eliminate sub-optimal actions to avoid unnecessary over exploration.

THEOREM C.1. With probability 1 — J, setting € = min{%A, \/%}, the individual regret of each agent of coop-ULCAE is

HSAK [H7SAK . mHSAK  [HSSAK . mHSAK
Ry = O{ VH5SK log = + log = +/ log =
5 Jm 5 m 5

, mHSAK H6$2A21 , mHSAK
g

HS%Al
+ og 5 + W o 5




C.1 The good event, optimism and pessimism

Define the following events (for 7 = 3log 6SA#):

nes {V(s’ ah): 160 - enls.0)l < ﬁ}

2pp(s’ls, a)r 27
P (k v h
EP(R) = V(s a s )+ Ipn(s'le.a) = ph(s Is-a)l < \I n’,‘l(s,a)VI +n’;(s,a)V1}

2Vary, sa) (Vi)™ SHr
nﬁ(s, a) V1 nﬁ(s, a) V1

EPY2(k) ={V(s,a h) : | Vary, (. |Sa)(Vh L Var ; (. |sa)( i )l < IZ—HZT
+ + nlhc(s,a) Vi

The basic good event, which is the intersection of the above events, is the one used in Efroni et al. [17]. The following lemma establishes
that the good event holds with high probability. The proof is supplied in Efroni et al. [17, Lemma 13] by applying standard concentration
results.

EP (k) = [V(sah) PECls.@) = pu(ls.a) - h”"J

LeEMMA C.2 (THE FirsT Goop EVENT). Let Gy = ﬂleEC(k) ﬂlk(:l EP (k) ﬂlk(:l EP?L(k) 0115:1 EPY2(k) be the basic good event. It holds that
Pr(Gi) > 1-6/2.

Under the first good event, we can prove that the value is optimistic using standard techniques (similar to Efroni et al. [17, Lemma 14]).

LeEmMA C.3 (UPPER VALUE FUNCTION Is PESSIMISTIC, LOWER VALUE FUNCTION 1S OPTIMISTIC). Conditioned on the first good event Gy, it
k _ k _
holds thathl(s) < V}:‘(s) < th (s) < V];l(s) and that QZ(S, a) < QZ(s, a) < Qf (s,a) < Qi(s, a) foreveryk=1,...,K,s € S,a € A and
h=1,...,H. Moreover, n;(s) € ﬂ}]j(s)foreveryk =1,...,K,seSandh=1,...,H.

Finally, we define the following events that are more specific to our algorithmic action elimination framework:

6HSA

k-1 .
E™ ={V(k,hs) € [K] X [H] xS Va € ﬂ,’:(s) : ni(s, a) > % ;qf (s) —log

6mHSA

k-1
E"™ = 3V(k,h,5,a,0) € [K] x [H] x S x A X [m] : nf(s,a) > % Z qr" (s.a) — log
j=1

K , € 6mH
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LEmMA C.4 (THE SECOND Goob EVENT). Let Gy = E™* N E™ N E€ be the second good event. It holds that Pr(G) > 1 - §/2.
As a direct consequence, we get that the good event G which is the intersection of G1 and G holds with probability 1 — §.
LemMA C.5 (THE Goob EVENT). Let Gq be the first good event defined in Lemma C.2, and Gy be the second good event defined in Lemma C.4.

Then, the good event G = G1 N Gy holds with probability 1 — J.

PROOF OF LEMMA C.4. We show that each of the events —E™!, ~E™2, —E€ occur with probability at most §/6. Then, by a union bound we
obtain the statement.



Pr[—E™] < §/6: Without loss of generality, assume that in each episode, each agent uniformly randomizes a permutation over all actions,
o, and in case of exploration takes the first active arm in the permutation ok argmin . Ak (s) %2 (q). For any a € ?{E (s),
h

k-1
nﬁ(s, a) = Z I{3o : sljl’v =5, a{l’v =a}
j=1
k-1 .
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j=1
k-1 ) )
(2) {Jo: s;l’v =shy=h'?= ﬂj’h”,O"S]’U((l) =1}
- Z M (3o < by = bt = e 630 (a) = 1), (15)

For (), recall that a € ﬂﬁ (s), which implies that a € :?[i (s). Therefore, if hy = h, 70 = /o 6J9(g) = 1 (that is, the agent explores h, and
a is the first action in the permutation), then a];l = a. (*x) is because each agent that randomize h, = h follows the (deterministic) optimistic

until horizon h. Since hy, 07-? and the event {r/"? = /""v} are randomized independently,

E(s)™ = }1{3o: hy = ho/® = o, 677 (a) = 1} | ] =
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6H SA

A Zf 1 qh (s) log < ﬁ. By taking the union bound over

By [12][Lemma F.4] and Equation (15) we have, Pr [Elk nk

allh € [H],s € S and a € A, we get Pr(=E™) < §/6.
Pr[—E™] < §/6: For any v € [m],

k-1 k-1
k j, o j, o j .0 j,0
ny(s,a) = Z]I{Elv' € [m]: s;l =s, a;l =a} > I[{s;l =5, afl =a}.
J=1 Jj=1

Again, by [12][Lemma F.4], we get Pr [Elk € [K]: nﬁ(s, a) < 3 Zf 11 q;l’j (s,a) —log @] < ﬁ. Taking the union bound we get
Pr[—E™] < §/6.
Pr[-E€] < §/6: Directly from Hoeffding’s inequality and a union bound. O



C.2 Proof of Theorem C.1

Proor or THEOREM C.1. By Lemma C.5, the good event holds with probability 1 — §. We now analyze the regret under the assumption
that the good event holds. We start by decomposing the regret according to the policy played by agent v:
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For the first term we use Lemma C.12, then Lemma C.7 and then Lemma C.6:
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For the second term we use Lemma C.11, then Lemmas C.7 and C.8 and then Lemmas C.9 and C.10:

K& ’ kh
Z Zl{ﬂk,v — Il'k’h } (Vln' s (Sllc,v) _ Vl*(sic,v)) <

\/Tvarp,( Isk.af) € Vi) L Hst

K H H
SHZZZH{”M 2k gk

k.
kik k
k=1h'=1 h=1 nﬁ(sz, aﬁ) V1 nh(sh, ah) V1
\/v VE)
K H H tVar k oy (V-
, Pr(-Isy.a) N " htl H2Sr
PSS S (ke = ki ik . |2k
[kik k nk(sk akyvi1 —
k=1h'=1h=1 nh(sh,ah) V1 Ky 4y
K H H \/Var oy (V, )
, n(-Isk.ak) h+1 ,
SHVEY Y 3 1rko = 20 B | 2k | + 52 Ar?
k=1h=1h=1 nﬁ(s}’f, aﬁ) V1
K H H \/Var o (V; )
, pr(-1sk.ak) h+1 H52A2.2
LADIPIPRESELS 2|+
k=1 h'=1 h=1 nz(s”j, a;‘l) V1 me

H8SAK HSA7? HS24%72
< VHSAKer? + tVHTSABK Y4 + HOS2 AL + \/ Ly \/ TRlA L r
m

me me



: — i JHA 1 .
Setting € = min {7, \/_E}’ we get:
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where the last inequality follows because the K 1/4 terms are dominant only when K is small, and in these cases the constant terms are
larger. O

C.3 Bounds on the cumulative bonuses
Lemma C.6. Under the good event, if 15 < 1,
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PRrOOF. By the event E™!, we have:
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where the last inequality is Cauchy-Schwarz inequality. Using the law of total variance [10, Lemma B.14],
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PRrOOF. By the event E™!, we have:
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where the last inequality follows from Rosenberg et al. [36][Lemma B.18].
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where the last inequality follows [36][Lemma B.18].

