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ABSTRACT
We explore a collaborative multi-agent planning (CMAP) setting

in which an agent’s task is to generate a plan for a team of het-

erogeneous agents without knowing their capabilities. Instead, it

receives a set of observations from past executions. To plan for

these “black-box” agents, we present a framework called Planning

using Offline Learning (POL). POL compiles the given observations,

translates them into trajectories of a single “super” agent, and uses

an action model learning algorithm to learn the capabilities of the

other agents. We analyze POL in the context of multi-agent STRIPS

(MA-STRIPS) domains. Then, we show that soundness guarantees

can be obtained when using a safe action model learning algorithm.

We extend POL to lifted (i.e., parameteric) domains and provide

statistical completeness guarantees. Finally, we evaluate POL over

a standard MA-STRIPS benchmark and compare its performance

with different action model learning algorithms. Our results show

that the planning agent can learn an almost perfect action model

with only a few trajectories in most cases.
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1 INTRODUCTION
Increasingly, real-world applications require planning for a group

of collaborative autonomous agents, e.g., in furniture assembly sys-

tems [13], automated warehouses [5], sensor networks [15], and

teams of robots performing search and rescue missions [3]. Collab-

orative multi-agent planning (CMAP) is a well-known challenge in

the Artificial Intelligence literature, and multiple formalisms have

been proposed to represent CMAP problems [7, 9, 21]. We focus

on a CMAP setting in which a planning agent operates in a team

with other, heterogeneous yet collaborative agents. The agent does

not explicitly know the other agents’ capabilities, yet its task is to

generate a plan for the team to achieves a given set of goals. Such a

setting occurs, e.g., in ad-hoc teamwork setups [6], or where other

agents’ interfaces do not support sharing their internal models [22],

or where agents do not wish to share this information due to privacy

reasons [9, 16]. Generating a collaborative plan with such “black-

box” agents is particularly challenging in mission-critical settings.

In these cases, plan execution failures must be avoided, and thus
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trial-and-error approaches, which are common in the multi-agent

reinforcement learning (MARL) literature, cannot be used.

Instead of knowing the other agents’ capabilities, we assume

the planning agent has access to a set of trajectories, i.e., sequences
of alternating states and actions. These trajectories are collected

by observing the same group of agents executing plans to achieve

different goals in the same domain. Such trajectories may have been

generated by humans who know the agents’ capabilities or via an

interactive querying process, as outlined by Verma et al. [22]. Using

these trajectories, we devise a learning and planning framework

for the planning agent that we call POL. This framework is the first

contribution of this work. POL comprises three stages: compiling,

learning, and planning. In the compilation stage POL processes all

the given trajectories of the multi-agent plans and transforms them

to trajectories of a single “super” agent that has all the actions

observed in T . Then, in the learning phase, POL employs an action-

model learning algorithm on the compiled trajectories to generate a

single-agent action model that represents the planning agent’s view

of the capabilities of the agents in the team. Finally, in the planning

phase, POL uses learned single-agent action model to generate plans

by using an off-the-shelf single-agent planner.

The second contribution of this work is a description and theoret-

ical analysis of a POL implementation for CMAP problems expressed

in Multi-agent STRIPS (MA-STRIPS) [9]. MA-STRIPS is a CMAP for-

malism for agents that operate in a closed discrete world, have full

observability, and their actions have deterministic effects. Coupled

with a safe action model learning algorithm [12, 20], POL can guar-

antee that every plan suggested by the planning agent is compatible

with the actual capabilities of all agents. Moreover, under certain

assumptions, only a small number of trajectories are needed to

guarantee that, with high probability, such a plan can be found for

a given problem in the same domain. The third contribution of this

work is an experimental evaluation of this POL implementation on

a standard MA-STRIPS benchmark with several action model learn-

ing algorithms, namely SAM learning [20], ESAM learning [12],

and FAMA [1]. Our results show that POL can solve almost all test

problems with using a small number of observations,

2 BACKGROUND AND PROBLEM DEFINITION
STRIPS is arguably the most straightforward and well-known lan-

guage for formalizing single-agent planning. It uses uses propo-

sitional logic to define the planning domain and problem, as

follows:

Definition 1 (STRIPS). A STRIPS problem is represented by a tuple

Π = ⟨𝑃,𝐴, 𝐼,𝐺⟩ where:
• 𝑃 is a finite set of propositions.

