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ABSTRACT
Strategic classification studies learning in settingswhere self-interested

users can strategically modify their features to obtain favorable

predictive outcomes. A key working assumption, however, is that

“favorable” always means “positive”; this may be appropriate in

some applications (e.g., loan approval), but reduces to a fairly nar-

row view what user interests can be. In this work we argue for a

broader perspective on what accounts for strategic user behavior,

and propose and study a flexible model of generalized strategic clas-
sification. Our generalized model subsumes most current models,

but includes other novel settings; among these, we identify and

target one intriguing sub-class of problems in which the interests

of users and the system are aligned. For this cooperative setting,
we provide an in-depth analysis, and propose a practical learning

approach that is effective and efficient. Returning to our fully gen-

eralized model, we show how our results and approach can extend

to the most general case. We conclude with a set of experiments

that empirically demonstrate the utility of our approach.

KEYWORDS
Strategic Classification, Generalized Strategic Classification, Incentive-

Aligned Strategic Classification

1 INTRODUCTION
Machine learning is increasingly being used in domains where

human users are the subject of prediction. But when users stand to

gain from certain predictive outcomes, they may be prone to act in

ways that promote the outcomes they desire. A growing recognition

of this idea has led to much recent interest in methods that are able

to account for how humans respond to learned models. One such

line of research considers the problem of strategic classification
[5, 15], in which users can modify their features (at some cost) to

obtain favorable predictions, and the goal in learning is to be robust

to such behavior. Common tasks include loan approval, university

admissions, and hiring—all examples in which users have incentive

to be classified positively, and in which systems must anticipate

user behavior in order to predict well. Strategic classification is

appealing as a learning problem in that it is simple yet succinctly

captures a natural form of tension that can arise between systems

and their users. This has made it the focus of many recent works

[11, 13, 18, 20, 21, 27, 29, 31].

But despite the elegant way in which it extends standard binary

classification, strategic classification remains narrow in the scope
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of strategic behavior it permits. A key working assumption is that

while the system is interested in correct predictions, users are inter-

ested in positive predictions. One artifact of this is that learning is
essentially restricted to settings in which one outcome is globally

“good” for users (e.g., loan approved), while the other is “bad” (e.g.,

loan denied); another is that users are grimly framed as always

acting to “game” the system. But not all outcomes are “good” or

“bad”, and not all strategic behavior is gaming. Here we argue for

a broader perspective on what constitutes strategic behavior in

classification.

Towards this goal, we propose and study the novel learning

framework of generalized strategic classification (GSC), which in-

cludes standard strategic classification (SC) as a special case, as

well as other rich problem sub-classes. Our formulation relies on

the simple observation that strategic behavior depends on three

key elements: (i) what users know, (ii) what users want, and (iii)

how users use their knowledge to promote their goals. For example,

in standard strategic classification, users know their true features

(whereas the system does not); want positive predictions (rather

than correct predictions); and are willing to invest effort or re-

sources to obtain them (by applying costly feature modifications).

But other forms of knowledge, aims, and means lead to other types

of strategic interactions between a system and its users. The power

of our framework lies in providing a simple handle for reasoning

about the effects of general forms of interaction on learning.

Within the space of GSC problems, of particular interest to us

is a sub-class of problems we refer to as incentive-aligned strategic
classification (IASC). Aligned incentives naturally arise in settings

where predictions are intended to assist users; in particular, they are

for users, rather than about users (as in loans, hiring, etc.). Applica-

tions in which incentives align are widespread—recommendation

systems, search engines, and online marketplaces are all examples

in which prediction is provided by the system as a service to its

users, and both parties are interested in accurate predictions.

From a modeling perspective, the key difference between SC and

IASC is simply that instead of wanting positive predictions, users

now want correct predictions—just as the system does. But from

a learning perspective, this mild change transforms the learning

problem from one of robustness (to gaming) to one of cooperation,

and the key challenge in learning now lies in how to best utilize

individual strategic behavior to promote collective improvement.

Note this has concrete implications for transparency: to successfully

promote its own goals, it is in the best interest of the system to

clearly communicate its predictive model to users, so that strategic

updates are maximally effective (c.f. SC, where the implications of

transparency can be ambiguous [13]).



How should learning be done in incentive-aligned settings? A

natural approach would be to simply take the conventional ERM

rule and replace the original features, 𝑥 , with their strategically-

modified counterparts, 𝑥 ′. Indeed, this approach is sensible when

applied to the true error, i.e., the 0/1-loss. However, our first key
result shows that the argument breaks once this naïve approach

is applied to a proxy loss, such as the hinge loss. This has concrete

practical implications; as we show, this naïve approach is prone to

adverse generalization issues, and is unnecessarily computationally

complex. As a solution, and with initial focus on a special instance

of IASC, we propose a new strategic hinge loss, which builds on

an adaptation of the notion of margin to strategic settings. The

strategic hinge has a simple and differentiable form, and so can

be optimized end-to-end For generalization, we give Rademacher-

based bounds showing that the strategic hinge loss enjoys favorable

guarantees.

Building on these results, we return to the most general class of

GSC problems, and show that the principles underlying our analysis

for IASC hold more broadly. We extend both of our contributions

to this general case. First, we give a formula for constructing an

appropriate strategic hinge proxy for any instance of GSC, this

relying on a careful reinterpretation of the definition of margin.

We show that, like for IASC, the strategic proxies for several no-

table sub-classes are simple and differentiable, and have intuitive

interpretations. Second, we extend our generalization bounds to

hold for GSC in its broadest form; we also give specialized bounds

for several sub-classes, and study their relations. Our bounds have

a tight connection to, and closely match, standard bounds for the

non-strategic case.

We conclude with an empirical section that includes two sets

of experiments. The first set of experiments target generalization,

and in this way, complement our theoretical findings. Here we

evaluate performance on synthetic data and for several types of

strategic environments. The second set of experiments consider

an elaborate incentive-aligned environment, designed to mimic a

recommendation setting in which users act on the basis of private,

personalized past experiences. For this setting, we use data based

on a real fashion-related dataset. The strategic hinge in this setting

does not have a simple form; nonetheless, we propose a tractable

approach for its optimization. Our results demonstrate that our

approach is efficient and effective.

Taken together, our practical and theoretical results suggest that

GSC is an appropriate, well-balanced generalization: it is flexible

in the strategic behavior it permits and the learning problems that

follow, but at the same time, is precise enough to preserve general

statistical properties of classification.

1.1 Related work
The literature on strategic classification is growing rapidly. Various

formulations of the problem were studied in earlier works [3, 4, 14],

but most recent works adopt the core setup of Hardt et al. [15].

Some studies focus on theoretical aspects; for example, Zhang and

Conitzer [29] and Sundaram et al. [27] extend VC theory to account

for strategic behavior. Other works focus on practical aspects, such

as Levanon and Rosenfeld [21] who propose a differentiable learn-

ing framework for strategic classification. Our work includes a

blend of both theory and practice.

There have also been efforts to extend strategic classification

beyond its original formulation. For example, Ghalme et al. [13]

study a settingwhere users respond based on individually-estimated

classifiers, and Jagadeesan et al. [18] consider users having noisy

estimates of model parameters. Sundaram et al. [27] make the con-

nection to adversarial learning, and propose a unified model al-

lowing for more general forms of user response. Our framework

subsumes these earlier settings, and generalizes beyond.

Several works in the adversarial literature have suggestedmargin

maximization as a means to achieve robustness [8, 30]. Our work

extends beyond this idea and studies the general role margins play

under strategic behavior, theoretically and methodologically.

Finally, we note there are many works within the broader area of

strategic-aware learning, focusing on dynamics and online learning

[7, 9, 31], causal effects [1, 17, 23, 24, 26], strategic regression [2, 16,

28], and strategic ranking [22]. These remain outside the scope of

our generalized framework for strategic classification.

2 GENERALIZED STRATEGIC
CLASSIFICATION

We begin by reviewing the learning setup for SC, and then proceed

to present GSC and IASC.

2.1 Strategic classification
Denote by 𝑥 ∈ X ⊆ R𝑑 features representing user attributes, and

by 𝑦 ∈ Y = {−1, 1} their corresponding labels. Let 𝐷 be some

unknown joint distribution overX×Y. As in standard classification,

at train time the system is given access to a sample set of𝑚 labeled

pairs 𝑆 = {(𝑥𝑖 , 𝑦𝑖 )}𝑚𝑖=1
sampled iid from 𝐷 , on which it aims to

learn a classifier ℎ : X → Y from some function class 𝐻 . What

differs in strategic classification is that at test time, once ℎ has

been learned ℎ (and deployed), users can modify their features

𝑥 ↦→ 𝑥 ′, in a way we explain shortly. The objective of the system

is to correctly classify modified inputs, and so its goal in learning

is to minimize the expected 0/1 loss, err(ℎ) = E𝐷 [1{𝑦 ≠ ℎ(𝑥 ′)}].
Learning is therefore successful if it produces a classifier that is

robust to strategic modifications.

The way in which users modify their features derives from the

utility they can gain from predictive outcomes. In SC, users are will-

ing to modify features if this will help them be classified positively,

denoted𝑦 = 1. But modifications are costly, and the cost of applying

𝑥 ↦→ 𝑥 ′ is given by a cost function 𝑐 (𝑥, 𝑥 ′), which is assumed to be

known to all. Users are modeled as rational utility-maximizers that

update their features via the following best-response mapping:

ΔSC
ℎ
(𝑥) ≜ argmax

𝑥 ′∈X
ℎ(𝑥 ′) − 𝑐 (𝑥, 𝑥 ′) (1)

Learning then aims to minimize the expected strategic error :

argmin

ℎ∈𝐻
E𝐷 [1{ℎ(ΔSC

ℎ
(𝑥)) ≠ 𝑦}] (2)

2.2 Generalizing strategic classification
The update in Eq. (1) includes three important ingredients: what

users know (i.e., 𝑥 ), what they want (i.e., ℎ(𝑥 ′) = 1), and how these



two concepts are integrated into action (i.e., maximizing utility

minus cost). But the update is effective only when the original fea-

tures 𝑥 remain private user information.1 Privacy of information is

a crucial aspect of strategic classification, and is essentially what

makes it distinct from standard classification. Building on this sim-

ple observation, we propose a generalized framework permitting

users to make use of richer forms of private information, in more

varied ways, and towards broader goals.

Concretely, our GSC framework extends SC in two ways. First,

we allow users to hold additional, private side information, denoted
𝑧 ∈ Z (and redefine𝐷 to be a joint distribution over triples (𝑥, 𝑧,𝑦)).
Objects 𝑧 can be of any type, and the main distinction between 𝑧-

objects and 𝑥-objects (which are also private) is that while 𝑥 are

used by the system as input to the classifier (and so are subject to

modification by users), 𝑧 are used only by the user, and only for the

purpose of computing Δ (and so remain unmodified).

Second, we allow for broader user objectives by replacing ℎ(𝑥 ′)
in Eq. (1) with a more general function of perceived utility, denoted
�̃�ℎ (𝑥 ′, 𝑧), which encodes the utility users believe they obtain from

𝑥 ′ under the classifier ℎ, and as a function of 𝑧. This gives the

generalized response mapping:

ΔGSC
ℎ

(𝑥) ≜ argmax

𝑥 ′∈X
�̃�ℎ (𝑥 ′, 𝑧) − 𝑐 (𝑥, 𝑥 ′) (3)

To see how 𝑢 and 𝑧 work together, observe that Eq. (3) provides a

formula for how users act, meaning that 𝑢 reflects how utility is

perceived by users. This perceived utility may, or may not, align

with users’ true utility (which must be independently defined);
2

note this means ΔGSC
is no longer necessarily a best-response. What

controls the degree to which true and perceived utility align is how

useful 𝑧 is as side information when integrated into 𝑢 to form user

beliefs regarding value. Side information can be helpful—but also

misleading; a simple example is when 𝑧 ∈ R and acts as additive

noise, i.e., �̃�ℎ (𝑥 ′, 𝑧) = 𝑢ℎ (𝑥 ′) + 𝑧 for true utility 𝑢ℎ , as in Random

Utility Theory [6]. But Eq. (3) is more general, and can in principle

allow for more elaborate forms of user modeling, such as bounded-

rational, Bayesian, or behavioral decision models. We next survey

some special instances of Eq. (3) which exemplify this idea.

Notable special cases. Standard SC (Eq. (1)) is obtained from Eq.