LEMMA C.9. Leth’ € [H]. Under the good event,
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Proor. First we bound \/ Var
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the ks, as done in the proof of Lemma C.8 for example, and the last is Cauchy-Schwarz inequality. By Rosenberg et al. [36][Lemma B.18],

where the first inequality is by E™2, the second inequality is done by breaking the sum to ks such that % >

ko = 20y (5,0)

H K
Z Z < HSAr.

— ; P j.h'
h=1s5€S ac A k=1 (25?:11 )0 = gt }qu (s, a)) V1

By the good event E€,

H K K
Z Z]I{nk’” = ﬂk’h’}qzk’h (s,a) = HZ]I{nk’” = 78Ny < Ke + VK. m]

h=1seS acAk= k=1

—_

LeEmMA C.10. Under the good event,

k
K H H \/Var,kk(VE 7 s 52
TS S 1k = gk st PuClsk.al) Vhet k| < \/H SAKT +\/H SAT? 1ja , HPAST.
- m

1 =1 h= k(k Kk me me
k=1h=1h=1 1Inh(sh,ah) V1




PRrOOF. By the event E™!, we have:
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where the last inequality is by Cauchy-Schwarz. By Equation (16) and the good event EF,
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where the first inequality is since 25:1 I{x%? = 7K1} < 1 and the last is as in Equation (17). Combining the last three inequalities completes
the proof. O



C.4 Bounding the regret of 7" and the optimistic policy
LeEmMA C.11. Under the good event, for every k € K] it holds that:
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ProoF. Apply Lemma C.13 for every k € [K] and then apply Lemmas C.16 to C.19 iteratively.

LEmMA C.12. Under the good event, for every k € [K] it holds that:

\/TVarph( |Sh 1)( h+1) H2St k

+ | 7
ki.k k -
Vi (shap) V1 ny(shy @) V1

k
VI (sK) - VX (sF) < HZ EF

PRroOF. Similar to the proof of Lemma C.11.

LemMma C.13. Let h’ € [H]. Under the good event, for every k € [K] it holds that:
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The first inequality is by Lemma C.3, the last equality is since 7" = Ek for any h # h’ and the last inequality is by Lemma C.15.

LEmMMA C.14. Under the good event, for every k € [K] it holds that:
k
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ProoF. Similar to the proof of Lemma C.13.



C.5 Auxiliary lemmas
Lemma C.15. Ifa,a’ € ﬂﬁ(s) then,

@I;;(s, a) - QI;I(SI; a’) < @Z(s, a) - Qﬁ(s, a) +§:(s, a) - Qlfl(s, a’).

PrOOF. Since a,a’ € ﬂﬁ (s), we have that Q’h‘ (s,a) < éﬁ(s, a’). Thus:
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LEMMA C.16 (RECURSION WITH OPTIMISTIC NEXT-ACTION). Leth # h’ — 1. Under the good event, for every k € [K] it holds that:
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where the first inequality is by Cohen et al. [10, Lemma B.13], and the second one is by Cohen et al. [10, Lemma B.6]. Let Eﬁ(s) =
arg ming @Z (s, a). For the last term we have:
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where the last equality follows because h # b’ — 1.

LEMMA C.17 (RECURSION WITH NON-OPTIMISTIC NEXT-ACTION). Let h’ € [H]. Under the good event, for every k € [K] it holds that:
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LEMMA C.18 (EXPLORATION PENALTY TERM RECURSION). Let b’ € [H]. Under the good event, for every k € [K] it holds that:
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= > @y (sa)x(s,0) = E¥[x(sf,. afy) | 2¥],

s,a

where the third equality is since ¥ is deterministic. In a similar way, the second term can bounded by,
k 7 k ki _
B\ By, (155t (k) WV her = Vi I 1 7 ] =

= 2" Ope 15k 2l 65 (Vs ) = Vo 61)

5,8’

—th, O | sfo 2l 55)) (i (5 = Vo )

= 3 ) (Than ) = Vo (5))
S
k [k
=E [Vh’+1(sh’+1) —h’+1(sh’+1) | = ]
—k
Ek [Qh'+1 (SZ/+1’ aﬁq_l) - Zk/ 1(35/ 1) | Ek]

_mklak (kK k
=E [Qh’+1(sh’+1’ah’+1) Qhr+1(sh'+l’ah’+1)|”] =

LemMA C.19 (REcursioN OpTIMISTIC PoLicY). Let h € [H]. Under the good event, for every k € [K] it holds that:

k
T
\/Tvarp/( shap) Vi) pigE2se

kck k =
(s @) V 1 M (Sp @p) V1

—k
“Th(shoaf) - 0, k al)  2| < BF

(1 + _) E [Qhﬂ (sh+1’ ah+1) Qh+1 (sﬁﬂ’ afzﬂ) | Ek]'

Proor. Similar to the proof of Lemma C.18. O



Algorithm 6 CoorERATIVE O-REPS (coor-O-REPS)

1: input: state space S, action space A, horizon H, transition function p, number of episodes K, number of agents m, exploration parameter
v, learning rate 7.

2: initialize: 71'}11(61 | s) =1/4, q,ll(s, a) = q;lrl (s,a) Y(s,a,h) € S X A X [H].
3: fork=1,...,Kdo
4. foruv=1,...,mdo
5 observe initial state slf’v.
6: forh=1,...,Hdo

. . k,0 k k0
7: pick action a,” ~ Jl'h(' | Sh ).
8: suffer and observe cost cﬁ (s:’v, aﬁ’v).

ko ko ko

9 observe next state Spr1 ™ pn( | s,y ).
10: end for

11:  end for

k k,0 ko k k m
122 compute W,'(s,a) =Pr[To: 5, =50, =a|n ] =1- (1 = q,(s a)) V(s,a,h) € S x A X [H].

k ko ko
. Ak _ ch(s,a)]I{EIv: sy =s,a, =a}
13 compute & (s,a) = WEG.arey Y(s,a,h) € S x A x [H].
14:  compute qk+1 = argminqu(M) n{q, ék) +KL(q || qk),
K
qn (s.a)

15:  compute rr}]:”(a | s) = m Y(s,a,h) € S x A X [H].

16: end for

D THE COOP-0-REPS ALGORITHM FOR ADVERSARIAL MDPS WITH FRESH RANDOMNESS AND
KNOWN p

For the setting of adversarial MDPs with fresh randomness and known transitions we propose the Cooperative O-REPS algorithm
(coop-0-REPS; see Algorithm 6). The idea is simple: all the agents run the same O-REPS algorithm, but the estimated costs are updated based
on the trajectories of all of them. Since the randomness is fresh in this setting, we expect the agents to observe m times more information.
Next, we prove the following optimal regret bound for coop-0-REPS.

Similarly to Zimin and Neu [57], We use the notations A(M) and KL(- || -) for the set of occupancy measures of the MDP M and the
KL-divergence between occupancy measures, respectively.

log 54

THEOREM D.1. With probability 1 — &, settingn =y = ( SA)
1+22 |K

, the individual regret of each agent of coop-0-REPS is

HSA H2SAK . HSA HSA £ HSA
H+/Klog + log—— + —log —|.

R =0
K 5

D.1 The good event

Define the following events:

10HSAlog SHSA  10H log % }

K H
e _ 1k K ok 5
E€ = {ZZ Z (m +q,(s,a) (ch(s,a) ZCh(s,a)) < my + »
K N H log 3HSA
E*Z{Z<ék—ck,q” >S S
k=1 Y
The good event is the intersection of the above events. The following lemma establishes that the good event holds with high probability.