• 𝐴 is the set of actions the agent can perform.



• 𝐼 is the initial state.

• 𝐺 is the goal to achieve.

A proposition 𝑝 ∈ 𝑃 describes a possible fact about the world.

A state is a set of facts (𝑠 ⊆ 𝑃 ), representing that the conjunction

of these facts are true and all other facts are not. 𝐴 is the finite

set of actions that the agent can perform. Each action 𝑎 is defined

by its preconditions (pre(𝑎)) and effects (eff(𝑎)). Preconditions and
effects are sets of literals, where a literal is either a fact 𝑝 ∈ 𝑃 or

its negation. The effects of an action are often separated into add-

effects and delete-effects, where a positive fact is an add-effect, and

a negative fact is a delete effect. An action 𝑎 is applicable in a state

𝑠 if all its preconditions are satisfied in 𝑠 . The result of applying

𝑎 to a state 𝑠 , denoted by 𝑎(𝑠), is a state that contains all the facts
in eff(𝑎) as well as all the facts in 𝑠 except whose negations are in

eff(𝑎). The initial state 𝐼 is a state and the goal𝐺 is a consistent sets

of literals. A state 𝑠 satisfies a set of literals 𝐿 iff 𝑠 satisfies all the

literals in 𝐿. A state 𝑠𝐺 that satisfies the goal condition𝐺 is referred

to as a goal state. A solution to the STRIPS planning task is a plan,
which is a sequence of actions (𝑎1, . . . , 𝑎𝑘 ) such that (1) 𝐼 satisfies
pre(𝑎1), and (2) 𝑎𝑘 (. . . (𝑎1 (𝐼 ) . . .) satisfies 𝐺 , i.e., a plan that can be

applied to the initial state and results in a state that satisfies the

goal.

Multi-agent STRIPS (MA-STRIPS) [8] is an extension of STRIPS

that supports planning for multiple agents. MA-STRIPS generalizes

STRIPS by defining a finite set of actions for each agent, charac-

terizing the capabilities of that agent. The formal definition is as

follows:

Definition 2 (MA-STRIPS). AnMA-STRIPS problem is represented

by a tuple Π = ⟨𝑃, 𝑘, {𝐴𝑖 }𝑘𝑖=1, 𝐼 ,𝐺⟩ where:
• 𝑃 , 𝐼 and 𝐺 are the set of propositions, initial state, and goal,

respectively.

• 𝑘 is the number of agents.

• 𝐴𝑖 is the set of actions agent 𝑖 can perform.

For simplicity, we assume agents perform their actions sequen-
tially and not in parallel (we revisit this assumption later in the

paper). Under this assumption, a solution to the MA-STRIPS plan-

ning task is a sequence of actions (𝑎1, . . . , 𝑎𝑘 ) that can be applied

to 𝐼 and results in a state that satisfies 𝐺 . Each action in the plan is

a member of the set of actions of one of the agents. For example,

a solution to a MA-STRIPS problem can be a sequence of actions

where the first agent performs the first two actions and the second

agent performs the next four.

Modeling actions in STRIPS and MA-STRIPS, i.e., defining their

preconditions and effects, is a notoriously difficult task. Automati-

cally learning STRIPS action models from data has thus been a topic

of intense interest [2, 4, 20, 23–25]. The main source of informa-

tion used by most action-model learning algorithms is trajectories
collected by observing previously executed plans.

Definition 3 (Trajectory). A trajectory 𝑇 = ⟨𝑠0, 𝑎1, 𝑠1, . . . 𝑎𝑛, 𝑠𝑛⟩ is
an alternating sequence of states (𝑠0, . . . , 𝑠𝑛) and actions (𝑎1, . . . , 𝑎𝑛)
that starts and ends with a state.