(3) by setting 𝑧 = ∅ (i.e., no side information) and 𝑢ℎ (𝑥 ′, 𝑧) = ℎ(𝑥 ′).
Notice Eq. (1) can be rewritten as:

ΔSC
ℎ
(𝑥) ≜ argmax

𝑥 ′∈X
1{ℎ(𝑥 ′) = 1} − 1

2

𝑐 (𝑥, 𝑥 ′) (4)

where now �̃�ℎ (𝑥, 𝑧) = 1{ℎ(𝑥 ′) = 1} =
ℎ (𝑥 ′)+1

2
. This simply em-

phasizes that users want positive predictions, but makes it easy to

consider other forms of user interests. For example, for adversarial
users, we plug in 𝑦 and obtain:

Δadv
ℎ

(𝑥,𝑦) ≜ argmax

𝑥 ′∈X
1{ℎ(𝑥 ′) ≠ 𝑦} − 1

2

𝑐 (𝑥, 𝑥 ′) (5)

which is made possible once we set 𝑧 = 𝑦 as private information.

More generally, if we let 𝑧 ∈ {−1, 1} hold arbitrary values, then we

1
Indeed, had the system known 𝑥 at test time, any modification would have been

futile (and costly).

2
In SC, they are the same.

recover the general-preference (GP) model studied in [27]:

ΔGP
ℎ
(𝑥, 𝑧) ≜ argmax

𝑥 ′∈X
1{ℎ(𝑥 ′) = 𝑧} − 1

2

𝑐 (𝑥, 𝑥 ′) (6)

here, knowing 𝑧 is essential for users to effectively respond.

Returning to SC, the recent work of [18] on alternative micro-

foundations proposes a noisy responsemodel. This can be recovered

by setting 𝑧 ∈ R𝑑 as the random noise term, which gives:

Δnoise
ℎ

(𝑥, 𝑧) ≜ argmax

𝑥 ′∈X
ℎ\+𝑧 (𝑥 ′) − 𝑐 (𝑥, 𝑥 ′) (7)

where \ ∈ R𝑑 are the parameters of the classifier. A more elaborate

form of side information can be found in [13], where users are

‘in the dark’ and respond based on an approximate classifier,
˜ℎ,

estimated from data:

Δdark
ℎ

(𝑥, 𝑧) ≜ argmax

𝑥 ′∈X
˜ℎ(𝑥 ′; 𝑧, ℎ) − 𝑐 (𝑥, 𝑥 ′) (8)

Here,
˜ℎ(· ; 𝑧, ℎ) is estimated by users from a sample set {(𝑥 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1

consisting of additional examples 𝑧 = {𝑥 𝑗 }𝑛𝑗=1
labeled by the true

classifier, 𝑦 𝑗 = ℎ(𝑥 𝑗 ). In both of the above, users seek positive

predictions, but act based on how they perceive utility, as determined

by 𝑢 and 𝑧.

2.3 Learning in GSC
In its most general form, the GSC learning objective is:

argmin

ℎ∈𝐻
E𝐷 [1{ℎ(ΔGSC

ℎ
(𝑥, 𝑧)) ≠ 𝑦}] (9)

where for each sub-class of problems, ΔGSC
is replaced with its

appropriate counterpart. One key difference between Eq. (9) and Eq.

(2) is that the former now includes side information 𝑧. This requires

us to be precise about its role. Clearly, at test time, neither 𝑥 nor

𝑧 are observed by the system. However, at train time, it remains

a question whether 𝑧 should be observed or not. For example, in

the GP setting of [27], 𝑧 is assumed to be known; in the noisy-

parameter setting of [18], when 𝑧 models users’ misperceptions of

\ , it is reasonable to consider it as unknown; while for the ‘in-the-
dark’ setting of [13], it is shown that for known 𝑧, learning reduces

to standard strategic classification, whereas for unknown 𝑧, errors

in estimating user responses can blow up in a way that can cause

learning to fail completely. Hence, the decision regarding observing

𝑧 remains task-specific.

In this paper, we focus on the setting where 𝑧 is known—this

places emphasis on the introduction of 𝑧 into the response mapping

Δ, and abstracts away other aspects (such as what system knows

or does not). Note also that when 𝑧 is unknown, from the system’s

perspective, the user’s response mapping Δ (Eq. (3)) is not well-

defined, and so requires additional assumptions on how the system

compensates for this lack of knowledge in learning, which we aim

to avoid.

3 INCENTIVE-ALIGNED STRATEGIC
CLASSIFICATION

Next, we introduce and study a particular sub-class of problems

in GSC we refer to as incentive-aligned strategic classification. Our
results here will serve as a basis for our more general results for



GSC in Sec. 4, but are of independent interest (full proofs can be

found the Appendix).

Intuitively, incentive alignment occurs when the utility of users

is similar enough to that of the system so that strategic behav-

ior improves both. This can happen when users also seek correct

predictions, and the system provides such predictions as a service

(recommendation systems are one such example). When incentives

align, strategic behavior can improve outcomes for both the system

and its users.

We begin with formal definition of incentive alignment (IA).

Definition 1 (Incentive-alignment). Let 𝐷 be a joint distribution

over X ×Z ×Y, 𝐻 be a function class, and Δ a response mapping.

We say the learning task is incentive-aligned if ∃ℎ ∈ 𝐻 such that

∀ℎ′ ∈ 𝐻 , it holds that:

E𝐷 [1{ℎ(Δℎ (𝑥 ; 𝑧)) ≠ 𝑦}] ≤ E𝐷 [1{ℎ′(𝑥) ≠ 𝑦}] (10)

If such an ℎ exists, we say it aligns incentives.

Incentive alignment holds when there is some classifier whose

performance on strategically modified inputs is better than the

optimal classifier on unmodified inputs. We next describe two novel

settings in which users seek to be classified accurately, and so

incentive alignment is likely.

Noisy labels (NL). In this simple model, side information 𝑧

consists of a noisy estimate of a user’s true label, denoted 𝑦 ∈ {±1}.
Users act as if 𝑦 is their true label:

ΔNL
ℎ
(𝑥,𝑦) = argmax

𝑥 ′∈X
1{ℎ(𝑥 ′) = 𝑦} − 1

2

𝑐 (𝑥, 𝑥 ′) (11)

although in practice, it may be that 𝑦 ≠ 𝑦. When 𝑦 and 𝑦 are suffi-

ciently correlated, and if the system is able to ‘correct’ erroneous

user updates, then incentive alignment should hold. Note ΔNL
is a

special case of ΔGP
(Eq. (6)).

Personalized previous experiences (PPE). Here we mimic

a recommendation setting in which the system provides users 𝑥

with personalized (binary) relevance predictions 𝑦 ∈ {±1} for var-
ious items 𝑎 ∈ Rℓ . Instances are tuples (𝑥, 𝑧, 𝑎,𝑦) (𝐷 is extended

accordingly), and the system aims to predict relevance for user-

item pairs, 𝑦 = ℎ(𝑥 ′, 𝑎). For modifying features, users have as side

information previously experienced items, in the form of a sample

set 𝑧 = {(𝑎 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1
, where typically 𝑛 ≪𝑚. Here, ΔPPE

ℎ
(𝑥, 𝑧) is:

argmax

𝑥 ′∈X

1

𝑛

∑︁𝑛

𝑗=1

1{ℎ(𝑥 ′, 𝑎 𝑗 ) = 𝑦 𝑗 } −
1

2

𝑐 (𝑥, 𝑥 ′) (12)

Hence, users modify their features to maximize the accuracy of the

proposed ℎ on their past preferences.

In the settings above, system and users cooperate to achieve bet-

ter accuracy, and are complementary in their strength: the system

has large data but on the collective of past users, whereas new users

have small or noisy data, but personalized for their own preferences.

Learning is successful if the system can harness user efforts to im-

prove accuracy for all. In the following sections we focus on the

noisy labels model to establish our main results for IASC, which

we will extend in Sec. 4 to GSC. We will return to PPE in Sec. 5.

Figure 1: Regions of incentive alignment in NL, for synthetic
data (see right plot) and varying noise 𝜖. For a wide range of 𝜖,
learning is incentive-aligned (IA), meaning that the strategic
behavior of users is beneficial for both the system and its
users. The leftmost region is also IA, but 𝑦 is better than 𝑦.

3.1 Learning with noisy labels as side
information

In this sectionwe study an instance of the noisy-label side-information

setting in which noise is uniform and independent: 𝑦 = 𝑦 w.p. 1 − 𝜖

and 𝑦 = 1 − 𝑦 w.p. 𝜖 for all 𝑦. The noise parameter 𝜖 controls how

informative𝑦 are of𝑦; this has direct connections to incentive align-

ment. In Appendix A.1, we characterize the conditions under which

incentive alignment holds. Figure 1 shows on synthetic data that

incentives align for most values of 𝜖 (Def. 1), and hence strategic

behavior is preferable (details in Appendix B.1).

For learning, we focus on linear classifiers ℎ𝑤 (𝑥) = sign(𝑓𝑤 (𝑥))
where 𝑓𝑤 (𝑥) = 𝑤⊤𝑥 + 𝑏, and on 2-norm costs 𝑐 (𝑥, 𝑥 ′) = ∥𝑥 − 𝑥 ′∥

2
.

We use Δℎ to mean Δℎ𝑤
, and omit the intercept term 𝑏 throughout

for clarity. A natural approach to minimizing the expected strategic

loss (Eq. (9) with ΔNL
) is to instead aim at minimizing the empirical

risk. For non-strategic data, this approach is well-motivated in
principle; but in practice, since the 0/1 loss is intractable, a proxy

loss is needed, and to control for overfitting, regularization is added.

Using the hinge loss as a proxy and 𝐿2 regularization (as in SVM),

the objective is:

argmin

𝑤

1

𝑚

∑︁𝑚

𝑖=1

max{0, 1 − 𝑦𝑖𝑤
⊤𝑥𝑖 } + _ ∥𝑤 ∥2

2
(13)

For strategic settings, adapting Eq. (13) seems appealing and

straightforward: simply replace 𝑥 with ΔNL
ℎ
(𝑥, 𝑧). However, as we

show in the next section, this naïve approach is not only diffi-

cult to optimize, but may also fail to generalize well. Hence, while

minimizing the strategic empirical 0/1 loss is a sound approach,

conventional proxy approaches may not be.

The problem with margins. In non-strategic settings, and when

data is linearly separable, multiple classifiers can exist having zero

empirical error. But some solutions are better than others, and

so to guarantee good generalization, additional criteria (beyond

loss minimization) must be considered. One popular approach is

max-margin learning, in which the chosen classifier has the largest



margin: 𝛾𝑤 ≜ min𝑖∈[𝑚] 𝑦𝑖�̄�
⊤𝑥𝑖 for �̄� = 𝑤/∥𝑤 ∥. The main mo-

tivation is that large-margin classifiers are known to generalize

well, and the canonical max-margin approach is Hard-SVM. A naïve

adaptation of Hard-SVM to our strategic setting would be to replace

each 𝑥𝑖 with Δℎ (𝑥𝑖 , 𝑦𝑖 ), this giving:
argmax

𝑤 : ∥𝑤 ∥=1

min

𝑖∈[𝑚]

��𝑤⊤Δℎ (𝑥𝑖 , 𝑦𝑖 )
��

s.t. 𝑦𝑖𝑤
⊤Δℎ (𝑥𝑖 , 𝑦𝑖 ) > 0 ∀𝑖 ∈ [𝑚] (14)

Note that since points now ‘move’, data that was originally sep-

arable may no longer satisfy the constraints in Eq. (14). This calls

for a notion of strategic linear separability.

Definition 2. A sample set is strategically linearly separable if
there exists a𝑤 that separates the data after it has been modified,

i.e., 𝑦𝑖𝑤
⊤Δℎ (𝑥𝑖 ; 𝑧𝑖 ) > 0 ∀𝑖 ∈ [𝑚].

A key observation is that for the noisy-label side information

setting when data is strategically linearly separable, but not lin-

early separable, the maximal margin is always zero. In these cases,

multiple optimal solutions are likely to exist, to which the learning

algorithm is oblivious. Thus, the naïve approach resurfaces the

very same issues that the max-margin approach aims to avoid. An
illustration of this phenomenon can be found in Appendix 5.

Strategic margins and hinge. Our next result shows that to re-

cover the generalization properties of the max-margin approach,

we must rethink the notion of ‘margin’. We begin by reinterpreting

the strategic constraints in Eq. (14).

Lemma 1. For any linear classifier𝑤 , it holds that:

𝑦𝑖𝑤
⊤ΔNL

ℎ
(𝑥𝑖 , 𝑦𝑖 ) > 0 ⇔ 𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑦𝑖 ∥𝑤 ∥) > 0

Proof in Appendix E.5. The constraints can therefore be rewritten

in a simple form that does not rely on Δ. This suggests that margins

should be measured accordingly.

Definition 3. The strategic margin (or s-margin) of𝑤 is:

𝛾NL𝑤 ≜ min

𝑖∈[𝑚]
𝑦𝑖 (�̄�⊤𝑥𝑖 + 2𝑦𝑖 ), �̄� = 𝑤/∥𝑤 ∥ (15)

Note that Eq. (15) differs from the standard margin in the correc-

tive term +2𝑦, which capture the maximal cost and the direction

of change. This new margin has an intuitive interpretation: the

distance of each 𝑥𝑖 is measured w.r.t. an ‘individualized‘ classifier,

𝑤 (𝑖)
, which is simply𝑤 shifted parallelly by 2 units in the direction

of 𝑦𝑖 (see Fig. 7 in Appendix C). This new margin is not equivalent
to the naïve objective in Eq. (14).