Lemma D.2 (THE Goop EVENT). Let G = E€ N E¢ N E* be the good event. It holds that Pr[G] > 1 - 6.



Proor. We show that each of the events —E°, —\Eé, —E* occur with probability at most §/3. Then, by a union bound we obtain the
statement. Notice that:

H H H{EU skv_sakv_a}
ko ky k “k h
(¢, q >—Z Z q,,(s,a)¢p (s, a) < ZZ Z TR
h=1s€S acA h=1s€8S aeA plsa)+y
H k
q;, (s, a)
SZ h mI[{Ev:s}]j =5, a:” a}
_ _ .k
h=lseS acA 1 (1 gk (s, a))
N 1 k k
k v 0
< —_— : U= =
< Z (m +q, (s, a)) K{3Fo: s, s.a, a}
h=1seSacA
H
SZ qk(sa)+—ZZZI[{EIv:sZ —sa —a}<H+— -Hm = 2H,
h=1seS acA h=1seS acA

where the third inequality is by Lemma D.3, and the last inequality follows because for each step h the agents visit at most m state-action

pairs. Thus, event E€ holds by Azuma inequality.
Event E¢ holds by Cohen et al. [10, Lemma E.2] since Y5, 5 4 (% + qﬁ(s, a)) éﬁ(s, a) < ’l/ (HTSA + H) and EX [EIZ (s,a)] < cz(s, a). Event EX

holds by Jin et al. [22, Lemma 14]. m}

D.2 Proof of Theorem D.1

Proor oF THEOREM D.1. By Lemma D.2, the good event holds with probability 1 — §. We now analyze the regret under the assumption
that the good event holds. We start by decomposing the regret as follows:

K K
kak  k ko* [ k *
RK:ZV1 7 (51’0)_‘/1 7 (Sl’v) :Z@k,qk_qn )

Mw

(e =k, qk>+Z<ck ¢ -q" >+Z<c -k q™).

k=1

(A) (B) (©)

Term (A) can be further decomposed as:

K K K
(A) = Dk = g5y = D (cF — B[] k) + ) (BF[6F] - ¢, ).
k=1 k=1

k=1
The second term is bounded by 4H /K log % by the good event E€, and for the first term:

k[]I{EIv' Y=y, aZU—a}]

K K H :
Z< -~ EF [, ZZZ Z Z qh(s a)ch(s a|1- Wk(s,a)+)/
K H Wk(s a) K H g5 (s, a)
:ZZZ qi(s,a)cﬁ(s,a) (1_Wk(s a)+y) YZZ Z Wk?s a)+y

k=1h=1seSacA

K H k
YN TN ey 3 (L) <10 2).

k=1h=1scSacA 1 - (1 - q5 (s, a)) k.hs.a

where the last inequality is by Lemma D.3.



Term (B) is bounded by OMD (see, e.g., Zimin and Neu [57]) as follows:

(B) —Z«" o < TR ST Y ok o

k=1h=1seSacA
&k (s, a)

Hlog(HSA) Lepect
SRR IPIPIPIL A by v

n

1h=1seSacA
K H
Hlog(HSA) X
Sg—+qzz Zch(s, )
n k=1 h=1seS acA

g (s,a)
1- (1 - qﬁ(s, a))m

K H
< M) § S 5 3 (L)

n k=1h=1seSacA
- Hlog(HSA)

e
M=

" k=1 h=1seSa
Hlog B34 psak
< €5 + 1 +nHK +

Lk k
(; +q, (s, a)) ¢, (s,a) +
€A

nHSAlog 384
+

10nHSA log 2224 SHSA 1077H log %

my 4

H log —3H§5A

n m my

>

Y

where the forth inequality is by Lemma D.3, and the fifth inequality is by the good event EC.

Term (C) is bounded by

log HSA

D.3 Auxiliary lemmas

n=vy=

LEmMMA D.3. Letx € (O, 1) Then, W < m + x.

Proor. Using AM-GM inequaility,

(1-x"1 +xm))# <

1

=(1-x)" <
1+xm
xm
=1-(1-x)">
1+xm
X
+x

:>l—(1—x)m

Hlo
ﬁ by the good event E*. Putting the three terms together gives the final regret bound when setting

[m]

m(l—x)+1+xm _
m+1 -



Algorithm 7 CoorERATIVE UOB-REPS (coor-UOB-REPS)

1: input: state space S, action space A, horizon H, confidence parameter §, number of episodes K, number of agents m, exploration
parameter y, learning rate 7.

2: initialize: n}l(s, a) =0, n}ll(s, a,s’) =0, n}ll(a | s) = 1/A, q}l(s, a,s’) =1/s2AV(s,a,s",h) € SX A xS x [H].

3: fork=1,...,Kdo

set nﬁ“(s, a) «— n];l(s, a), nﬁ“(s, a,s’) «— n’;l(s, a,s")VY(s,a,s",h) € SXAXS X [H].

b

5 forv=1,...,mdo
6 observe initial state slf’v
7: forh=1,...,Hdo
8 pick action aﬁ’v ~ k(- | sk’v)
9 suffer and observe cost ¢y (sk °a k, v).
10: observe next state sz 1~ pn( | s a: )
. k+1/ ko k+1 kv ku k+1 ku ko k+1 kv ko ko
11 updatenh (sh, h)<—nh (sh, )+ln (s h,hﬂ)%n (s h’h+1)+l

12: end for

13:  end for
nﬁ“ (s,a,s")

nﬁ“ (s,a)V1

14 set prHI(s | s,0) — Y(s,as’ h) € SX AxS x [H].

+1(s ‘S a) In HSAK In H.Z?K

k“(sa)\/l 10 k“(sa)VI:

15:  compute confidence set for E,I:H (s"|s,a)=4
Pk+1 =1y v " h ~k+1 < k+1
={p" V(a5 h) P, (5" [s,0) = pp(s" | s,a)| < 7 (5" [ s,0) -

16:  compute uﬁ (s) = max,, c pk qlJ (s) max,, ¢ pk Prlsp =s | nk,p’] Vs e S.
17:  compute U}]:(s, a)=1- (1 - uﬁ(s, a)) Y(s,a,h) € S X A X [H].

c}’j (s,a)1{Jov: sllf’vzs,a]]:’”:a}
U}’f (s,a)+y

19:  compute qk+1 = arg minqu(M,kH) n{q, 5k> +KL(q |l qk)‘
k+1
G595 ah) € S x A x [H], where a5t (s,0) = Tyes 4y (a8

YaeA q;I:H (s.a)

V(s,a,h) € S x A X [H].

18:  compute é’li (s,a) =

20:  compute n}]:”(a | s) =

21: end for

E THE COOP-UOB-REPS ALGORITHM FOR ADVERSARIAL MDPS WITH FRESH RANDOMNESS AND
UNKNOWN p

For the setting of adversarial MDPs with fresh randomness and unknown transitions we propose the Cooperative UOB-REPS algorithm
(coop-UOB-REPS; see Algorithm 7). The idea is simple: all the agents run the same UOB-REPS algorithm, but the estimated costs and
transitions are updated based on the trajectories of all of them. Since the randomness is fresh in this setting, we expect the agents to observe
m times more information. Next, we prove the following regret bound for coop-UOB-REPS. Note that this bound is optimal up to a VHS
factor. Removing this extra VHS is an open-problem even for adversarial MDPs with a single agent.