The trajectory created by applying 𝜋 to a state 𝑠 is the sequence〈
𝑠0, 𝑎1, . . . , 𝑎 |𝜋 |, 𝑠 |𝜋 |

〉
such that 𝑠0 = 𝑠 and for all 0 < 𝑖 ≤ |𝜋 |, 𝑠𝑖 =

𝑎𝑖 (𝑠𝑖−1). In priorwork [2, 4, 20, 23–25] a trajectory
〈
𝑠0, 𝑎1, . . . , 𝑎 |𝜋 |, 𝑠 |𝜋 |

〉
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Figure 1: A diagram of the POL framework for solving
CMAP-BB problems.

is often represented as a set of triples

{
⟨𝑠𝑖−1, 𝑎𝑖 , 𝑠𝑖 ⟩

} |𝜋 |
𝑖=1

. Each triplet

⟨𝑠𝑖−1, 𝑎𝑖 , 𝑠𝑖 ⟩ is called an action triplet, and the states 𝑠𝑖−1 and 𝑠𝑖 are
referred to as the pre- and post- state of action 𝑎𝑖 . We denote the

set of all action triplets in the trajectories in T that include the

grounded action 𝑎 by T (𝑎).
Finally, we can formally define the problem we consider in this

work, which we refer to as the CMAP with Black-Box Agents

(CMAP-BB) problem.

Definition 4 (CMAP with Black-Box Agents). A CMAP-BB problem

is represented by a tuple ⟨Π,T , 𝑖⟩ where:
• Π is a MA-STRIPS problem.

• T is a set of trajectories.

• 𝑖 is an index of an agent specified in Π.

A solution to this CMAP-BB is a plan which is a solution to the

underlying MA-STRIPS problem Π.

We refer to agent 𝑖 as the planning agent and assume without

loss of generality that 𝑖=0. The key constraint in solving a CMAP-BB

problem is that the problem solver does not know the actions of any

agent except that of the planning agent and the actions observed

in the given trajectories (T ). In addition, the problem solver does

not receive an action model, i.e., the preconditions and effects, of

any action except for those of the planning agent. We denote the

action model for all agents by 𝑀∗ and refer to it as the accurate
action model.

Since multi-agent problems vary significantly in their assump-

tions, we list the ones we make in this work. The agents are collab-

orative and do not aim to obfuscate their action models explicitly.

The world is deterministic and fully observable, and the given tra-

jectories provide a complete and accurate depiction of observed

previously executed plans. When observing an action belonging to

the non-planning agents in a trajectory, the planning agent only

receives the signature of that action. While these assumptions are

strong, they are commonly assumed in the automated planning

literature and are also a helpful abstraction in many real-world

applications.

3 THE POL FRAMEWORK
The approach we propose for solving a CMAP-BB problem, called

POL, consists of three phases: compilation, learning, and planning.

In the compilation phase, POL processes all the given trajectories of

the multi-agent plans and transforms them to trajectories of a single

“super” agent that has all the actions observed in T . In the learning



phase, POL applies a learning algorithm to learn an action model for

that “super-agent’s” actions based on the transformed trajectories.

POL uses this learned action model to create a single-agent STRIPS

problem corresponding to the given CMAP-BB problem. Finally, in

the planning phase, POL uses a single-agent planner to generate

a solution for that problem, which translates to a solution to the

given multi-agent CMAP-BB problem. Figure 1 illustrates how POL

is used to solve a CMAP-BB problem.

POL’s compilation phase is pretty straightforward. It consists of

iterating over every action in the given multi-agent trajectories

T and creating a corresponding action for the “super” agent. The

identity of the agent performing each action is inserted as a param-

eter of the super agent’s action. For example, consider a trajectory

from a multi-agent logistics problem with two truck agents 𝑡1 and

𝑡2 that includes the truck agent 𝑡1 performing (load p1 l1) and
the truck agent 𝑡2 performing (load p2 l2). POLwill compile this

multi-agent trajectory to a single-agent trajectory that includes the

actions (load t1 p1 l1) and (load t2 p1 l1).2 The result of
this compilation phase is a set of single-agent trajectories.