For strategically-separable data, our approach will be to optimize

the s-margin using the appropriate constraints. For non-separable

problems, this can easily be extended to the ‘soft’ case using slack

variables, akin to standard soft SVM (see Appendix Sec. D.2). From

this, we can derive an appropriate proxy loss—the strategic hinge,
or s-hinge.

Definition 4. For noisy labels, the strategic hinge is:

𝐿NL
s−hinge

(𝑥,𝑦,𝑦;𝑤) ≜ max{0, 1 − 𝑦 (𝑤⊤𝑥 + 2𝑦 ∥𝑤 ∥)}

Hence, the s-hinge is simply the standard hinge, but with an

additional additive term of −2𝑦𝑦 ∥𝑤 ∥. To see where this comes

max 0,1 − 𝑦𝑤!𝑥
vanilla hinge

max 0,1 − 𝑦𝑤!𝑥 − 2 𝑤
s-hinge

max 0,1 − 𝑦𝑤!Δ" 𝑥
naïve hinge

−2 𝑤 1

Figure 2: An illustration of the s-hinge for NL with 𝑦 = 𝑦.
Strategic movement causes the naïve hinge to be flat in
[−2 ∥𝑤 ∥ , 0], leading to undesired indifference. The s-hinge
corrects for this.

from, note that the s-hinge can be rewritten as:

max{0, 1 − 𝑦𝑤⊤ΔNL
ℎ
(𝑥,𝑦) − (2 − 𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)))𝑦𝑦 ∥𝑤 ∥}

(proof in Appendix E.8). This is exactly the naïve hinge, max{0, 1 −
𝑦𝑤⊤ΔNL

ℎ
(𝑥,𝑦)}, but with a term that accounts for both the actual

and maximal cost. Figure 2 illustrates the crux of the naïve hinge,
and the s-hinge correction.

Finally, adding regularization gives our learning objective:

argmin

𝑤∈R𝑑

1

𝑚

𝑚∑︁
𝑖=1

𝐿NL
s−hinge

(𝑥𝑖 , 𝑦𝑖 , 𝑦𝑖 ;𝑤) + _ ∥𝑤 ∥2

2
(16)

This approach has two key benefits. First, from a computational

perspective, since it is differentiable and does not explicitly rely on

Δ (which can be discontinuous), learning can be done end-to-end

using standard gradient methods. Second, from a statistical per-

spective, our approach enjoys favorable generalization guarantees.

We show this in Sec. 4.2.

4 RESULTS FOR GSC
In this section, we generalize our approach and results to GSC,

this using the principles underlying our results for NL in Sec. 3.

Our focus remains on linear classifiers, but we will now allow for

general side information 𝑧, utilities 𝑢, and costs 𝑐 . In particular, our

results here cover the personalized previous experiences model

(PPE) proposed in Sec. 3.

4.1 Generalized s-hinge
Returning to the standard hinge, note it can be rewritten asmax{0, 1−
𝑦 sign(𝑤⊤𝑥) |𝑤⊤𝑥 |}, which decouples into a ‘correctness’ term,

𝑦 sign(𝑤⊤𝑥) = 1{𝑦 = ℎ(𝑥)}, and an un-normalized ‘distance’ term,

𝑑 (𝑥 ;𝑤) ≜ |𝑤⊤𝑥 | = |�̄�⊤𝑥 | ∥𝑤 ∥. To adapt the hinge to a strate-

gic setting, one alternative is to simply consider correctness and

distance of modified inputs: 1{𝑦 = ℎ(Δℎ (𝑥, 𝑧))} and |𝑤⊤Δℎ (𝑥, 𝑧) |,
respectively. This, however, recovers the ‘naïve’ hinge, max{0, 1 −
𝑦𝑤⊤Δℎ (𝑥, 𝑧)}, which is sub-optimal (Sec. 3.1).

As an alternative, we can rethink the definition of margin, and

reinterpret of 𝑑 (𝑥 ;𝑤) as the distance from 𝑥 to the closest point 𝑥 ′

that is classified differently, i.e., ℎ(𝑥) ≠ ℎ(𝑥 ′). In strategic setting,



Figure 3: Results for the generalization experiment. The three leftmost plots are on ‘easy’ environments that reflect differences
in generalization behavior. The rightmost plot is on a ‘hard’ environment in which the naïve approach also suffers from
optimization issues.

the classifier operates on modified inputs, prompting a new notion

of strategic distance:

𝑑Δ (𝑥, 𝑧;𝑤) =min

𝑥 ′

𝑥 − 𝑥 ′


(17)

s.t. ℎ(Δℎ (𝑥, 𝑧)) ≠ ℎ(Δℎ (𝑥 ′, 𝑧))
(note that, unlike the naïve approach, distance remains to be mea-

sured on un-modified inputs). The generalized strategic margin can

be defined using strategic distances, this giving rise to the general-
ized strategic hinge, or gs-hinge:

Definition 5. The generalized strategic hinge is defined as:

𝐿GSC
s−hinge

(𝑥, 𝑧,𝑦;𝑤) ≜ (18)

max{0, 1 − 𝑦 sign(𝑤⊤Δℎ (𝑥, 𝑧))𝑑Δ (𝑥, 𝑧;𝑤) ∥𝑤 ∥}

(for an illustration, see Fig. 8 in Appendix C). For the special case

of GP and for norm costs, the strategic distance can be simplified

to 𝑑GP
𝛥
(𝑥, 𝑧;𝑤) = |�̄�⊤𝑥 + 2𝑧 | since points move at most distance 2

in the direction of 𝑧 (proof in Appendix E.9). For this case, Eq. (18)

becomes:

𝐿GP
s−hinge

(𝑥, 𝑧,𝑦;𝑤) ≜ max{0, 1 − 𝑦𝑤⊤𝑥 − 2𝑧𝑦 ∥𝑤 ∥}

For NL, 𝑧 = 𝑦, which recovers 𝐿NL
s−hinge

, and for SC and adver-

sarial, 𝑧 = 1 and 𝑧 = −𝑦, respectively, For all of the above, our

generalized hinge accounts for strategic movement but does not ex-

plicitly include Δℎ (𝑥, 𝑧) as a term, which is useful for optimization

purposes. Finally, note that for the non-strategic setting, plugging

Δℎ (𝑥, 𝑧) = 𝑥 into Eqs. (17) and (18) recovers the standard margin

and hinge.

4.2 Generalization bounds
Our next result provides a data-dependent bound on the expected

0/1 error when minimizing the gs-hinge objective.

Theorem 1. Let 𝐷 be a joint distribution over triples (𝑥, 𝑧,𝑦), and
let 𝑟 = max𝑥 ∈X ∥𝑥 ∥. Denote by �̂� the minimizer of the empirical
generalized strategic hinge loss with 𝐿2 regularization. Then for every
𝛿 ∈ [0, 1], if the training set S includes𝑚 samples, then w.p. ≥ 1 − 𝛿

it holds that:

L
0/1

≤ ˆLGSC
s−hinge

+ 8𝑟 ∥�̂� ∥
√
𝑚

+ (1 + 2𝜌GSC ∥𝑤 ∥)

√︄
2 ln( 4∥�̂� ∥

𝛿
)

𝑚

where L
0/1

is the expected 0/1 loss, ˆLGSC
s−hinge

is the empirical s-hinge

loss on S, and 𝜌GSC = 2𝑟 .

The proof (Appendix E.10) relies on Rademacher bounds, and

carefully adapts the approach in [12] to account for strategic up-

dates. The bound in Thm. 1 closely matches the original bound for

non-strategic settings, with the only differences being that in the

original bound the constant in the middle summand is 4 (vs. 8), and

𝜌 = 𝑟 . We view this as suggesting that, in some sense, the gs-hinge

is an appropriate strategic generalization of the standard hinge.

For notable subclasses of GSC, the bound in Thm. 1 can be

tightened: the middle constant is reduced to the original 4, and

each case has its own 𝜌 term (Appendix E.11). For GP, we get

𝜌GP = (𝑟 + 2) ≤ 𝜌GSC, and also 𝜌SC = 𝜌adv = 𝜌GP in the worst case.

For NL, we get 𝜌NL𝜖 = 𝑟 − 2 + 4𝜖; hence, for 𝜖 = 1/2, the standard

bound is recovered, and for smaller 𝜖 ≤ 1/2, sample complexity

in NL is better since 𝜌NL𝜖 < 𝜌 ;3,4 and when incentives align, the

empirical loss is also likely to be lower. Together, and for 𝜖 ≥ 1/2,

we get:

𝜌NL𝜖 ≤ 𝜌 ≤ 𝜌NL
𝜖

≤ 𝜌SC = 𝜌adv = 𝜌GP ≤ 𝜌GSC

5 EXPERIMENTS
We now turn to our experimental evaluation. Our first experiment

empirically studies generalization behavior for the gs-hinge on syn-

thetic data and in various strategic settings. Our second experiment

returns to the personalized previous experiences (PPE) setting from

Sec. 3 and uses real data.

5.1 Generalization
To complement our theoretical results, we study the generaliza-

tion behavior of learning with the gs-hinge, as it compares to the

naïve hinge and standard (non-strategic) hinge, across multiple

settings: NL (𝜖 = 0), SC, and adversarial. We also add as a baseline

the standard hinge applied to non-strategic data. The challenge

in empirically analyzing generalization is that it is difficult to de-

couple statistical and optimizational issues; this is particularly true

in our case, the gs-hinge (for the settings we consider) has both

3
Since points move within X, and since movement is for distance of at most 2,

we make the simplifying assumption that 𝑟 ≥ 2.

4
For larger 𝜖 ∈ (1/2, 1], where most labels are flipped, sample complexity is

worse. Note 𝜖 = 1 matches an adversarial setting.



a simpler functional form and better theoretical guarantees than

the naïve hinge. We therefore experiment in two types of synthetic

environments: ‘easy’ and ‘hard’, which vary in difficulty to optimize.

Further details in Appendix B.2.

Results. Figure 3 presents our results. Each plot shows perfor-

mance for an increasing number of samples used for training. Re-

sults are averaged over 30 random splits, with bars showing (asym-

metric) standard errors. For the easy environment, the figure shows

that across all settings, both our gs-hinge and the naïve hinge

achieve roughly optimal accuracy when training on 100% of the

data; however the gs-hinge strictly dominates the naïve hinge, and

converges significantly faster. This result suggests that the gs-hinge

generalizes better. For the hard environment, results show that the

naïve approach does not reach the optimum; train accuracy shows

that this is not due to overfitting. This shows that the simplicity of

the gs-hinge is beneficial.

5.2 Personalized Previous Experiences
In PPE, the goal is to predict for a user-item pair (𝑥, 𝑎) whether
user 𝑥 will like item 𝑎. Users can modify their inputs based on

a (private) sample set of previous experiences, 𝑧 = {(𝑎 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1
.

We use 𝑐 (𝑥, 𝑥 ′) = ∥𝑥 − 𝑥 ′∥2

2
and bi-linear classifiers ℎ𝑊 (𝑥, 𝑎) =

sign(𝑎⊤𝑊𝑥), where𝑤𝑥 =𝑊𝑥 is a ‘personalized’ classifier.

The PPE setting is unique in that, in essence, users also aim to

solve a classification problem. To see this, note that for a given𝑊 ,

user responses ΔPPE
ℎ

(𝑥, 𝑧) (Eq. 12) becomes:

argmin

𝑥 ′∈R𝑑

1

𝑛

∑︁𝑛

𝑗=1

1{sign(𝑎⊤𝑗 𝑊𝑥 ′) ≠ 𝑦 𝑗 } −
1

2

𝑥 − 𝑥 ′
2

2

This is a linear classification problem: 𝑥 ′ act as learned classifier

weights, 𝑎
(𝑊 )
𝑗

= 𝑎⊤
𝑗
𝑊 ∈ R𝑑 serve as features, 𝑦 𝑗 are target labels,

and 𝑥 ′ is regularized towards 𝑥 . In this sense, PPE becomes a prob-

lem of multiple agents solving interwoven classification problems,

and with similar goals.

Data. We use the Coats Shopping dataset from Schnabel et al.

[25]. The data includes 290 users and 300 items (coats), with features

for both (e.g., fashion preferences for users, type and color for coats).

Labels include relevance scores (here, binarized) given by each user

to 40 coats.

Optimization. In principle, both system and users aim to solve

difficult 0/1-loss objectives; as these are in general intractable, we

model both entities as solving proxy objectives instead. For the

system we use the gs-hinge in (Eq. (18)). In PPE, the general hinge

is unlikely to have a closed-form solution. This makes learning espe-

cially challenging, as it requires solving a triple-nested optimization

problem (the outer argmax on 𝑤 ; the interim min in 𝑑Δ (𝑥, 𝑧;𝑤);
and the inner argmax in Δℎ). Nonetheless, we show that if the sys-

tem uses a squared-loss proxy, the objective becomes tractable (for

a full derivation see Appendix Sec. B.3).