Similarly to Rosenberg and Mansour [37], We use the notation A(M, k) for the set of occupancy measures whose induced transition
function is within the confidence set .

log mKH SA

o

THEOREM E.1. With probability 1 — J, settingn =y = the individual regret of each agent of coop-UOB-REPS is

mKHSA  [H4S2AK ., mKHSA 5 5 . 5 mKHSA
Rg = O |H4/Klog 5 + log 5 + H’S Alog —
m



E.1 The good event

Hk (o 30KHSA 30KHSA ’ 30KHSA
ki _ [2pF(5'|s.a) log 2EH 2]og 20KH P _ ko k(o _ pn(s'ls.a) log 25524
Denote €, (s" | s,a) = \/ T (s.a) VT + A GV s, (s.0) = Yyese, (s | s,a), (" | s,a) =8 T Gavi +

100 log 3OK§ISA k k
. _ A . )
AVl and €, (s,a) = 2¢ €, (s” | s, a). Define the following events:

EP = {V(k,s, a,s’ k) |pp(s’ls, a) —f;]}j(s’|s, a)| < elﬁ(s' | s, a)}

30KHSA
E°™ =3Vo € [m] : Z (‘IZ"(S, a) - ]I{s”?v =5, a”i»” = a}) min{2, eﬁ(s, a)} < 104/Klog Tm
k,h,s,a
30KHSA
B = Vo [ml: g (0 (s ) <2 D sy =s,a° = a}éf (s, a) + 100HS log? = m
k,h,s,a k,h,s,a
k ko k.0
q; (s,a) I{s;’" =s,a,° = a}
E°™ = vy e [m] : Z hk— <2 Z hk—h+Hlogm
k,s,ah nh(s’ a) ks,ah ny, (s,a) 1)
S 6
Ef = {Z(Ek[ék] — ek, qk) < 4H,[Klog 3}
k=1
& 3HSA
¢ 1 R HSAlog 3224
E¢ = {Z Z (; + ql;i(s, a)) (ci(s, a) — cﬁ(s, a)) < %
k=1h=1s€eSacA
K 3HSA
* Hlog
E* = (6k—ckq”)g—5}

The good event is the intersection of the above events. The following lemma establishes that the good event holds with high probability.

LemMA E.2 (THE Goop EVENT). Let G = EP N E®™ 0 E"2 0 E°"3 1 E€ N E¢ N E* be the good event. It holds that Pr[G] > 1 — 6.

PRroOF. E°™ and E°™ follows Cohen et al. [10, Lemma E.2]. The rest are similar to the proofs of Lemmas B.4 and D.2 and to proofs in Jin

et al. [22]. o

E.2 Proof of Theorem E.1

Proor oF THEOREM E.1. By Lemma E.2, the good event holds with probability 1 — §. We now analyze the regret under the assumption
that the good event holds. We start by decomposing the regret as follows:

K K

krk kK, k>, k, k *

RK:ZV1 " (510 -V " (51 U)ZZ<Ck,qn -q")
k=1 k=1

K K K K
k N n * n *
DGR b R I e b B W G e A P W CAE AR PR
k=1 k=1 k=1 k=1

(4) (B) ©) (D)



Let 7 = log @ be a logarithmic term. Term (A) can be decomposed using the value difference lemma (see, e.g., Shani et al. [42]):

K K H
(W) =Yk g™ =y <2H Y 3NN g (s )lipa(- |5.0) | 5.0l
k_

k=1h=1seSacA

Ma

H
<?2H Z Z q;lrk (s, a) min{2, e}li (s,a)}
k=1h=1seSacA
H K H m .
< — I{s"?% = = H
~mzz ZZ {s," =s a}eh(s a) + HVKr
k=1 h=1seS acA v=1
\/_ ]I{sk ’= =S, ak Y= a} Zm I[{Sk’v =S ak’” = a}
<H St Z vl h +HST Z o=1 h > Ay N
< el ! Kz,
"™ khsa Jrk(savi ™ khsa nk(s,a) v 1

Eonl

where the second inequality is by event E?, and the third inequality uses event and Cauchy-Schwarz inequality. We now bound each

of the two sums separately. For the second sum recall that ni(s, a) = le?;ll PN ]I{s}];’v =s, a”® = a}, thus we have:

h
k.o k.0 m ko k.o
> oIs, " =s,a,° = a} > sy =s,a° = a)
P h < 2HSAm+ ) Lk b
k.h,s,a nh(s’ a V1 h,s,a k:n]’: (s,a)=m nh(s’ a)

P ]I{s,];’v =s5,d" =q}

= 2HSAm + Z Z h

k-1 sym Jo _ o 0 _
h,s,a k:n’;(s,a) >m Zj=1 Zv:l ]I{Sh =S, ah = a}

< 2HSAm + HSAlog(Km), (18)

where the last inequality is by Rosenberg et al. [36, Lemma B.18]. For the first term:

k. k k,0 k,
Ze My =say" =l oams 2o sy = 9.0, = o}

khs,a Jnk(s,a) v 1 hsa kink (s.a) 2m (s, a)

m ko _ ko _
szl ]I{sh =sa," =

=2HSAm + E E
i i k+1
5.4 knk (s,.0)2m " (s, a)

<2HSAm+ Y. )
h,5,a k:nk nk+1(s, a)
5,4 kgl (s,a) 2m h s
k.0
m ]I{s =s,a, =a}
<2HSAm+2 ) > h
hrod ok k+1( )
25, k:nys (s,a) 2m n, (s.a
P ]I{sk’v =5,d"? = a}

=2HSAm + 2

hSﬂknk(sa)>m\/Z] lZm ]I{]U S:a;lﬂ:a}

<2HSAm+4ZZZ ZZH{S:U—sak” a}

h=1seS acA =1 v=1

K
<2HSAm+4Z AZiZ Z I{s:’vzs,aﬁ’vza}

h=1 k=10v=1seSacA
=2HSAm + 4HVSAKm, (19)

where the forth inequality is by Streeter and McMahan [43, Lemma 1], and the last inequality is by Jensen’s inequality. Putting these together

we get that: (A) s /2 AKT | f262 472 4 HVK7



Term (B) can be further decomposed as:

K K K
(B) = ) (cF =k, gF) = > (cF —BF[F] ¢ + D (BF[F] - &K, ¢F).
k=1 k=1 k=1

The second term is bounded by 4H /K log % by the good event E€, and for the first term:

k . ko ko _
i< - EFEf, ii Z Z qﬁ(s,a)c]ﬁ(&a)(l E {30 5" =s.a” =a}]
k=1

k
k=1h=1s€S acA Up(s,a) +y

k(s,a k(s,a
= Z qﬁ(s,a)cﬁ(s,a) I—M)S Z M(U{f(s,a)—w}f(s,a)+y)

k,h,s,a U;]: (S, a) +y khsa W}f (S, a)
< (— +qh(s a)) (U (s,a) — W (s,a)+7y)
k,h,s,a
HSAK
= Z ( + qh(s a)) (1- qﬁ(s, a)™-(1- uﬁ(s, a))m) + YT +yHK
k.h,s,a
m K
< > = +qh(s a)| m(1 - (s, @)™ (W (s,0) - ¢ (s, @) + & +yHK
k,h,s,a
K
< ul}j(s, a) — qﬁ(s, a) + Y +yHK
k.h,s,a
k k m. k k
£ mg(s.a)(1 - g (5. 0)" (uf (5.0) — g (5.0))
k,h,s,a
YHSAK
<3 Z (uh(s a) — qh(s a)) logm+ + yHK,
k,h,s,a

where the second inequality is by Lemma D.3, the third inequality is by convexity of the function f(x) = (1 — x)"™ for x € [0, 1], and the last
inequality follows because mx(1 — x)™ < logm for every x € [0,1] sinceif 1 —x < 1— 210% then (1 -x)™ < #; otherwise x < 210%.
Finally, Zk’h’s,a(uﬁ(s, a) — qﬁ(s, a)) is bounded by Lemma E.5.