For POL’s learning phase, any single-agent action model learning

algorithm that accepts a set of trajectories can be used. FAMA [2],

ARMS [26], LOCM [10], and SAM learning [12, 20] are examples of

such learning algorithms. Similarly, any single agent planner can

be used for the POL’s planning phase. In our experiments, we used

for this purpose FastDownward (FD) [11], a well-known state-of-

the-art single-agent planner.

3.1 Learning Safe Action Models in POL
Without any restrictions on the learning and planning algorithms

used for the learning and planning phases, it is not easy to guar-

antee the success of the plans generated by POL. Next, we propose

several restrictions over the algorithms used in the POL planning

and learning phases that provide such guarantees. To this end, we

borrow the notion of a safe action model from Juba et al. [12].

Definition 5 (Safe Action Model). An action model𝑀 ′ is safe with
respect to an action model 𝑀 if for every state 𝑠 and action 𝑎 it

holds that if 𝑎 is applicable in 𝑠 according to 𝑀 ′ then (1) 𝑎 is also

applicable in 𝑠 according to𝑀 , and (2) applying 𝑎 to 𝑠 results in the

same state according to both action models.

As noted by Juba et al. [12], a direct implication of Definition 5

is that if an action model𝑀 ′ is safe w.r.t. some other action model

𝑀 , then any plan that is sound according to𝑀 ′ will also be sound

according to𝑀 [12]. This observation allows us to provide a similar

guarantee in our context.

Theorem 1 (Soundness). Let ΠT be a CMAP-BB problem ⟨Π,T⟩. In
any implementation of POL in which (1) the learning phase returns

an action model that is safe w.r.t. the action model of the underlying

MA-STRIPS problem Π, and (2) the planning phase returns a plan

that is sound w.r.t. the learned action model, it holds that if POL

returns a plan, then that plan is a solution for ΠT .

Proof. Let𝑀 and𝑀 ′ be the actionmodels of the underlyingMA-

STRIPS problem and learned by the POL learning phase, respectively.

2
Note that this assumes the planning agent knows that the load actions of all agents

are the same. In cases where the agent cannot discern this the it will consider these

actions as distint and may learn a different action model for them.

If the plan returned by POL is sound w.r.t.𝑀 ′ then that plan must

also be sound w.r.t.𝑀 since𝑀 ′ is safe w.r.t.𝑀 . □

Thus, implementing POL with an action-model learning algo-

rithm that returns a safe action model and a sound single-agent

planner guarantees that it will never return a multi-agent plan that

cannot be executed by one of the agents. Nevertheless, such a POL

implementation is not necessarily complete, i.e., it might fail to find

a solution to a given CMAP-BB problem even if the underlying MA-

STRIPS problem is solvable. An extreme example of this is when T
is empty, i.e., zero trajectories are available. In this case, POL would

practically attempt to solve a multi-agent problem using only the

actions of the planning agent. If the problem requires cooperation

with any other agents, then POL would fail to find a solution. More

generally, having too few trajectories in T may result in learning a

safe action model that is overly restrictive or even lack actions that

are critical for achieving the goal.

3.2 Implementing POL with SAM Learning
Next, we describe an implementation of POL that is based on using

the SAM learning algorithm [12, 20] for the POL learning phase.

Algorithm 1: SAM Learning algorithm

Input : ⟨𝑃, 𝐼,𝐺, T⟩
Output :An action model𝑀T

1 𝐴′ ← all actions observed in T
2 foreach action 𝑎 ∈ 𝐴′ do
3 eff(𝑎) ← ∅
4 pre(𝑎) ← {𝑝,¬𝑝 |𝑝 ∈ 𝑃 }
5 foreach (𝑠, 𝑎, 𝑠′) ∈ T (𝑎) do
6 foreach ℓ ∈ pre(𝑎) do
7 if ℓ ∉ 𝑠 then
8 Remove ℓ from pre(𝑎)

9 foreach ℓ ∈ 𝑠′ \ 𝑠 do
10 Add ℓ to eff(𝑎)

11 return (pre, eff)

For completeness, we begin by providing a brief description of

SAM learning. Initially, SAM learning creates an action model in

which each action 𝑎 has all literals as a precondition and none of the

literals as an effect. Then, for each state transition (𝑠, 𝑎, 𝑠 ′) ∈ T (𝑎)
the algorithm removes literals from pre(𝑎) that do not appear in 𝑠 ,

and adds to eff(𝑎) every literal that is 𝑠 ′ but not in 𝑠 . Algorithm 1

lists a pseudo-code for SAM learning.