Results. We consider three user types that differ by the proxy

loss they employ to solve ΔPPE
: square, hinge, and logistic. For each

user type, we compare the performance of our gs-hinge approach

to the standard hinge, and vary the number of previous experiences,

𝑛 = |𝑧 |. Figure 4 shows that, for all user types, and with as little as

Figure 4: Results for the PPE setting on the coats dataset.
Learning with the strategic gs-hinge is significantly better
than the standard hinge, starting at 𝑛 = 4 and improving as 𝑛
increases. Performance is optimal when user respond with a
proxy loss that match the system’s (squared). Results show
clear incentive alignment.

𝑛 = 4 examples, the gs-hinge provides a clear improvement over

the standard hinge. As 𝑛 grows, the gain in accuracy becomes more

pronounced. For the square-loss user, 𝑛 = 24 improves upon the

standard hinge by 6.4%. Improvement exhibits a clear diminishing-

returns trend, with most of the gain achieved by 𝑛 = 12 (5.7%).

For the hinge- and log-loss users, gains are less pronounced, but

still significant (3.8% at 𝑛 = 12, after which gains plateau). Note

that both parties are better off when users employ the squared loss.

Hence, it is in the best interest of the system to be transparent about

the loss it uses, and in the best interest of users follow suit. This is

true since incentives align; results show clear incentive-alignment

from 𝑛 = 4.

6 CONCLUSIONS
In a world where decisions about humans are increasingly being

made by (or with the support of) learned classifiers, it is only rea-

sonable to expect that humans will act to promote their own goals.

Our main takeaway is that these goals, and the means taken to pur-

sue them, are varied. Our generalized framework aims to capture

this idea, and to provide what we feel is a much needed flexibility

in user modeling within this domain. Methodologically, our paper

shows that coping with strategic behavior cannot always be done

by simply plugging a human response model into exiting methods

for non-strategic learning, and that any adaptation of conventional

approaches must be done with care.

While our framework is general, it is intentionally restricted to

the fundamental setting of supervised binary classification. Our

hopes are twofold: that within the limits of our framework, its

flexibility will aid in developing new and interesting strategic learn-

ing problems; and that beyond our framework’s boundaries, these

new problems can extend to broader settings including dynamics,

causality, and others.
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A ADDITIONAL RESULTS
A.1 Conditions for Incentive Alignment in NL
Our first results give a characterization of when a learning task is incentive aligned (see Definition 1) in a simple instance of the noisy label

model with independent uniform noise: 𝑦 = 𝑦 w.p. 1 − 𝜖 and 𝑦 = 1 − 𝑦 w.p. 𝜖 for all 𝑦.

As the noise parameter 𝜖 controls how informative 𝑦 are of 𝑦, we can ask: for what values of 𝜖 is strategic behavior beneficial to all? As

we show, the answer directly depends on whether incentives can be aligned.

We begin with a definition of flipping cost.

Definition 6. The flipping cost of a point 𝑥 with respect to a classifier ℎ and a cost function 𝑐 is:

𝜙ℎ (𝑥) ≜ min

𝑥 ′∈X
𝑐 (𝑥, 𝑥 ′) s.t. ℎ(𝑥 ′) ≠ ℎ(𝑥) (19)

Hence, 𝜙ℎ (𝑥) is the minimal cost required for modifying 𝑥 to ‘flip’ its label (we will return to label flipping in Sec. 4). Next, under the

common case of 𝑐 (𝑥, 𝑥) = 0, observe that:

Lemma 2.

• If ℎ(𝑥) = 𝑦, then ℎ(ΔNL
ℎ
(𝑥,𝑦)) = ℎ(𝑥)

• If ℎ(𝑥) ≠ 𝑦, then ℎ(ΔNL
ℎ
(𝑥,𝑦)) ≠ ℎ(𝑥) iff 𝜙ℎ (𝑥) ≤ 2

Proof in Appendix E.1. Given this, we will define:

Φℎ = {𝑥 : 𝜙ℎ (𝑥) ≤ 2} (20)

to include all points that can flip their label.

We can now state our first result.

Theorem 2. Let 𝐷 be a joint distribution over X × Y. Assume 𝑧 = 𝑦 = 𝑦 with probability 1 − 𝜖 , and −𝑦 otherwise, and assume features are
modified via ΔNL in Eq. (11). Then it is better for the system to encourage strategic behavior iff it learns a classifier ℎ for which it holds that:

P [𝑥 ∉ Φℎ ∧ ℎ(𝑥) ≠ 𝑦] + P [𝑥 ∈ Φℎ] · 𝜖 (21)

≤ min

ℎ′∈𝐻
𝑃 (ℎ′(𝑥) ≠ 𝑦)

The proof (Appendix E.2) relies on the coupling of a technical lemma with the careful accounting of different error types. The theorem

states that strategic behavior is helpful if the system can learn a classifier whose error on points that cannot flip their label (first summand)

plus an 𝜖-proportion of the points that can flip their label (second summand) is at most the optimal error with no strategic behavior (RHS).

This relates to incentive alignment:

Corollary 1. If such an ℎ exists, then the learning task is incentive-aligned.

Proof in Appendix E.3. Thm. 2 states when it is preferable for users to modify features via ΔNL
, rather than simply reporting their original

𝑥 . For completeness, we also state when predictions 𝑦 on modified inputs are better than 𝑦.

Lemma 3. In the same setting as above, it is better for users to use system-provided predictions 𝑦 than their own side-information 𝑦 iff the
system uses a classifier ℎ for which:

P [𝑥 ∉ Φℎ ∧ ℎ(𝑥) ≠ 𝑦]
P [𝑥 ∉ Φℎ]

≤ 𝜖 (22)

Proof in Appendix E.4. Lemma 3 states that predictions are helpful as long as errors on points who cannot flip their label (and so cannot in

principle “correct” system errors) is no more than the noise inherent in side information, 𝜖 . Proofs for both results rely on the coupling of a

technical lemma with the careful accounting of different error types. Figure 1 shows on synthetic data that for most values of 𝜖 , strategic

behavior is preferable (details in Appendix B.1).

A.2 NL as an Extreme Subclass
Recall that our discussion regarding the need for a specialize hinge loss for strategic settings began with the observation that, under a naïve

approach, multiple classifiers can obtain a margin of zero. Our next result shows that, in this sense, NL is a ‘extreme’ class within problems

in GP.

Lemma 4. Let 𝑆 = {(𝑥𝑖 , 𝑦𝑖 )}𝑚𝑖=1
. Then of all possible assignments to corresponding side information {𝑧𝑖 }𝑚𝑖=1

, the assignment 𝑧𝑖 = 𝑦𝑖 for all
𝑖 ∈ [𝑚] has the largest set of feasible solutions having zero margin (when such exist).5

5
Note that the set of feasible solutions may also be large; the ratio of zero-margin feasible solutions is data-dependent.



Proof. Let 𝑆 = {(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 )}𝑚𝑖=1
such that ∃𝑖 ∈ [𝑚], 𝑧𝑖 ≠ 𝑦𝑖 .

Denote by 𝐻 ′
𝑆
⊆ 𝐻 the set of all feasible solutions to the naive S-SVM optimization problem (Eq. 14) for the GP setting.

Denote by 𝐻 ′′
𝑆

⊆ 𝐻 ′
the set of all feasible solutions which induce zero margin (min𝑖∈[𝑚]

��𝑤⊤Δℎ (𝑥𝑖 , 𝑧𝑖 )
�� = 0).

Fix some 𝑖 ∈ [𝑚] for which 𝑧𝑖 ≠ 𝑦𝑖 . Consider the sample set 𝑆 ′ = 𝑆 \ {(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 )} ∪ {(𝑥𝑖 , 𝑦𝑖 , 𝑦𝑖 )}.
The 𝑖𝑡ℎ constraint for 𝑆 ′ is strictly weaker in comparison to 𝑆 (Lemma 1). The rest of the constraints remain unchanged.

Therefore ∀ℎ ∈ 𝐻 ′
𝑆
, ℎ ∈ 𝐻 ′

𝑆′ .

If ℎ ∈ 𝐻 ′′
𝑆
than min𝑖∈[𝑚]

��𝑤⊤Δℎ (𝑥𝑖 , 𝑧𝑖 )
�� = 0. This means that ∃ 𝑗 ∈ [𝑚],𝑤⊤Δℎ (𝑥 𝑗 , 𝑧 𝑗 ) = 0. Notice that 𝑗 ≠ 𝑖 . proof:

If ℎ ∈ 𝐻 ′′
𝑆′ than all constraints must hold. In particular 𝑦𝑖𝑤

⊤𝑥𝑖 < −2 (Lemma 1). If𝑤⊤Δℎ (𝑥𝑖 , 𝑧𝑖 ) = 0 than ℎ(Δℎ (𝑥𝑖 , 𝑧𝑖 )) ≠ ℎ(𝑥𝑖 ) which means

that 𝑥𝑖 modified it’s features to be classified as 𝑧𝑖 . Since 𝑧𝑖 ≠ 𝑦𝑖 , the 𝑖𝑡ℎ constraint does not hold - a contradiction. □
𝑤⊤Δℎ (𝑥 𝑗 , 𝑧 𝑗 ) = 0 ⇒ min𝑖∈[𝑚]

��𝑤⊤Δℎ (𝑥𝑖 , 𝑧𝑖 )
�� = 0 ⇒ ℎ ∈ 𝐻 ′′

𝑆′ . We get that ∀ℎ ∈ 𝐻 ′′
𝑆
, ℎ ∈ 𝐻 ′′

𝑆′ . Therefore 𝐻
′′
𝑆

⊆ 𝐻 ′′
𝑆′ .

Finally, applying such modifications to 𝑆 recursively we get that 𝐻 ′′
𝑆∗ is maximal for 𝑆∗ = {(𝑥𝑖 , 𝑦𝑖 , 𝑦𝑖 )}𝑚𝑖=1

. □

B ADDITIONAL EXPERIMENTAL DETAILS
Technical details. All experiment results were averaged over 30 randomized experiments (data generation/shuffles and train/test splits). In

our experiments we used the soft S-SVM for the naive and non-strategic models and used our proposed soft formulation for the strategically

aware models. These methods require a hyper-parameter (_) controlling the tradeoff between maximization and amount of constraint

violations. We tuned this hyper-parameter using cross-validation of 3 splits for _ ∈ {0.01, 0.1, 1}. For the optimization we used the standard

Adam optimizer [19] and a learning rate of 0.05. Each model trained for 200/200/50 epochs with a batch size of 5/16/24 for the generalization

experiment, the varying preference noise experiment and the PPE experiment respectively.

B.1 Experiment: Varying 𝜖 in NL (Sec. 3.1)
In this experiment our goal was to emphasize that there are simple and common environments which are incentive-aligned, for both low

and high values of 𝜖 . For this we generated a 2D dataset with clusters sampled from a normal distribution as depicted in Figure 1. Then

generated user preferences according to the Noisy labels setting for various 𝜖 values between 0 and 0.5. For the learning process we used

our proposed approach (Eq. 16) and compared its accuracy to the baseline accuracy (non-strategic model) and the pure user-information

accuracy (1 − 𝜖). Results can be viewed in Figure 1.

Data. For this experiment we considered 2D user features, and the distribution we used is composed out of 4 sub-distributions:

• (𝑥,𝑦) ∼ 𝑁

( (−5

0

)
,
(
0.5, 0
0, 20

) )
× {1 w.p. 0.95,−1 w.p. 0.05}

• (𝑥,𝑦) ∼ 𝑁

( (
0.3
0

)
,
(
0.5, 0
0, 20

) )
× {1 w.p. 0,−1 w.p. 1}

• (𝑥,𝑦) ∼ 𝑁

( (−0.3
0

)
,
(
0.5, 0
0, 20

) )
× {1 w.p. 1,−1 w.p. 0}

• (𝑥,𝑦) ∼ 𝑁

( (
5

0

)
,
(
0.5, 0
0, 20

) )
× {1 w.p. 0.05,−1 w.p. 0.95}

Recall 𝑦 ∼ {𝑦 w.p. 1 − 𝜖,−𝑦 w.p. 𝜖}.
From each distribution we sampled 50 samples for the train set and 1250 samples for the test set.