Term (C) is bounded by OMD (see, e.g., Rosenberg and Mansour [37]) as follows:

K
(B) = Y (g -7y < TR ST Y s ak o
k=1

k=1h=1seSacA

2Hlog(HSA) 3 g &k (s, a) _ 2Hlog(Hs) 3 o 4 (s.a)
— h X pl$8)——————
n khs,a Uy (s, “)+Y n khs,a 1- (l—qfl(s, a))
2H log(HSA
< og( )+’7 Z
n k,h,s,a

2H log(HSA)
<y
Y

(% + qﬁ(s, a)) éﬁ(s, a)

SHSA
1 k nHSAlog 2224
(m q,(s, a)) cp(s.a)

k,h,s,a

2H log H34 HSAK nHSAlo 3HSA

< %Ts  MDAR ks PO RS
n

>

where the forth inequality is by Lemma D.3, and the fifth inequality is by the good event E¢.

Term (D) is bounded b g s by the good event E*. Putting the three terms together gives the final regret bound when settin,
Y g g 2 g g g

—y = SA
n=y=1/ (1+7)K. O

E.3 Auxiliary Lemmas
The following Lemma is by Jin et al. [22, Lemma 8], Cohen et al. [10, Lemma B.13].



LemMA E.3. Under the good event we have,

Y(k,s,a,s’,h):  |pp(s’ls,a) —ﬁﬁ(s'|s, a)| < éﬁ(s' | s, a).
The following Lemma is part of the proof of Jin et al. [22, Lemma 4]. We provide the proof here for completeness.

LEMMA E.4. Let q]hf (5,a | §'; h) be the probability to visit (3, a) in time h given that we visited §’ in time h. Under the good event,

K H K H
D22 s —gisalsHY, Y > é(sag(sa) (20)

k=1h=1seSacA k=1h=1s€8S,acA

+HSZ Z Z Z (s|sa)qh(sa)m1n{ Z k(s |§,d)}qg(§,&|s';h+l).

k=11<h<h<HSE€S,a€As'€S35eS,aeA §'eS

PrOOF. Let qk’s’h be the occupancy measure such that q]hc’s’h(s) = uZ(s), and let pk’s’h be the transition that corresponds to qk’s’h. Let
oy, (s) be the set of all trajectories that end in s in time A, i.e., o}, (s) = {s1,a1,...,Sp_1, ap_1, Sp} Where sp, = s. We have:

h-1
k k h k k.s,h
uy(s,a) = Sh(s,a) = 7, (a | s) Z 1_[ my (ap | Sh')Ph/s (w1 | Sprsap)
o (s) k=1
h-1

gh(s.a)=nf(als) Y [ | 2k (an | sw)pw (swar | swoa)-

on(s) =1

Then,

h-1 h-1 h-1
k k k.s,h
luf(s.9) - gh (sl =@l s) O [ | htaw Lsw) || | ™" Grear Uswoan) = | | o Gear | swoan)|-

op(s) =1 h'=1 h'=1
We can rewrite the following term as,
h-1 h-1
ks,
[ 125" et 1 swoaw) = | | owe Gt | 5w am)
=1 h=1
-1 1-1 S ISE
5S, LS,
P (w1 | s> an) l_[Ph, (Spa1 | sp>ap) + nph, (Swa1 | s> ap)
1=2 =1 =1 =1
h-11-1
- 1_[ pr (S | sw> a) = Z nph’(sh'ﬂ | s> aw) nph (Swr1 | s> ap)
=1 =2 b=
h-11-1
=122 [ 1 pwCwsn | swaw) ]_[ph (s | s> ap)
1=1 =1
ho1-1 S
»S;
=D T owCwan Iswoaw) | ] 2j™" st | swo an)
1=2 h'=1 =l
h-11-1 h—1
k,s,h
= P G Uswsaw) [ ] 2" (st | sws aw)
1=1 =1 =1
h-1 1 S
k,s,
=D 1w Cwan Uswoan) [ 2" Gowar | swoan)
1=1 h'=1 =141

T
L

ks,
| 0" (511 | s ap) = pi (st |31,01)‘ l_[Ph(sh’ﬂ | sw>aw) l—[ P (shan | s ap)-
1 =1 h'=1+1

~
I



Hence,

luk (s, a) - g} (s, )]

<nfals) Y. ﬂnh,(ahf |shI>Z1p, (st | sp-@) = prlstsa ||

op(s) W=
I_[Ph’(sh’+1 | sw>am) l_[ o3 e s a)
h=1 =l+1
h-1 I-1
<> |pf’s’h(81+1 I'st-ar) = pi(span | Sz,az)‘ (ﬂlk(az Ls) [ ] 7 (a1 sm)pm (sps | sh”ah'))
1 op(s) h=1
h-1
' (ﬁ;’f(a l's) l_[ ik (ap |5h’)P;’j?s’h(sh’+1 |3h’:ah’))
h'=1+1
4 I-1
= Z Z ‘ kSh(Sm | si,ar) = pr(spen | st al)} ﬂlk(al [ 's1) l_[ 7k (ap | sp)pw (S | S apy)
I=1 s;€8,a;€A,s141 €S or(sy) h=1
h—1
)y )y mials) [ fyCaw Lsw)pl™ (sha | an)
a1 €A {s,neS,apn ey[}h” Lo W=l+1
h—1
=, > ‘Pf’s’h(Sm st ar) = pi(spar | st az)’qf(% a) - g™ (s.a | sp),

=1 s5;€S,a1€A,511,1 €S

where we ease notation and denote qlhc’s’h (s,alsiyp) = qZ’S’h(s, a | speq3 1+ 1). Similarly, we can show that,

k.s.h
lgg " (s.a | spe) = gy (s.@ | sp41)]
h-1 , )
k.s, k ,s:h
< > > |Ph,s (Sprs1 | swraw) = pry (sw |5h’sah’)|qh/(sh”ah’ | 51404, (5, a | spr41)

W=l+1sp €S,ap €A,spr €S

k.s.h k
<m(als) Z >, |ph/S (w1 ['sws aw) = P (Sp |3huah')|qh/($huah' I s11)s
W=Il+1sp €S,ap €A,spr €S

where the last is since q];js’h(s, alspyr) < 71”;((1 | s). Combining the last two,



k k
> luf(s.@) - g5 (s 0)l
h,s,a,k
S k.sh k.s,h
,S, k ,S,
s Y>> e sean - et I spa|af pa) - gf s al s
h,s,ak =1 sj€S,a;€ A,s111 €S
h-1
~k k k
< >0 D &G lssagf(sia) - gf(s.al i)
hs,ak 1=1 sj€S,aj€ A,s141 €S
h-1
~k k k
> D Fmlspagfspapap(al )
hs,ak 1=1 s;€S,aje A,s141 €S

h-1
k.s,h k
>, |Ph,s (Swa1 I'swsaw) = pr (St | sws aw)| G (s> ape | s141)
W=l+1sp €S,a, € A5 €S
h-1
2k k k
< >, qmm%m%mm(zﬂuwmﬂ
k,h 1=1 s;€8,a;€A,s5141 €S s.a
h-1
-k k k
) Do FGualspagfsia) Y (als)
h,s,k 1=1 s;j€8S,a;€ A,s5141 €S a
h-1
- ~k k
min § 2, Z € (a1 | swsaw) ¢ g (s apy | sp41)
W=I+1 sy €8,a5 €A S €S
K
<H el (st | st agf (st ap)
= € S141 181, a1)q; (51, 4

k=11<I<H sj€S,a;€A,s141 €S

K
+HSZ Z Z Z & (5141 | s an)af (s ap)

k=11<I<W<H sje€S,a;€A,s141€S sy €S,apy €A

. ~k k
cmin$2, > & (s | swoaw) { s (s am | s141)
Sh’ 41 eS

K H
= HZ Z élg(s' | s, a)qﬁ(s, a)

k=1h=1s€S,acA,;s'eS

K
+HSZ Z Z Z é}]f(s’|s,a)q§(s,a)min{2,Zélg(E'|§,d)}qlg(§,d|s';h+l),

k=11<p<h<H S€S.acAs' €S 5eS,aeA eS8

k,s,h

where the last inequality is by Lemma E.3 and since p,

(s, a), p;(+|s, a) are probability distributions V¥(s, a, ).