SAM learning has several attractive properties. First, it guar-

antees that the action model it returns is safe with respect to the

action model of the domain that generated the trajectories. Second,

its runtime is polynomial in the number of trajectories, actions,

and literals. Third, if future problems are drawn from the same

distribution as those used to generate the given set of trajectories,

then the number of trajectories required to learn an action model

that, with high probability, enables solving most problems is only

quasi-linear in the number of actions and facts in the real domain

(Theorem 2 in [20]). These desirable properties transfer directly to

POL when implementing its learning phase with SAM learning.



4 CMAP-BB IN LIFTED DOMAINS
The discussion so far was limited to grounded domains, where ac-
tions and facts are not parameterized. Planning and learning in

grounded domains are often highly inefficient, where the number

of actions can be exponentially large. Instead, classical planning

domains and problems are almost always provided in a lifted rep-
resentation, usually specified in the Planning Domain Definition

Language (PDDL) [17]. Similarly, existing MA-STRIPS benchmarks

are also available in a lifted representation called MA-PDDL [14].

This section describes the CMAP-BB problem in such lifted domains

and how POL can be adapted accordingly.

A lifted classical planning domain is defined in PDDL by a set

of types 𝑇 , lifted fluents F , lifted actions 𝐴, and their correspond-

ing action models. Lifted fluents and actions are parameterized

versions of the facts and actions in STRIPS, where each parame-

ter is associated with a type 𝑡 ∈ 𝑇 . For example, the lifted action

(move ?obj - object ?from - location ?to - location)
has three parameters, ?obs, ?from, and ?to, associated with the

types object, location, and location, respectively. Similarly, the

lifted fluent (at ?obj - object ?loc - location) has two

parameters of types object and location. The action model of a

lifted action 𝑎 is its preconditions and effects, which are specified as

lifted literals coupled with a binding function that maps the lifted

fluent’s parameters to the lifted action’s parameters. A problem in

PDDL specifies a set of objects 𝑂 , each associated with a type from

𝑇 . A grounded action and a grounded fluent are a lifted action and

a lifted fluents, respectively, coupled with a binding function that

maps their parameters to the objects specified in a PDDL problem.

A state in PDDL is a set of grounded fluents. Similarly, the goal in

PDDL is specified as a set of grounded literals. The desired solution,

i.e., the plan, is a sequence of grounded actions.

MA-PDDL [14] is a lifted multi-agent planning formalism that

generalizes MA-STRIPS in a similar way, where agents’ actions

are defined in a lifted parametrized representation. The CMAP-BB

problem definition can be naturally extended to this lifted formalism.

The available trajectories T are sequences of grounded actions and

states. The planning agent receives a set of trajectories T , which
are sequences of grounded actions and states, as well as the current

PDDL problem Π, which includes the available objects, initial state,

and goal. It does not know, of course, the lifted action model of the

other agents.

4.1 POL for Lifted Domains
The POL framework is also applicable for this type of CMAP-BB prob-

lem but requires learning and planning algorithms that support

lifted domains. Most modern planning algorithms provide such

support.
3
Recently, the SAM learning algorithm has also been ex-

tended to support learning lifted safe action models [12]. This lifted

version of SAM learning, however, can only consider action triplets

in which each of the bindings of action parameters to objects is

injective, i.e., a single object cannot be mapped to more than one

parameter of the same action [12]. SAM learning cannot use ac-

tion triplets in which this assumption, called the injective action
binding assumption does not hold, without compromising its safety

3
Although the standard approach is to fully ground the domain as a preprocessing

step.

guarantee. Thus, it ignores such action triplets. If such triplets

are common in the available trajectories, SAM learning’s sample

efficiency would be negatively affected.