B.2 Experiment: Generalization (Sec. 5.1)
Optimization. Here we describe how we calculated ΔGP

(for the naive approach) in a differential way - allowing GD-based optimization

methods. Notice that for norm-based cost function, the GP response mapping argmax problem has a closed-form solution:

ΔGP
ℎ
(𝑥, 𝑧) =

{
𝑥 − 𝑧𝑤⊤𝑥𝑤

∥𝑤 ∥2
−2 ≤ 𝑧𝑤⊤𝑥

∥𝑤 ∥ ≤ 0

𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This closed form solution is unfortunately non-differentiable. For this reason we apply the following differentiable approximation to ΔGP
:

ΔGP
ℎ
(𝑥, 𝑧) = 𝑥 − 𝑧𝑤⊤𝑥𝑤

∥𝑤 ∥2
· 𝜎 (𝑐𝑜𝑛𝑑)

𝑐𝑜𝑛𝑑 = (−𝑧𝑤
⊤𝑥

∥𝑤 ∥ ) · ( 𝑧𝑤
⊤𝑥

∥𝑤 ∥ + 2)

Where 𝜎 is the sigmoid function.

Data. For these experiment we considered 2D user features, and the distributions we used are composed out of 2 sub-distributions:

NL: (i) (𝑥, 𝑧,𝑦) ∼ 𝑁

( (
10

0

)
,
(

5, 0
0, 0.2

) )
× {1 w.p. 1} × {1 w.p. 1}, (ii) (𝑥, 𝑧,𝑦) ∼ 𝑁

( (−10

0

)
,
(

5, 0
0, 0.2

) )
× {−1 w.p. 1} × {−1 w.p. 1}



ADV: (i) (𝑥, 𝑧,𝑦) ∼ 𝑁

( (
15.5

0

)
,
(
1.5, 0
0, 0.2

) )
× {−1 w.p. 1} × {1 w.p. 1}, (ii) (𝑥, 𝑧,𝑦) ∼ 𝑁

( (
4.5
0

)
,
(
1.5, 0
0, 0.2

) )
× {1 w.p. 1} × {−1 w.p. 1}

SC: (i) (𝑥, 𝑧,𝑦) ∼ 𝑁

( (
15

0

)
,
(
1.5, 0
0, 0.2

) )
× {1 w.p. 1} × {1 w.p. 1}, (ii) (𝑥, 𝑧,𝑦) ∼ 𝑁

( (
4

0

)
,
(
1.5, 0
0, 0.2

) )
× {1 w.p. 1} × {−1 w.p. 1}

SC (hard): (i) (𝑥, 𝑧,𝑦) ∼ 𝑁

( (
2.25

0

)
,
(
0.5, 0
0, 0.2

) )
× {1 w.p. 1} × {1 w.p. 1}, (ii) (𝑥, 𝑧,𝑦) ∼ 𝑁

( (−2.25

0

)
,
(
0.5, 0
0, 0.2

) )
× {1 w.p. 1} × {−1 w.p. 1}

From each distribution we sampled 25 samples for the train set and 1250 samples for the test set.

B.3 Experiment: Private Personalized Experiences (PPE) (Sec. 5.2)
Notice that in this setting, Δ does not have a closed-form solution and can only be approximated by both users and the system. This means

that even at test time, users will modify their features according to an approximation of ΔPPE
. To test the effectiveness and robustness of our

proposed algorithm, we fix the approximation of the system and vary the approximation of users. We trained the system with the MSE loss,

and tested 3 different user approximation losses: MSE loss, classic hinge loss and logistic loss. For each experiment, we varied the amount of

items users were exposed to in advanced (size of 𝑧). The more items in 𝑧, the more accurate their "model" will be, and therefore we expect

higher accuracy.

Δ̃PPE
ℎ

(𝑥, 𝑧) = argmin

𝑥 ′∈X

1

|𝑧 |
∑︁

(𝑎,𝑦) ∈𝑧
𝐿(𝑥 ′, 𝑎,𝑦;𝑊 ) + 1

2

𝑥 ′ − 𝑥
2

(23)

𝐿squared (𝑥, 𝑎,𝑦;𝑊 ) =
𝑎⊤𝑊𝑥 − 𝑦

2

𝐿hinge (𝑥, 𝑎,𝑦;𝑊 ) = max{0, 1 − 𝑦 · (𝑎⊤𝑊𝑥)}

𝐿logistic (𝑥, 𝑎,𝑦;𝑊 ) = 𝑒−𝑦 · (𝑎
⊤𝑊𝑥)

System training procedure. In PPE the recommender takes 2 arguments (Eq. 12) so we used an adaptation of the GSC s-hinge loss (Eq.18)

for this experiment.

𝐿PPE
s−hinge

(𝑥, 𝑧, 𝑎,𝑦;𝑊 ) ≜ (24)

max{0, 1 − 𝑦 sign(𝑎⊤𝑊Δℎ (𝑥, 𝑧))𝑑Δ (𝑥, 𝑧;𝑊 )
𝑎⊤𝑊 }

We begin by replacing the 𝑠𝑖𝑔𝑛 function with a a sigmoid function - an approximated smooth and differential version of 𝑠𝑖𝑔𝑛. We continue

by describing how we calculate Δ̃PPE
ℎ

(𝑥, 𝑧). Recall the system uses the𝑀𝑆𝐸 approximation and therefore Δ̃PPE
ℎ

(𝑥, 𝑧) can be rewritten as:

Δ̃PPE
ℎ

(𝑥, 𝑧) = argmin

𝑥 ′∈X

𝐴𝑊𝑥 ′ − 𝑌
2 + |𝑧 |

2

𝑥 ′ − 𝑥
2

(25)

𝐴 = (𝑎1, ..., 𝑎 |𝑧 |), 𝑌 = (𝑦1, ..., 𝑦 |𝑧 |)
This is a standard LS with regularization optimization problem and has a closed form solution:

Δ̃PPE
ℎ

(𝑥, 𝑧) = (2(𝐴𝑊 )⊤𝐴𝑊 + |𝑧 |I)−1 (2(𝐴𝑊 )⊤𝑌 + |𝑧 |𝑥) (26)

Next, we describe how we find 𝑑Δ (𝑥, 𝑧;𝑊 ). Notice that according to the MSE approximation, users’ strategic modifications are linear

transformations:

Δ̃PPE
ℎ

(𝑥, 𝑧) = 𝛼𝑊,𝑧𝑥 + 𝛽𝑊,𝑧 (27)

𝛼𝑊,𝑧 = |𝑧 | (2(𝐴𝑊 )⊤𝐴𝑊 + |𝑧 |I)−1

𝛽𝑊,𝑧 = (2(𝐴𝑊 )⊤𝐴𝑊 + |𝑧 |I)−1 (2(𝐴𝑊 )⊤𝑌 )
Being a linear transformation, it is also continuous. This implies that for any 𝑥 , the closest 𝑥 ′ to it for which ℎ(Δℎ (𝑥, 𝑧)) ≠ ℎ(Δℎ (𝑥 ′, 𝑧))

(Eq. 17), has to hold
|𝑎𝑊 Δℎ (𝑥 ′,𝑧) |

∥𝑎𝑊 ∥ = 0. Meaning it’s distance to the hyperplane after applying modifications is 0.

Now, we plug in Eq. 27 to this constraint and get:

𝑎𝑊𝛼𝑊,𝑧𝑥 − 𝑎𝑊 𝛽𝑊,𝑧 = 0 (28)

All that remains is to solve a convex optimization problem with linear equality constraints to find 𝑑Δ (𝑥, 𝑧;𝑊 ). To do this in a differential

way, we apply another approximation and solve the following optimization problem instead:

Δ̃PPE
ℎ

(𝑥, 𝑧) = argmin

𝑥 ′∈X

𝑎𝑊𝛼𝑊,𝑧𝑥 − 𝑎𝑊 𝛽𝑊,𝑧

2 + _
𝑥 ′ − 𝑥

2

(29)

For fairly small values of _ (In our experiments we used _ = 0.01). This optimization problem too has a closed form solution which

concludes the training procedure calculations.



C ADDITIONAL ILLUSTRATIONS

Figure 5: For some environments, strategic behavior in-
duces multiple solutions. An extreme case is the 𝑁𝐿 set-
ting with 𝜖 = 0. For this setting and the depicted distribu-
tion, any separating hyperplane which goes through the
center of the distribution (black dot), separates the strate-
gic data perfectly. The reason is that for these classifiers,
all users are willing to move to the hyperplane in case
they are not classified correctly, since the modification
cost is small enough. Also any loss-minimizing solution
has a margin of 0 since the distribution is not linearly
separable.

Figure 6: A depiction of the generalized strategic classifi-
cation world and various sub-classes within it.

Figure 7: An illustration of the GP/NL s-margin min-
imization objective for different samples. The hyper-
plane classifies points to its left as −1 (orange side) and
points to its right as +1 (blue side). The red and blue lines
represent 𝑑Δ - which in this setting is the distances of
users to the shifted hyperplane 2 units into their "un-
desired side". Red lines mean that the user is in a "red"
region (sign(𝑦𝑤⊤Δℎ (𝑥 ; 𝑧) < 0) and similarly for blue lines
(sign(𝑦𝑤⊤Δℎ (𝑥 ; 𝑧) > 0).

Figure 8: Let ℎ,Δ, 𝑧,𝑦 be a classifier, a response mapping,
user latent information and a label. Notice that these
elements induce regions in X for which ℎ(Δ(𝑥 ; 𝑧)) = 𝑦

(blue) and ℎ(Δ(𝑥 ; 𝑧)) ≠ 𝑦 (red). The objective of the gs-
hinge (Eq. 18) is tomaximize𝑑Δ (𝑥, 𝑧;ℎ) (Eq. 17) for 𝑥 values
in blue regions, andminimize it for 𝑥 values in red regions.
The reason id that sign(𝑦𝑤⊤Δℎ (𝑥1; 𝑧))𝑑Δℎ

(𝑥1, 𝑧;ℎ) > 0 and
sign(𝑦𝑤⊤Δℎ (𝑥2; 𝑧))𝑑Δℎ

(𝑥2, 𝑧;ℎ) < 0



D ADDITIONAL DEFINITIONS
D.1 NL Hard formulation equivalent optimization problem
According to Lemma 1, the Hard formulation from Eq. 14 for the NL setting can be rewritten as:

argmax

𝑤 : ∥𝑤 ∥=1

min

𝑖∈[𝑚]

��𝑦𝑖 (𝑤⊤𝑥 + 2𝑦𝑖 )
��

s.t. 𝑦𝑖 (𝑤⊤𝑥 + 2𝑦𝑖 ) > 0 ∀𝑖 ∈ [𝑚] (30)

This optimization problem can be reformulated as follows:

Algorithm 1 NL Hard formulation

Input: {(𝑥𝑖 , 𝑦𝑖 , 𝑦)}𝑚
Solve:
𝑤0 = argmin𝑤 ∥𝑤 ∥2

s.t. ∀𝑖 ∈ [𝑚], 𝑦𝑖 (𝑤⊤𝑥 + 2𝑦𝑖 ∥𝑤 ∥) ≥ 1

Output: �̂� =
𝑤0

∥𝑤0 ∥

Algorithm 1 and Eq. 30 output the same classifier𝑤 . Proof in Appendix E.6.

D.2 NL/GP Soft formulation
The hard constraints of the algorithm 1 optimization problem can be soften by introducing slack variables, similarly to the classic soft SVM

algorithm.

Algorithm 2 NL/GP Soft formulation

Input: {(𝑥𝑖 , 𝑦𝑖 , 𝑦)}𝑚
Parameter: _ > 0

Solve:
𝑤, b𝑖 = argmin𝑤,b𝑖

_ ∥𝑤 ∥2 + 1

𝑚

∑𝑚
𝑖=1

b𝑖

s.t. ∀𝑖 ∈ [𝑚], 𝑦𝑖 (𝑤⊤𝑥 + 2𝑦𝑖 ∥𝑤 ∥) ≥ 1 − b𝑖 and b𝑖 ≥ 0

Output:𝑤

We can rewrite the optimization problem of Algorithm 2 as a regularized loss-minimization problem:

𝑤, b𝑖 = argmin

𝑤,b𝑖

_ ∥𝑤 ∥2 + 1

𝑚
𝐿NL

s−hinge
(𝑥𝑖 , 𝑦𝑖 , 𝑦𝑖 ;𝑤)

𝐿NL
s−hinge

(𝑥,𝑦,𝑦;𝑤) ≜ max{0, 1 − 𝑦 (𝑤⊤𝑥 + 2𝑦 ∥𝑤 ∥)}

Proof in Appendix E.7.

E PROOFS
E.1 Lemma 2

Proof. Assume 𝑐 (𝑥, 𝑥) = 0.

• If ℎ(𝑥) = 𝑦: Assume, for sake of contradiction, that ℎ(ΔNL
ℎ
(𝑥,𝑦)) ≠ ℎ(𝑥).

So ℎ(ΔNL
ℎ
(𝑥,𝑦)) = −𝑦.

Recall ΔNL
ℎ
(𝑥,𝑦) = argmax𝑥 ′∈X 1{ℎ(𝑥 ′) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥 ′).

This means that 1{ℎ(𝑥) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥) ≤ 1{ℎ(ΔNL

ℎ
(𝑥,𝑦)) = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)).