LemMA E.5. Under the good event,

[His2AK
Z uk(s,0) - ¢ (5, 0)| < | ———— + H’S*Ar.
m

h,s,ak



Proor. We first bound X1, 4 k |u£(s, a) — q];l(s, a)| using Lemma E.4. Now, for the first term in Equation (20):

Z é,’;(s,a)qi(s,a) = %Z Z élli(s,a)qﬁ(s,a) < %Z Z k” =s, a = a}e}’f(s a) + 18HST?

k,h,s,a v=1k,h,s,a

k, k,
. Vst Yot sy’ =50 = a}

m k.hs.a 1lnﬁ(s, a) V1

k k
+ St Z vazl ]I{Sh’v =sa" = a}

h
m khaa n]’: (s,a) V1

H2SZAK
< | ———L + HS?AL?,
m

+ HS7?

where the first inequality is by event E°™ and the last inequality is by Equations (18) and (19). Plugging the definition of é, we break the
second sum in Eq. (20) as follows:

i > ZZg,’;(s'|s,a)q’;l(s,a).min{z,Zé’g(g’|§,a)}q’5(§,a|s’;h+1)

qFG.als'sh+1)

T k . kot ) o~ o~ ki~ ~ ’
+ ——¢g;(s,a) -min\{ 2, E(s"|s,a “(S,a|s’;h+1
EIDINIER LT {z,; | >}qh< ke

(E,& | s"sh+1)

( )

(i)

+Z Z ZZ k(s) qh(s,a)-qg(§,d|s’;h+1),

11<h<h<H5‘” s.a

(iii)

where the last inequality follows because /Xy < x +y for every x,y > 0. Term (i) is bounded as follows:



gk (s, a)qg(g, alssh+1)pR(158) | qk(s, a)q]hf(§, als’sh+1)pk(s'ls a)

b= 3 ST

k kiz »
\<heh<Hk=15.ay $as nh(s, a) V1 nil(s, a Vi
a5 (s, a)qg(i& | s h+1)pk (3715, @) gk (s, a)qg(i& | s h+1)pk(s’]s, a)
<t ) 2 ~
k kiz »
1<h<h<H \ks.as'5as nh(s, aVv1 k.s,a,5",5,4,5' n};(s, aVv1

A COrN G AR ESY

R D i 5
\<hoh<H isa nk(s a) Vv 1 kolssas nlg(i aVvi

qh(s a) K qh(s’
ZZ (sa)Vl ZZ k(sa)vl <HS ZZ v < H2S2AT,

=1s,ah h k=15ah =1sahh

where the last inequality is by event E°"3 and Equation (18). Term (ii) is bounded as follows:

<”>—SZ 2, ZW ST IR ACE A S

k=11<h<h<H S5

K
:Sk:1 ; k(g ~)VIZ]qh(scHs h+1)qh+1(s)
& q~(s,a) 202 4.2
:HSTZZZW<HSAr.

Term (iii) is bounded as follows:

(m)<z > k(sa)Vl]fl(s,a)ZqE(§,&|s';h+l)

k= 11<h<h<HSﬂS' n 5a

k(s a)
< HS7? § § —h T < H2s2AL2,
nk(s,a) v 1
=1s,a,h h



Algorithm 8 CooPERATIVE O-REPS WITH NON-FRESH RANDOMNESS (COOP-NF-O-REPS)

1: input: state space S, action space A, horizon H, transition function p, number of episodes K, number of agents m, exploration parameter
v, learning rate 7, confidence parameter 6.

2: initialize: 71'}11(61 | s) =1/A, q,ll(s, a) = q;lrl (s,a)V(s,a,h) € S X A X [H].

3: fork=1,...,Kdo

4. foruv=1,...,mdo

5 observe initial state slf’v

6: forh=1,...,Hdo

7: pick action ai’v ~ ’g( | s]}i’v), suffer cost cﬁ(si’v, aﬁ’v) and observe next state stl.

8: end for

9:  end for

10:  Forevery (s, a, h) compute W/:(s a) - the estimate of W}f(s, a) =Pr[3v: sZ’U =s,ad"? = a | n¥] using N = 10y~ 2 log KHSAm samples
(Algorithm 9).

k (s,a)1{30: s;:v saZ =a
Wf (s,a)+y
12:  compute q = argmingcap) n4q. ey + KL(q || ¢%).

k
q;, (s,a)
S D) o) V(s,a,h) € S X A X [H].

V(s,a,h) € SXAX[H].

11:  compute ck (s,a) = S

13:  compute rr}]:”(a | s) =

14: end for

F THE COOP-NF-0-REPS ALGORITHM FOR ADVERSARIAL MDPS WITH NON-FRESH RANDOMNESS
AND KNOWN p

For the setting of adversarial MDPs with non-fresh randomness and known transitions we propose the Cooperative O-REPS with non-fresh

randomness algorithm (coop-nf-0-REPS; see Algorithm 8). The idea is similar to the coop-0-REPS algorithm for fresh randomness, but the

key difference is that the probability to reach some state-action pair that the algorithm uses (i.e., W}f (s, a)) must be computed differently in
order to suit non-fresh randomness. In fact, computing Wk (s, a) becomes a difficult challenge once the randomness is non-fresh, and a naive
computation takes exponential time. Instead we propose to estimate Wk (s, a) from samples. That is, we simulate N = 10y 2 log XH24m KHSA’" iid

episodes in which all agents use policy 7F and then estimate Wh (s,a) by the fraction of episodes in which (s, a) was reached in step h by at
least one of the m agents. This way our algorithm keeps polynomial running time.

TuEOREM F.1. With probability 1 — §, settingn =y = 1// (1 + %) K, the individual regret of each agent of coop—nf-0-REPS is

HSA | \/HZSAKI HSA HSA, = HSA HSA
o 104

Rg = O|H+/SKlog 5 lg 5 + HSlog ——

F.1 The good event

Define the following events:

EPP = {V(s, a,hk) € SX A [H] x [K] : [Wr(s,a) - Wr(s,a)| < y/z}

K
ES = {Z_:(Ek[ék] - &, ¢*) < 4H K log g}
H 10HSAlog SHSA  10HS log $HSA
Z Z (—+7rh(a|s)) (Eﬁ(s,a)—ZCﬁ(s,a)) < &5 + € 5
= my 14

h=1seSacA
2Hlog 6H5A}

23 — {Z(ék_ck)q” >
k=1 Y

The good event is the intersection of the above events. The following lemma establishes that the good event holds with high probability.

Lemma F.2 (THE Goob EVENT). Let G = E%PP N E€ N ES N E* be the good event. It holds that Pr[G] > 1 — 6.