But

1{ℎ(𝑥) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥) = 1.

1{ℎ(ΔNL
ℎ
(𝑥,𝑦)) = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)) = 1{−𝑦 = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)) = − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)) ≤ 0 < 1.

So 1{ℎ(𝑥) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥) > 1{ℎ(ΔNL

ℎ
(𝑥,𝑦)) = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)).

Therefore the assumption must be false.

• If ℎ(𝑥) ≠ 𝑦: ℎ(ΔNL
ℎ
(𝑥,𝑦)) ≠ ℎ(𝑥) iff 𝜙ℎ (𝑥) ≤ 2



– If ℎ(ΔNL
ℎ
(𝑥,𝑦)) ≠ ℎ(𝑥):

So ℎ(ΔNL
ℎ
(𝑥,𝑦)) = 𝑦.

Assume, for sake of contradiction, that 𝜙ℎ (𝑥) > 2.

Therefore 𝑐 (𝑥,ΔNL
ℎ
(𝑥,𝑦)) > 2.

Again, 1{ℎ(𝑥) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥) ≤ 1{ℎ(ΔNL

ℎ
(𝑥,𝑦)) = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)).

But

1{ℎ(𝑥) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥) = 0.

1{ℎ(ΔNL
ℎ
(𝑥,𝑦)) = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)) = 1{𝑦 = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)) < 1 − 1

2
· 2 = 0.

So 1{ℎ(𝑥) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥) > 1{ℎ(ΔNL

ℎ
(𝑥,𝑦)) = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)).

Therefore the assumption must be false.

– If 𝜙ℎ (𝑥) ≤ 2:

Let 𝑥 ′ be the minimizer of the flipping cost optimization problem (Definition 6).

Therefore ℎ(𝑥) ≠ ℎ(𝑥 ′) and 𝑐 (𝑥, 𝑥 ′) ≤ 2. This means that ℎ(𝑥 ′) = 𝑦.

Assume, for sake of contradiction, that ℎ(ΔNL
ℎ
(𝑥,𝑦)) = ℎ(𝑥).

So ℎ(ΔNL
ℎ
(𝑥,𝑦)) = −𝑦.

Again, 1{ℎ(𝑥 ′) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥 ′) ≤ 1{ℎ(ΔNL

ℎ
(𝑥,𝑦)) = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)).

But

1{ℎ(𝑥 ′) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥 ′) = 1{𝑦 = 𝑦} − 1

2
𝑐 (𝑥, 𝑥 ′) ≥ 1 − 1

2
· 2 = 0 > −1.

1{ℎ(ΔNL
ℎ
(𝑥,𝑦)) = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)) = 1{−𝑦 = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)) = −1 − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)) ≤ 0.

So 1{ℎ(𝑥) = 𝑦} − 1

2
𝑐 (𝑥, 𝑥) > 1{ℎ(ΔNL

ℎ
(𝑥,𝑦)) = 𝑦} − 1

2
𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)).

Therefore the assumption must be false.

□

E.2 Theorem 2
Proof. Let 𝐷 be a joint distribution over X ×Y. Assume 𝑧 = 𝑦 = 𝑦 with probability 1 − 𝜖 , and −𝑦 otherwise, and assume features are

modified via ΔNL
in Eq. (11).

It is better for the system to encourage strategic behavior iff it learns a classifier ℎ for which it holds that:

E𝐷 [1{ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ 𝑦}] ≤ min

ℎ′∈𝐻
E𝐷 [1{ℎ′(𝑥) ≠ 𝑦}]

• RHS:

E𝐷 [1{ℎ′(𝑥) ≠ 𝑦}] = P
[
ℎ′(𝑥) ≠ 𝑦

]
• LHS:

From Lemma 2 we derive 2 conclusions:

– 1. 𝑥 ∈ Φℎ ⇒ ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) = 𝑦.

– 2. 𝑥 ∉ Φℎ ⇒ ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) = ℎ(𝑥).

E𝐷 [1{ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ 𝑦}] = P

[
ℎ(ΔNL

ℎ
(𝑥 ;𝑦)) ≠ 𝑦

]
=

P
[
ℎ(ΔNL

ℎ
(𝑥 ;𝑦)) ≠ 𝑦 |𝑥 ∈ Φℎ

]
· P [𝑥 ∈ Φℎ] + P

[
ℎ(ΔNL

ℎ
(𝑥 ;𝑦)) ≠ 𝑦 |𝑥 ∉ Φℎ

]
· P [𝑥 ∉ Φℎ] =1,2

P [𝑦 ≠ 𝑦 |𝑥 ∈ Φℎ] · P [𝑥 ∈ Φℎ] + P [ℎ(𝑥) ≠ 𝑦 |𝑥 ∉ Φℎ] · P [𝑥 ∉ Φℎ] =�̃� and 𝑥 are i.i.d

𝜖 · P [𝑥 ∈ Φℎ] + P [ℎ(𝑥) ≠ 𝑦 ∧ 𝑥 ∉ Φℎ]

Finally, we get:

E𝐷 [1{ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ 𝑦}] ≤ min

ℎ′∈𝐻
E𝐷 [1{ℎ′(𝑥) ≠ 𝑦}]

⇔
𝜖 · P [𝑥 ∈ Φℎ] + P [ℎ(𝑥) ≠ 𝑦 ∧ 𝑥 ∉ Φℎ] ≤ min

ℎ′∈𝐻
P
[
ℎ′(𝑥) ≠ 𝑦

]
□



E.3 Corollary 1
Proof. if such an ℎ exists, then according to Theorem 2:

E𝐷 [1{ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ 𝑦}] ≤ min

ℎ′∈𝐻
E𝐷 [1{ℎ′(𝑥) ≠ 𝑦}]

Therefore ∃ℎ ∈ 𝐻 such that ∀ℎ′ ∈ 𝐻 it holds that:

E𝐷 [1{ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ 𝑦}] ≤ E𝐷 [1{ℎ′(𝑥) ≠ 𝑦}]

According to Definition 1, the environment is incentive-aligned. □

E.4 Lemma 3
Proof. Let 𝐷 be a joint distribution over X ×Y. Assume 𝑧 = 𝑦 = 𝑦 with probability 1 − 𝜖 , and −𝑦 otherwise, and assume features are

modified via ΔNL
in Eq. (11).

it is better for users to use system-provided predictions 𝑦 than their own side-information 𝑦 iff the system learns a classifier ℎ for which it

holds that:

E𝐷 [1{ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ 𝑦}] ≤ E𝐷 [1{𝑦 ≠ 𝑦}]

• RHS:

E𝐷 [1{𝑦 ≠ 𝑦}] = P [𝑦 ≠ 𝑦] = 𝜖

• LHS:

E𝐷 [1{ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ 𝑦}] = P

[
ℎ(ΔNL

ℎ
(𝑥 ;𝑦)) ≠ 𝑦

]
=
Theorem 2 proof

𝜖 · P [𝑥 ∈ Φℎ] + P [ℎ(𝑥) ≠ 𝑦 ∧ 𝑥 ∉ Φℎ]

Finally, we get:

E𝐷 [1{ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ 𝑦}] ≤ min

ℎ′∈𝐻
E𝐷 [1{ℎ′(𝑥) ≠ 𝑦}]

⇔
𝜖 · P [𝑥 ∈ Φℎ] + P [𝑦 ≠ 𝑦 ∧ 𝑥 ∉ Φℎ] ≤ 𝜖

⇔
P [𝑦 ≠ 𝑦 ∧ 𝑥 ∉ Φℎ] ≤ 𝜖 (1 − P [𝑥 ∈ Φℎ])
⇔
P [𝑦 ≠ 𝑦 ∧ 𝑥 ∉ Φℎ] ≤ 𝜖 · P [𝑥 ∉ Φℎ]
⇔
P [𝑦 ≠ 𝑦 ∧ 𝑥 ∉ Φℎ]
P [𝑥 ∉ Φℎ]

≤ 𝜖

□

E.5 Lemma 1
Proof. Let ℎ = (𝑤) be a linear classifier and (𝑥,𝑦,𝑦) ∈ X × 𝑌 × 𝑌 . We show that:

𝑦𝑤⊤ΔNL
ℎ
(𝑥,𝑦) > 0 ⇔ 𝑦 (𝑤⊤𝑥 + 2𝑦 ∥𝑤 ∥) > 0

Or equivalently:

ℎ(ΔNL
ℎ
(𝑥,𝑦)) = 𝑦 ⇔ 𝑦𝑤⊤𝑥

∥𝑤 ∥ > −2𝑦𝑦

Observation:

In 𝑁𝐿, the cost function is the euclidean distance between two vectors (𝑐 (𝑥, 𝑥 ′) = ∥𝑥 − 𝑥 ′∥).
Therefore the flipping cost (Definition 6) of a user 𝑥 is the euclidean distance to the separating hyperplane (𝜙ℎ (𝑥) =

|𝑤⊤𝑥 |
∥𝑤 ∥ ).

• If 𝑦 = 𝑦:



– If ℎ(𝑥) = 𝑦:

Than ℎ(ΔNL
ℎ
(𝑥,𝑦)) = 𝑦 = 𝑦 (Lemma 2).

And 𝑦𝑤⊤𝑥 = 𝑦𝑤⊤𝑥 > 0 ⇔ 𝑦𝑤⊤𝑥
∥𝑤 ∥ > 0 > −2 = −2𝑦𝑦

– If ℎ(𝑥) ≠ 𝑦:

Than ℎ(ΔNL
ℎ
(𝑥,𝑦)) = 𝑦 = 𝑦 ⇔ 𝜙ℎ (𝑥) ≤ 2 (Lemma 2).

𝜙ℎ (𝑥) ≤ 2 ⇔ |𝑤⊤𝑥 |
∥𝑤 ∥ ≤ 2 (Observation).

|𝑤⊤𝑥 |
∥𝑤 ∥ ≤ 2 ⇔ �̃�𝑤⊤𝑥

∥𝑤 ∥ ≥ −2 (𝑦𝑤⊤𝑥 < 0).
�̃�𝑤⊤𝑥
∥𝑤 ∥ ≥ −2 ⇔ 𝑦𝑤⊤𝑥

∥𝑤 ∥ ≥ −2𝑦𝑦

• If 𝑦 ≠ 𝑦

– If ℎ(𝑥) = 𝑦:

Than ℎ(ΔNL
ℎ
(𝑥,𝑦)) = 𝑦 = −𝑦 (Lemma 2).

And 𝑦𝑤⊤𝑥 = −𝑦𝑤⊤𝑥 < 0 ⇔ 𝑦𝑤⊤𝑥
∥𝑤 ∥ < 0 < 2 = −2𝑦𝑦

– If ℎ(𝑥) ≠ 𝑦:

Than ℎ(ΔNL
ℎ
(𝑥,𝑦)) = 𝑦 = −𝑦 ⇔ 𝜙ℎ (𝑥) ≤ 2 (Lemma 2).

𝜙ℎ (𝑥) ≤ 2 ⇔ |𝑤⊤𝑥 |
∥𝑤 ∥ ≤ 2 (Observation).

|𝑤⊤𝑥 |
∥𝑤 ∥ ≤ 2 ⇔ �̃�𝑤⊤𝑥

∥𝑤 ∥ ≥ −2 (𝑦𝑤⊤𝑥 < 0).
�̃�𝑤⊤𝑥
∥𝑤 ∥ ≥ −2 ⇔ 𝑦𝑤⊤𝑥

∥𝑤 ∥ < −2𝑦𝑦

□

E.6 Hard formulation equivalent form (Appendix D.1)
Proof. We begin by rewriting Eq. 30:

argmax

𝑤 : ∥𝑤 ∥=1

min

𝑖∈[𝑚]
𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑦𝑖 ) (31)

The two are equivalent whenever there is a solution to the preceding problem, i.e. the data is strategically separable (Definition 2).

Let𝑤∗
be a solution of Eq. 31. Define 𝛾∗ = min𝑖∈[𝑚] 𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑦𝑖 ). Therefore ∀𝑖 ∈ [𝑚] we have:

𝑦𝑖 ((𝑤∗)⊤𝑥𝑖 + 2𝑦𝑖 ) ≥ 𝛾∗

Or equivalently (since 𝛾∗ > 0 and ∥𝑤∗∥ = 1):

𝑦𝑖 ((
𝑤∗

𝛾∗
)⊤𝑥𝑖 + 2𝑦𝑖

𝑤∗

𝛾∗

) ≥ 1

Hence,
𝑤∗
𝛾∗ satisfies the conditions of the optimization in Algorithm 1. Therefore, ∥𝑤0∥ ≥

𝑤∗
𝛾∗

 = 1

𝛾∗ .