Proor. By Hoeffding inequality we have that Pr[-E?’P] < §/6, and the other events are similar to Lemma D.2. O



Algorithm 9 ESTIMATE REACHABILITY PROBABILITY FOR NON-FRESH RANDOMNESS

1: input: state space S, action space A, transition function p, number of agents m, policy &, number of samples N, state-action-step triplet
to estimate (5, a, h).

2: initialize indicator for reaching I(n) < 0 for n € [N].
3: forn=1,...,Ndo
4 initialize realized transitions pj (s"|s,a) =0V(s,a,s’, h).
s forh=1,...,hdo
6: for (s,a) € S x A do
7: sample s’ ~ pp (- | s, a) and set p}rl(s’ | s,a) = 1.
8: end for
9:  end for
100 forov=1,...,mdo
11: observe initial state s{ = sinjt.
12: forh=1,....,hdo
13: pick action a;l’ ~ mp(+ | s;) and observe next state SZH ~ p;l(- | s, a).
14: end for
15: if SE =5, a;’_l = a then
16: setI(n) « 1.
17: break
18: end if
19:  end for
20: end for

21: return % 21,:7:1 I(n).

F.2 Proof of Theorem F.1

Proor oF THEOREM F.1. By Lemma F.2, the good event holds with probability 1 — §. We now analyze the regret under the assumption
that the good event holds. We start by decomposing the regret as follows:

K K
kok o K, ko* ok, *
RK:ZV1H(510)_V1]T 51U)22<Ck)qk—qﬂ>
k=1 k=1

K K N K
DGR S T G T WG
k=1 k=1 k=1

(4) (B) (©)

Term (A) can be further decomposed as:
K K K
(A) = D (K =, g%y = > (R — B[] ¢F) + ) (BF[6F] - &5, ).
k=1 k=1 k=1

The second term is bounded by 4H /K log % by the good event E€, and for the first term:

EX[I{3 : kv—s al}iv—a}]

D=5 3 T e 1- O 2

=1h=1s€SacA

EX[I{3 : s = s, ao? = a}]

h h
< Z Z Z qz(s, a)cz(s, a)|1- W}f(s, D17/2

k=1h=1seSacA

wk (s,a) qk (s,a)
q/}i(s, a)cﬁ(s, a) (1 - h < h
k,h,s,a

W}f(s,a)+y/2 ! W/:(s,a)+y/2

k.h,s,a
k k
q,(s)m, (a | S) yHSAK
<y Y BOBEN) 5 S (L k) < K
k h
k,h,s,a Wh (S’ a) kh,s,aacA

where the first inequality is by the event E?P?, and the last inequality is by Lemma F.3.



Term (B) is bounded by OMD (see, e.g., Zimin and Neu [57]) as follows:

K
(B) = Z(ék,qk B q”* Hlog(HSA) N ZZ Z Z qh(s a)Ch(s a)z
k=1

k=1h=1seSacA

A &k (s,a)

D dis ="

h=

H Ek(s,a)
k(’ ) h

hg Z q(s,a

1seSaeA Wk(s a)+y/2

_ Hlog(HSA) +’7§4i D g (s)m(als) 5.0
k=1h=1 A

_ Hlog(HSA)

B n

< Hlog(HSA)
n

k
1 seSa Wh (s.a)
K H
Hlog(HSA) )

Sg—+ryz Z(—+7rh(a|s))cﬁ(s,a)

7 k=1h=1seSacA
_ Hlog(HSA) <% 107HSAlog SH84  10pHS log SHSA
——+ZWZZ —+Jrh(a|s) ch(sa)+ +

7 k=1h=1s€S acA my Y

Hlog H34 poax HSAlog $H54  pHS1og $H54
< &5 +” +nHSK + 1 & 5 ’7 € 5

n m my Y ’
where the forth inequality is by Lemma F.3, and the fifth inequality is by the good event EC.

oH
Term (C) is bounded by ZHI# by the good event E*. Putting the three terms together gives the final regret bound when setting
log £34
= = D e — O
=y (1+4)sx

F.3 Auxiliary lemmas

LemMa F.3. Let 7w be a policy and denote by gy (s) the probability to reach state s in time h when playing policy 7. Assume that m agents use
the same policy 7 in an MDP M with non-fresh randomness, and denote by Wy, (s, a) the probability that at least one agent to reaches (s, a) in
time h. Then, for every (s,a,h) € S X A X [H], it holds that:

@Ol 1
Wi (s, a) m

ProoF. Let M, (s) be the number of agents that arrive at state s in time h. We have that,
Wy(s,a) =Pr[Fo e [m]: sy =s,ay =a| x| =E [1 - (1-mpy(a| $)Mn(s) | ﬂ.]

mh(als) M]:E My(s)mn(a | 9 |”]

>E _hThAT I
Mhl(s) +mp(als) 1+ Mp(s)mp(als)

21

where the inequality is by Lemma D.3.

Notice that E[My(s) | 7] = mqj (s) by linearity of expectation. Therefore, Equation (21) is bounded from below by the value of the
following optimization problem:

. imals)
min pi—
PoePm ST 1 4+ irp(als)’
m
s.t. Zpii = mqy (s),
i=0

m
ZP;‘ =1,
i=0

pi >0 Vie[m],



where p; represents Pr[Mp,(s) = i]. Since the coefficient of p; in the constrains and the objective are non-negative, we can substitute the

equality constrains with “ > ” constrains. We get the following standard form Linear Programming:

where,

The dual problem is,

From the first and the last constrains we have x; = 0 and the rest of the constrains are equivalent to x3

mp (als)

value is mq

T
min b p,
pERmH p
s.t ATp > c,
p=0,
0 1 0
7 (als) 1 1
1+ (als)
- . A= . o= (Lmgf )
mlrh.(als)
1+msy, (als) 1 m

max(x1 + x2mqy (s))

X1,X2
st x1 <0,
ryp(als
i tx < @l
1+mp(als)
2np(als
x1+2xgs—h( K ,
1+2mp(als)
map(als
R . 1Ca
1+map(als)
x1,x2 > 0.

Z (s), which completes the proof.

< _mi(als)
= 14+mmp(als)”

Hence the maximum

O



Algorithm 10 CooPERATIVE UOB-REPS WITH NON-FRESH RANDOMNESS (COOP-NF-UOB-REPS)

1: input: state space S, action space A, horizon H, number of episodes K, number of agents m = VK, exploration parameter y, learning
rate 7, confidence parameter §.

2: initialize: n}l(s, a) =0, n,ll(s, a,s’) =0, 7'[}1!((1 | s) = 1/A, q}l(s, a,s’) =1/S?AVY(s,a,s",h) € SX A XS X [H].

3: initialize: define a mapping o : [H] X A X [K] — [m] such that o(h, a, k) # o(h’,a’, k) whenever h # h’ or a # a’, and such that each
agent is assigned by o exactly HAVK times (i.e., |0~1(0)| = HAVK for every v € [m]).

4: fork=1,...,Kdo

5. set I;f(s,a,s') = O,I}I:(s,a) =0V(s,a,s",h) e SXAXS x[H].

6: foruo=1,....mdo

7: observe initial state sf’v.

8: forh=1,...,Hdo

9: if 3@ € A: o(hak) =othen

10: pick action a];’” =a.

11: else

12: pick action a];l’v ~ 71';:(' | slg’v).

13: end if

14: suffer cost cﬁ (s]g’v, aZ’U) and observe next state s:fl.

15: update I;:(s’]j’v, a:’v) — 1, I}I:(SZ’D, alfl’v, sZ’fl) — 1.

16: end for

17: set n],;“(s, a) «— nlhc(s, a) + I,’:(s, a), nﬁ“(s, a,s’) « nﬁ(s, a,s’) + I;f(s, a,s’)V(s,a,s’, h).
ekt o (.05 ,

18: set py, (s |s,a)<—WV(s,a,s,h)ESxﬂxSx[H].