It follows that ∀𝑖 ∈ [𝑚]:

𝑦𝑖 (�̂�⊤𝑥𝑖 + 2𝑦𝑖 ) =
1

∥𝑤0∥
𝑦𝑖 (𝑤⊤

0
𝑥𝑖 + 2𝑦𝑖 ∥𝑤0∥) ≥

1

∥𝑤0∥
≥ 𝛾∗

Since ∥�̂� ∥ = 1 we obtain that �̂� is an optimal solution of Eq. 31. □

E.7 Soft formulation equivalent form (Appendix D.2)
Proof. Fix some 𝑤, 𝑖 and consider the minimization over b𝑖 in Algorithm 2. Since b𝑖 must be nonnegative, the best assignment to 𝑥𝑖

would be 0 if 𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑦𝑖 ∥𝑤 ∥) ≥ 1 and would be 1 − 𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑦𝑖 ∥𝑤 ∥) otherwise. Therefore

b𝑖 =

{
0, 𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑦𝑖 ∥𝑤 ∥) ≥ 1

1 − 𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑦𝑖 ∥𝑤 ∥), 𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑦𝑖 ∥𝑤 ∥) < 1

= max{0, 1 − 𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑦𝑖 ∥𝑤 ∥)}

□

E.8 Definition 4 equivalent form
Proof. We will show that for the 𝑁𝐿 setting:

𝐿NL
s−hinge

(𝑥,𝑦,𝑦;𝑤) ≜ max{0, 1 − 𝑦 (𝑤⊤𝑥 + 2𝑦 ∥𝑤 ∥)} = max{0, 1 − 𝑦𝑤⊤ΔNL
ℎ
(𝑥,𝑦) − (2 − 𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)))𝑦𝑦 ∥𝑤 ∥}



Assumption:

Users do not change their features unless the change strictly increase their utility, i.e. ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) = ℎ(𝑥) ⇒ ΔNL

ℎ
(𝑥 ;𝑦) = 𝑥

Observation:

Assuming 𝑐 (𝑥, 𝑥 ′) = ∥𝑥 − 𝑥 ′∥ as in NL, the closest point 𝑥 ′ to 𝑥 for which ℎ(𝑥 ′) ≠ ℎ(𝑥) is a point on the hyperplane 𝑤 closest to 𝑥 . The

modification cost is the euclidean distance between 𝑥 and the hyperplane (𝑐 (𝑥, 𝑥 ′) = |𝑤⊤𝑥 |
∥𝑤 ∥ )

Let ℎ = (𝑤) be a linear classifier and (𝑥,𝑦,𝑦) ∈ X × 𝑌 × 𝑌 .

• If
�̃�𝑤⊤𝑥
∥𝑤 ∥ > 0:

𝑦𝑤⊤𝑥 > 0 ⇒
ℎ(𝑥) = 𝑦 ⇒ (Lemma 2).

ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) = ℎ(𝑥) = 𝑦 ⇒ (assumption).

ΔNL
ℎ
(𝑥 ;𝑦) = 𝑥 ⇒

𝑦𝑤⊤ΔNL
ℎ
(𝑥 ;𝑦) = 𝑦𝑤⊤𝑥 ⇒ (𝑐 (𝑥,ΔNL

ℎ
(𝑥 ;𝑦)) = 𝑐 (𝑥, 𝑥) = 0)

max{0, 1 − 𝑦 (𝑤⊤𝑥 + 2𝑦 ∥𝑤 ∥)} = max{0, 1 − 𝑦𝑤⊤ΔNL
ℎ
(𝑥,𝑦) − (2 − 𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)))𝑦𝑦 ∥𝑤 ∥}

• If 0 ≥ �̃�𝑤⊤𝑥
∥𝑤 ∥ ≥ −2:

𝑦𝑤⊤𝑥 < 0 ⇒
ℎ(𝑥) ≠ 𝑦 ⇒ (Lemma 2).

(ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ ℎ(𝑥) ⇔ 𝜙ℎ (𝑥) ≤ 2) ⇒ (𝜙ℎ (𝑥) =

|𝑤⊤𝑥 |
∥𝑤 ∥ ( see observation). Therefore 𝜙ℎ (𝑥) ≤ 2).

ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ ℎ(𝑥) ⇒ (observation).

𝑦𝑤⊤ΔNL
ℎ
(𝑥 ;𝑦) = 0 ∧ 𝑐 (𝑥,ΔNL

ℎ
(𝑥 ;𝑦)) = |𝑤⊤𝑥 |

∥𝑤 ∥ ⇒ ( |𝑤
⊤𝑥 |

∥𝑤 ∥ =
−�̃�𝑤⊤𝑥
∥𝑤 ∥ ).

max{0, 1 − 𝑦 (𝑤⊤𝑥 + 2𝑦 ∥𝑤 ∥)} = max{0, 1 − 𝑦𝑤⊤ΔNL
ℎ
(𝑥,𝑦) − (2 − 𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)))𝑦𝑦 ∥𝑤 ∥}

• If
�̃�𝑤⊤𝑥
∥𝑤 ∥ < −2: 𝑦𝑤⊤𝑥 < 0 ⇒

ℎ(𝑥) ≠ 𝑦 ⇒ (Lemma 2).

(ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) ≠ ℎ(𝑥) ⇔ 𝜙ℎ (𝑥) ≤ 2) ⇒ (𝜙ℎ (𝑥) =

|𝑤⊤𝑥 |
∥𝑤 ∥ (see Lemma 1 proof). Therefore 𝜙ℎ (𝑥) > 2).

ℎ(ΔNL
ℎ
(𝑥 ;𝑦)) = ℎ(𝑥) ⇒ (assumption).

ΔNL
ℎ
(𝑥 ;𝑦) = 𝑥 ⇒

𝑦𝑤⊤ΔNL
ℎ
(𝑥 ;𝑦) = 𝑦𝑤⊤𝑥 ⇒ (𝑐 (𝑥,ΔNL

ℎ
(𝑥 ;𝑦)) = 𝑐 (𝑥, 𝑥) = 0)

max{0, 1 − 𝑦 (𝑤⊤𝑥 + 2𝑦 ∥𝑤 ∥)} = max{0, 1 − 𝑦𝑤⊤ΔNL
ℎ
(𝑥,𝑦) − (2 − 𝑐 (𝑥,ΔNL

ℎ
(𝑥,𝑦)))𝑦𝑦 ∥𝑤 ∥}

□

E.9 strategic distance for GP
𝑑GP
𝛥
(𝑥, 𝑧;𝑤) = |�̄�⊤𝑥 + 2𝑧 |

Proof. Let ℎ = (𝑤) be a linear classifier, 𝑥, 𝑥 ′ ∈ X and 𝑧 ∈ Z. We show necessary and sufficient conditions for which ℎ(ΔGP
ℎ
(𝑥)) ≠

ℎ(ΔGP
ℎ
(𝑥 ′)).

• If ℎ(𝑥) = 𝑧:

ℎ(ΔGP
ℎ
(𝑥)) ≠ ℎ(ΔGP

ℎ
(𝑥 ′)) ⇔ (Lemma 2).

𝑧 ≠ ℎ(ΔGP
ℎ
(𝑥 ′)) ⇔ (Lemma 2).

ℎ(𝑥 ′) ≠ 𝑧 ∧ 𝜙ℎ (𝑥 ′) > 2 ⇔
𝑧𝑤⊤𝑥 ′ < 0 ∧ |𝑤⊤𝑥 ′ |

∥𝑤 ∥ > 2 ⇔
𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ < −2.

Also, 𝑧𝑤⊤𝑥 > 0. Therefore 𝑥 and any 𝑥 ′ for which 𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ < −2 are on different sides of the hyperplane.

The minimal distance from 𝑥 to such 𝑥 ′ is the distance from 𝑥 to the hyperplane plus 2:

𝑑GP
𝛥
(𝑥, 𝑧;𝑤) = |𝑤⊤𝑥 |

∥𝑤 ∥ + 2 = 𝑧𝑤⊤𝑥
∥𝑤 ∥ + 2 = | 𝑤⊤𝑥

∥𝑤 ∥ + 2𝑧 | = |�̄�⊤𝑥 + 2𝑧 |
• If ℎ(𝑥) ≠ 𝑧:

– If 𝜙ℎ (𝑥) ≤ 2:

ℎ(ΔGP
ℎ
(𝑥)) ≠ ℎ(ΔGP

ℎ
(𝑥 ′)) ⇔ (Lemma 2).



𝑧 ≠ ℎ(ΔGP
ℎ
(𝑥 ′)) ⇔ (Lemma 2).

ℎ(𝑥 ′) ≠ 𝑧 ∧ 𝜙ℎ (𝑥 ′) > 2 ⇔
𝑧𝑤⊤𝑥 ′ < 0 ∧ |𝑤⊤𝑥 ′ |

∥𝑤 ∥ > 2 ⇔
𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ < −2.

Also, 𝑧𝑤⊤𝑥 ≤ 0 and
|𝑤⊤𝑥 ′ |
∥𝑤 ∥ ≤ 2.

This means that −2 ≤ 𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ ≤ 0.

Therefore 𝑥 and any 𝑥 ′ for which 𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ < −2 are on the same side of the hyperplane and 𝑥 is closer to the hyperplane than 𝑥 ′.
The minimal distance from 𝑥 to such 𝑥 ′ is 2 minus the distance from 𝑥 to the hyperplane:

𝑑GP
𝛥
(𝑥, 𝑧;𝑤) = 2 − |𝑤⊤𝑥 |

∥𝑤 ∥ = 2 + 𝑧𝑤⊤𝑥
∥𝑤 ∥ = | 𝑤⊤𝑥

∥𝑤 ∥ + 2𝑧 | = |�̄�⊤𝑥 + 2𝑧 |
– If 𝜙ℎ (𝑥) > 2:

ℎ(ΔGP
ℎ
(𝑥)) ≠ ℎ(ΔGP

ℎ
(𝑥 ′)) ⇔ (Lemma 2).

𝑧 = ℎ(ΔGP
ℎ
(𝑥 ′)) ⇔ (Lemma 2).

ℎ(𝑥 ′) = 𝑧 ∨ (ℎ(𝑥 ′) ≠ 𝑧 ∧ 𝜙ℎ (𝑥 ′) ≤ 2) ⇔
𝑧𝑤⊤𝑥 ′ > 0 ∨ (𝑧𝑤⊤𝑥 ′ ≤ 0 ∧ |𝑤⊤𝑥 ′ |

∥𝑤 ∥ ≤ 2) ⇔
𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ > 0 ∨ (−2 ≤ 𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ ≤ 0) ⇒
𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ ≥ −2.

Also, 𝑧𝑤⊤𝑥 ≤ 0 and
|𝑤⊤𝑥 ′ |
∥𝑤 ∥ > 2.

This means that
𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ < −2.

The minimal distance from 𝑥 to an 𝑥 ′ for which 𝑧𝑤⊤𝑥 ′

∥𝑤 ∥ ≥ −2 is the distance from 𝑥 to the hyperplane minus 2:

𝑑GP
𝛥
(𝑥, 𝑧;𝑤) = |𝑤⊤𝑥 |

∥𝑤 ∥ − 2 = −𝑧𝑤⊤𝑥
∥𝑤 ∥ − 2 = | 𝑤⊤𝑥

∥𝑤 ∥ + 2𝑧 | = |�̄�⊤𝑥 + 2𝑧 |.

□

E.10 Theorem 1
Proof. Denote by 𝑠 a sample (𝑥, 𝑧,𝑦) ∈ X × Z ×Y. Recall:

LGSC
0/1

(𝑠;𝑤) ≜ 1{𝑦 sign(𝑤⊤Δℎ (𝑥 ; 𝑧))}

𝐿GSC
s−hinge

(𝑠;𝑤) ≜ max{0, 1 − 𝑦 sign(𝑤⊤Δℎ (𝑥, 𝑧))𝑑Δ (𝑥, 𝑧;𝑤) ∥𝑤 ∥}

Since 𝑑Δ (𝑥, 𝑧;𝑤) ≥ 0 it is clear that LGSC
0/1

(𝑠;𝑤) ≤ 𝐿GSC
s−hinge

(𝑠;𝑤).

We rewrite 𝐿GSC
s−hinge

(𝑠;𝑤):

𝐿GSC
s−hinge

(𝑠;𝑤) ≜ max{0, 1 − 𝑦 sign(𝑤⊤Δℎ (𝑥, 𝑧))
𝑥 − 𝑥𝑑

 ∥𝑤 ∥}
where

𝑥𝑑 ≜ argmin

𝑥 ′

𝑥 − 𝑥 ′


s.t. ℎ(Δℎ (𝑥, 𝑧)) ≠ ℎ(Δℎ (𝑥 ′, 𝑧))

Define H𝑘 = {𝑠 → 𝑦 sign(𝑤⊤Δℎ (𝑥, 𝑧)) ∥𝑥 − 𝑥𝑑 ∥ ∥𝑤 ∥ : ∥𝑤 ∥ ≤ 𝑘} and let 𝑆 = {𝑠𝑖 }𝑚 be vectors in that space. Denote 𝑟 = max𝑥 ∈X .
We bound the Rademacher complexity ofH𝑘 ◦ 𝑆 :



𝑚𝑅(H𝑘 ◦ 𝑆) = E𝜎

[
sup

𝑤∈H𝑘

𝑚∑︁
𝑖=1

𝜎𝑖𝑦𝑖 sign(𝑤⊤Δℎ (𝑥𝑖 , 𝑧𝑖 ))
𝑥𝑖 − 𝑥𝑑𝑖

 ∥𝑤 ∥
]
=1

E𝜎

[
sup

𝑤∈H𝑘

𝑚∑︁
𝑖=1

𝜎𝑖

𝑥𝑖 − 𝑥𝑑𝑖

 ∥𝑤 ∥
]
= E𝜎

[
sup

𝑤∈H𝑘

∥𝑤 ∥
𝑚∑︁
𝑖=1

𝜎𝑖

𝑥𝑖 − 𝑥𝑑𝑖

] ≤

E𝜎

[
𝑘

����� 𝑚∑︁
𝑖=1

𝜎𝑖

𝑥𝑖 − 𝑥𝑑𝑖

�����
]
= 𝑘E𝜎


√√√(

𝑚∑︁
𝑖=1

𝜎𝑖

𝑥𝑖 − 𝑥𝑑
𝑖

)2 ≤2

𝑘

√√√√√
E𝜎


(
𝑚∑︁
𝑖=1

𝜎𝑖

𝑥𝑖 − 𝑥𝑑
𝑖

)2 = 𝑘

√√√√√
E𝜎


∑︁
𝑖, 𝑗

𝜎𝑖𝜎 𝑗

𝑥𝑖 − 𝑥𝑑
𝑖

 𝑥 𝑗 − 𝑥𝑑
𝑗

 =3

𝑘

√√
𝑚∑︁
𝑖=1

E𝜎
[
𝜎2

𝑖

] 𝑥𝑖 − 𝑥𝑑
𝑖

2

≤ 𝑘
√
𝑚 · max

𝑖

𝑥𝑖 − 𝑥𝑑𝑖

 ≤ 𝑘
√
𝑚 · max

𝑖
∥𝑥𝑖 ∥ +

𝑥𝑑𝑖  ≤ 𝑘
√
𝑚 · 2𝑟

1. 𝜎𝑖𝑦𝑖 sign(𝑤⊤Δℎ (𝑥𝑖 , 𝑧𝑖 )) ≡𝑑 𝜎𝑖 under the expectancy

2. Jensen’s inequality

3. Independence

Therefore 𝑅(H𝑘 ◦ 𝑆) ≤ 2𝑘𝑟√
𝑚
.

Consider the hinge function 𝜙 (𝑡) = max{0, 1 − 𝑡} for scalar values 𝑡 ∈ R. 𝜙 is 1 − 𝑙𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧:

∀𝑡1, 𝑡2 ∈ R
|𝜙 (𝑡1) − 𝜙 (𝑡2) | = |max 0, 1 − 𝑡1 − max 0, 1 − 𝑡2 | ≤ max |0 − 0|, |1 − 𝑡1 − 1 + 𝑡2 | = |𝑡1 − 𝑡2 |

Then, according to Talagrand’s contraction principal, 𝑅(𝜙 ◦ H𝑘 ) ≤ 𝑅(H𝑘 ).

Let 𝐷 be a distribution on X ×Z ×Y such that there exists some𝑤∗
with P𝐷

[
𝑦 sign((𝑤∗)⊤Δℎ (𝑥, 𝑧) ≥ 1

]
= 1. Let𝑤𝑆 be the output of

the Hard formulation algorithm without normalization:

𝑤 = argmin

𝑤
∥𝑤 ∥2

𝑠 .𝑡 . ∀𝑖 ∈ [𝑚], 𝑦𝑖 sign(𝑤⊤Δℎ (𝑥𝑖 , 𝑧𝑖 ))
𝑥𝑖 − 𝑥𝑑𝑖

 ∥𝑤 ∥ ≥ 1

Define H∗ = {𝑤 : ∥𝑤 ∥ ≤ ∥𝑤∗∥}.
∥𝑤𝑆 ∥ ≤ ∥𝑤∗∥ and therefore𝑤𝑆 ∈ H∗

.

From the generalization theorem on Rademacher complexity, with probability greater or equal to 1 − 𝛿 , for all𝑤 ∈ H∗
:

LGSC
s−hinge

(𝑤 ;𝐷) − LGSC
s−hinge

(𝑤 ; 𝑆) ≤ 2𝑅𝐷 (𝜙 ◦ H∥𝑤∗ ∥) + 𝑐

√︄
2𝑙𝑛( 2

𝛿
)

𝑚

where 𝑐 is the maximal loss, which in our case is (1 + 2𝑟 ∥𝑤∗∥).
Finally, we get:

LGSC
s−hinge

(𝑤 ;𝐷) ≤ LGSC
s−hinge

(𝑤 ; 𝑆) + 4𝑟 ∥𝑤∗∥
√
𝑚

+ (1 + 2𝑟
𝑤∗)√︄2𝑙𝑛( 2

𝛿
)

𝑚

Notice that𝑤∗
is unknown. Therefore we show a data-dependant bound:

Define H 𝑖 = {𝑤 : ∥𝑤 ∥ ≤ 2
𝑖 } and 𝛿𝑖 = 𝛿

2
𝑖 . Note that

∑∞
𝑖=1

𝛿𝑖 = 𝛿 .

Similarly to the first part of the proof, for all 𝑖 , ∀𝑤 ∈ H𝑖 with probability greater or equal to 𝛿 :

LGSC
s−hinge

(𝑤 ;𝐷) ≤ LGSC
s−hinge

(𝑤 ; 𝑆) + 4𝑟 · 2
𝑖

√
𝑚

+ (1 + 2 · 2
𝑖 )

√︄
2𝑙𝑛( 2

𝛿𝑖
)

𝑚

From the union bound, we get that with probability greater or equal to 1 − 𝛿 this holds for all H𝑖 . This means that for all𝑤 ∈ H we have

for 𝑖 = ⌈log(∥𝑤 ∥)⌉ ≤ log(∥𝑤 ∥) + 1:



LGSC
s−hinge

(𝑤 ;𝐷) ≤ LGSC
s−hinge

(𝑤 ; 𝑆) + 8𝑟 ∥𝑤 ∥
√
𝑚

+ (1 + 4𝑟 ∥𝑤 ∥)

√︄
2𝑙𝑛( 4∥𝑤 ∥

𝛿
)

𝑚

Plugging𝑤 = 𝑤𝑆 finishes the proof. This proof can be adjusted easily to work for the soft formulation algorithm. □

E.11 Tightened generalization bounds for notable subclasses of GSC
Let 𝐷 be a joint distribution over triples (𝑥, 𝑧,𝑦), and let 𝑟 = max𝑥 ∈X ∥𝑥 ∥. Denote by �̂� the minimizer of the empirical generalized strategic

hinge loss with 𝐿2 regularization. Then for every 𝛿 ∈ [0, 1], if the training set S includes𝑚 samples, then w.p. ≥ 1 − 𝛿 it holds that:

L
0/1

≤ ˆLGP
s−hinge

+ 4𝑟 ∥�̂� ∥
√
𝑚

+ (1 + 2𝜌GP ∥𝑤 ∥)

√︄
2 ln( 4∥�̂� ∥

𝛿
)

𝑚

where L
0/1

is the expected 0/1 loss,
ˆLGP
s−hinge

is the empirical s-hinge loss on S, and 𝜌GP = 𝑟 + 2.

Proof. This proof follows the proof of Theorem E.11 with two slight differences:

• Rademacher complexity ofH𝑘 ◦ 𝑆 :

𝑚𝑅(H𝑘 ◦ 𝑆) = E𝜎

[
sup

𝑤∈H𝑘

𝑚∑︁
𝑖=1

𝜎𝑖𝑦𝑖 (𝑤⊤𝑥𝑖 + 2𝑧𝑖 ∥𝑤 ∥)
]
=1

E𝜎

[
sup

𝑤∈H𝑘

𝑚∑︁
𝑖=1

𝜎𝑖 (𝑤⊤𝑥𝑖 + 2𝑧𝑖 ∥𝑤 ∥)
]
= E𝜎

[
sup

𝑤∈H𝑘

𝑚∑︁
𝑖=1

𝜎𝑖 (𝑤⊤𝑥𝑖 + 2𝑧𝑖 ∥𝑤 ∥)
]
≤

E𝜎

[
sup

𝑤∈H𝑘

𝑚∑︁
𝑖=1

𝜎𝑖𝑤
⊤𝑥𝑖

]
+ E𝜎

[
sup

𝑤∈H𝑘

𝑚∑︁
𝑖=1

𝜎𝑖 · 2𝑧𝑖 ∥𝑤 ∥
]
=2

E𝜎

[
sup

𝑤∈H𝑘

𝑤⊤
𝑚∑︁
𝑖=1

𝜎𝑖𝑥𝑖

]
+ E𝜎

[
sup

𝑤∈H𝑘

2 ∥𝑤 ∥
𝑚∑︁
𝑖=1

𝜎𝑖

]
=

E𝜎

[
sup

𝑤∈H𝑘

𝑤⊤
𝑚∑︁
𝑖=1

𝜎𝑖𝑥𝑖

]
≤3 E𝜎

[
𝑘

 𝑚∑︁
𝑖=1

𝜎𝑖𝑥𝑖


]
=

𝑘E𝜎


√√√ 𝑚∑︁

𝑖=1

𝜎𝑖𝑥𝑖

2 ≤4 𝑘

√√√√√
E𝜎


 𝑚∑︁
𝑖=1

𝜎𝑖𝑥𝑖

2 =

𝑘

√√√√√
E𝜎


𝑚∑︁
𝑖, 𝑗

𝜎𝑖𝜎 𝑗
〈
𝑥𝑖 , 𝑥 𝑗

〉 =5 𝑘

√√
𝑚∑︁
𝑖=1

E𝜎
[
𝜎2

𝑖

]
∥𝑥𝑖 ∥2 ≤

𝑘
√
𝑚 · max

𝑖
∥𝑥𝑖 ∥ ≤ 𝑘

√
𝑚 · max

𝑖
∥𝑥𝑖 ∥ = 𝑘

√
𝑚 · 𝑟

1. 𝜎𝑖𝑦𝑖 ≡𝑑 𝜎𝑖 under the expectancy

2. 𝜎𝑖𝑧𝑖 ≡𝑑 𝜎𝑖 under the expectancy

3. Cauchy-Schwartz inequality

4. Jensen’s inequality

5. Independence

Therefore 𝑅(H𝑘 ◦ 𝑆) ≤ 𝑘𝑟√
𝑚
.

• 𝜌NL, 𝜌GP, 𝜌ADV, 𝜌SC:

The Rademacher complexity generalization theorem states that 𝑐 is equal to the maximal loss for any sample in 𝑆 . Therefore for GP, ADV

and SC:

max

𝑠∈𝑆
L

s−hinge
(𝑠) = max

𝑠∈𝑆
max{0, 1 − 𝑦𝑤⊤𝑥 + 2𝑦𝑧 ∥𝑤 ∥} = 1 + (𝑟 + 2) ∥𝑤 ∥ ⇒

⇒ 𝜌GP, 𝜌ADV, 𝜌SC = 𝑟 + 2



However, a close examination of the theorem proof [10] allows for the partition of the sample-set 𝑆 into several subsets 𝑆1, 𝑆2, ...𝑆𝑘 . Then

𝑐 =
∑𝑘
𝑖=1

E𝐷 [ |𝑆𝑖 | ]
|𝑆 | max𝑠∈𝑆𝑖 𝑙𝑜𝑠𝑠 (𝑠).

In NL, the sample set can be partitioned into 2 subsets:

𝑆1 = {𝑠 = (𝑥,𝑦,𝑦) ∈ 𝑆 : 𝑦 = 𝑦}, 𝑆2 = {𝑠 = (𝑥,𝑦,𝑦) ∈ 𝑆 : 𝑦 ≠ 𝑦}.
E𝐷 [|𝑆1 |] = 1 − 𝜖,E𝐷 [|𝑆2 |] = 𝜖 .

max𝑠∈𝑆1
LNL

s−hinge
(𝑠) = max𝑠∈𝑆1

max{0, 1 − 𝑦𝑤⊤𝑥 − 2 ∥𝑤 ∥} = 1 + (𝑟 − 2) ∥𝑤 ∥.
max𝑠∈𝑆2

LNL
s−hinge

(𝑠) = max𝑠∈𝑆2
max{0, 1 − 𝑦𝑤⊤𝑥 + 2 ∥𝑤 ∥} = 1 + (𝑟 + 2) ∥𝑤 ∥.

In conclusion, 𝑐 = 𝜖 (1 + (𝑟 + 2) ∥𝑤 ∥) + (1 − 𝜖) (1 + (𝑟 − 2) ∥𝑤 ∥) = 1 + (𝑟 + 2 − 4𝜖) ∥𝑤 ∥.

□
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