Ak+1 (s’ |s,a) In HSAK In HSAK
19: compute confidence set for el}i“ (s |s,a) =4 P = 2 10—
n(s,a) V1 n(s,a) V1

PR p V(s 5 h) : B 5.0) = ps” | s, < 157 | s,

20: com k(s) = 7 (s) = = k o’
: pute uh(s) = max,, cpk qﬁ (s) = max,, c pk Prls, =s| 2%, p’] Vs € S.
te ck(s ) = REUST sk e A
21: compuech(s,a)—W (s,a,h) € S X AX[H].
22: compute g**! = arg ming e pmk+1) 749 &y +KL(q || ¢5).
k+1
23: compute 71';:+1 (als)= #}% V(s,a,h) € S x A x [H], where qﬁ“ (s,0) = Yyes q’ﬁ“ (s,a,s").

24:  end for
25: end for

G THE COOP-NF-UOB-REPS ALGORITHM FOR ADVERSARIAL MDPS WITH NON-FRESH
RANDOMNESS AND UNKNOWN p
For the setting of adversarial MDPs with non-fresh randomness and unknown transitions we propose the Cooperative UOB-REPS with
non-fresh randomness algorithm (coop-nf-UOB-REPS; see Algorithm 10). The idea is to combine the coop-nf-0-REPS algorithm for known
transitions with ideas from the coop-ULCAE algorithm in order to handle unknown transitions under non-fresh randomness. The main
challenge is that, unlike the stochastic case, we cannot eliminate sub-optimal actions. Thus, our method requires VK agents to attain
near-optimal regret as opposed to the stochastic case where only H2A? agents are required.

log KHSA
THEOREM G.1. Assume that coop-nf-UOB-REPS is run with m = VK agents. With probability 1 — §, settingn =y = OgS—K‘S, the

individual regret of each agent of coop-nf-0-REPS is

Rg =0

[ KHSA KHSA
H?S4/Klog — + H35% log? — |




G.1 The good event

Py B th(s |s,a) log 2log
Denote €L (s"|s,a) = \/ kl(s a)v1 kl(s a)Vl

SOKHQA BUKHSA

and e}]f(s, a) = Ys¢eS ez(s’ | s, a). Define the following events:

- {V(k, sa5,h) ¢ Ipp(s'ls,a) = pE(s'ls, @) < eX(s" |5, a)}

|
|
{

51
Q
3
|

k-1
ok 1 J 6mHSA
V(k, h,s,a,0) € [K] X [H]><S><ﬂ.nh(s,a)2EZ:q;lr (s) —log 5

j=1
(BF[ek | 7K1 = ¢k g5y < 4H5,/Klog§}
3HSA
10HS log T}

H
Z Z Z (a | s) (éﬁ(s, a) — 2c’}§(s, a)) < ;
=1

seSaceA
3HSA
Hlog =5 }

E¢=

The good event is the intersection of the above events. The following lemma establishes that the good event holds with high probability.

7 I It

(@ —ck g7 <
Y

5
1l

1

LEmMA G.2 (THE Goop EVENT). Let G = EP N E®™ 0 EC N E¢ N E* be the good event. It holds that Pr[G] > 1 - 6.

ProoF. Similar to the proofs of Lemmas C.5 and F.2 and to proofs in Jin et al. [22]. O

G.2 Proof of Theorem G.1

Proor oF THEOREM G.1. By Lemma G.2, the good event holds with probability 1 — §. We now analyze the regret under the assumption
that the good event holds. Note that each agent plays the OMD policy 7% in all except for HAVK episodes. Thus, the regret is bounded by
the regret of the policies {z¥ }le plus a H2AVK term which is at most H2SVK. Next, we focus on bounding the regret of {* }le, starting
with the following decomposition:

kan( k7r kv)_Z<c _

(A) (B) ©) (D)

Let 7 = log @ be a logarithmic term. Term (A) can be decomposed using the value difference lemma (see, e.g., Shani et al. [42]):

K K H
(A) =Dk g™ =y <2H Y 3NN g (s @)llpa(- |s.0) = G I 5,0l
k=1

k=1h=1seSacA

k k
a7 (s.a) a7 (s.a)

< HVSt Z HSt

3
khs.a \nk(s,a) vV 1 ks M (@) V1

where the second inequality is by event E?. We now bound each of the two sums separately using the event E°". For the second sum we
have:

k k k
5 @ (5.0 3 qr (s,a) Z qr (s) Xary(als)
K n];l(s, vl il G zf lqu] (s) - log 8mH54) v 1 s § lqu] (s) - log 8mHS4) v
q;f (s)
SZHST+ZZ Z Zkl—q”](s) < HSr,
h,s kzk ] qh (S)>210g 6mH§A j=11p



where the last inequality is by Rosenberg et al. [36, Lemma B.18]. For the first term:

g7 () Sank(als)

log @) V1

k k
G a g (s.a)

Z [nk (sa)Vl khzs:a\/( Z’jlqh (s) —log M)Vl k.h \/( Zjlqh (S)_
sszHzZ Z i ©

. k-1 7/
hs kykol grd (5) 221og 2sA | Xjoi df (5)

k
2tisea2y) 5 qr (s) YK (9)
= T
; k-1 _aJ
hs kZ" 149, 7 (s) >2log ¢S4 VZ§=1 q;lrf (s) Z] 1y (©)
k
q; (5)

=2HSTt+4 _—
th: k-1 _xf Z smisa | 2K ) (s)
S 3k g7l () 2210g SHSA [ 24j=1

K K
<2HST+8 ) (| > g (s) < 2HSt+8 [HS > " g7 (5) = 2HST + 8HVSK,

hs Vk=1 k=1 hs

where the third inequality is by Streeter and McMahan [43, Lemma 1], and the last inequality is by Jensen’s inequality. Putting these together

we get that: (A) < H2SVKt + H2S%72.
Term (B) can be further decomposed as:

(B) = Z<c - ek, ">—Z<c - E[éF | 24, ">+Z<Ek [¢5 1751 - &,

The second term is bounded by 4HS /K log % by the good event E€, and for the first term:

k,o(h,ak) =5} ﬂk])

Z< —BF[¢F | ¥ ii P A AT 2t
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k
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where the second equality is because agent o (h, a, k) plays policy 7% until step h. Finally, 3, ks (uﬁ (s) — q’}; (s)) is bounded by similarly to

Lemma E.5.



Term (C) is bounded by OMD (see, e.g., Rosenberg and Mansour [37]) as follows:

K K H
, «. _ 2Hlog(HSA) )
(B) = Y& gt g™y = By ) N Y Y dhGs (s,
k=1 1 k=1h=1seSacA
K H ~k
2H log(HSA) k x ¢, (s,a)
ST ) Y D dh el —
7 k=1h=1seS acA u, (s)+y
2Hlog(HSA) & . .
S—+r]ZZ Znh(a|s)éh(s,a)
1 k=1 h=15e8 acA
K H 3HSA
2H log(HSA HS lo
SL+UZZ Zﬂﬁ(dls)c’;(s)a)+&
1 k=1h=1seSacA
K d 3HSA
2H log(HSA HS lo
< HTIBUHSA) | 52 ST S kg g 0 T8 TS
1 k=1h=1seSacA

2Hlog(HSA)
_ HloglHSA)

HS log 3254
HSK+ u

>

where the forth inequality is by the good event EE.
Hlog
Term (D) is bounded by % by the good event E*. Putting the three terms together gives the final regret bound when setting

log KHSA
n=y= Sk - o
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