To learn safe action models in this setting, Juba et al. [12] created

the ESAM algorithm. This algorithm generates a CNF for each

action it observes in the trajectory, representing its knowledge

about which lifted literals may be preconditions and effect of that

action. This CNF translates to a safe action model. In some cases,

this CNF indicates the existence of ambiguity in the effects of an

action which prevents directly creating a safe action model for that

action. In such cases, ESAM creates proxy-actions that represent
specific forms of that action that can still be performed safely. The

details of this algorithm are somewhat involved and are presented

more clearly in Juba et al. [12].

4.2 Theoretical Properties
POL with ESAM and a sound and complete single-agent planner has

similar properties to POL for grounded domains. The multi-agent

plans it returns are applicable by all agents (soundness), but it may

not find a plan even for cases where such exists (incompleteness).

Here too, the probability that will occur decreases quickly with the

number of trajectories (probably approximately complete). More

accurately, let P𝐷 be a probability distribution over solvable plan-

ning problems in a domain 𝐷 . Let T𝐷 be a probability distribution

over pairs ⟨𝑃,𝑇 ⟩ given by drawing a problem 𝑃 from P(𝐷), using
a sound and complete planner to generate a plan for 𝑃 , and setting

𝑇 to be the trajectory from following this plan. Let 𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑡) and
𝑎𝑟𝑖𝑡𝑦 (𝐹, 𝑡) be the number of parameters in the lifted action and

fluent 𝑎 and 𝐹 , respectively, of type 𝑡 . The following result is proven

by Juba et al. [12] for the single-agent case and directly applies to

POL as well.

Theorem 2. Given

𝑚 ≥ 1

𝜖
(2 ln 3

∑︁
𝐹 ∈F

𝑎∈⋃𝑘
𝑖=1𝐴𝑖

∏
𝑡 ∈𝑇

𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑡)𝑎𝑟𝑖𝑡𝑦 (𝐹,𝑡 ) + ln 1

𝛿
) (1)

trajectories sampled from T𝐷 , with probability at least 1 − 𝛿 the

probability that a problem drawn from P𝐷 will not be solvable by

POL is at most 𝜖 .

Note that increasing the number of agents only increases the

complexity linearly.

To calculate the time complexity for POLwe divide the calculation

to three parts: First, the compilation stage consists of iterating

over the actions in the multi-agent trajectories and creating the

appropriate action for the "super" agent trajectory. This process is

linear in the number of actions that were compiled in this stage.

Second, The learning stage consists of executing SAM/ ESAM on

the compiled trajectory and learning the "super" agent’s action

model. The complexity for this stage depends on whether or not

proxy actions were created. In case proxy actions were not created,

the time complexity for the learning stage of POL is linear in the

number of triplets Juba et al. [12]. On the other hand, if POL using

ESAM needs to compile proxy actions the time complexity can rise

up to be exponential. Finally, the planning stage’s time complexity

is the same as the complexity of the planner that is being used.



5 CONCURRENT ACTIONS
In many multi-agent settings, more than one agent can act at the

same time. In such cases, a plan is a sequence of joint actions, where
a joint action represents at most a single action per agent. Formally,

we define a joint action as a 𝑘-dimensional vector a where entry 𝑖

in that vector, denoted a[𝑖], is either an action from 𝐴𝑖 or ⊥, where
the ⊥ sign indicates that agent 𝑖 does not perform an action in

the joint action a. Correspondingly, a trajectory is an alternating

sequence of states and joint actions.

It is possible to extend the POL framework to support such set-

tings with concurrent actions as follows. Instead of compiling the

multi-agent trajectories as sequential single-agent ones, the com-

pilation phase compiles them to trajectories of a single, “super”

agent, that performs joint actions. The learning phase applies an

action-model learning algorithm over these trajectories to learn an

action model for joint actions. That is, we learn when each joint

action can be performed and what will be its effects. Finally, the

planning phase applies a single-agent planner using the action

model learned for the agents’ joint actions to find a solution to the

original CMAP-BB problem.

The action space of the “super” agent in this setting is much

larger than in the sequential case, and grows exponentially with the

number of agents. Thus, efficiently implementing the learning and

planning phases here is not trivial. Consider first the application of

SAM learning on trajectories with joint actions. The safety property

of the learned action model is preserved — plans generated with

it are guaranteed to be sound. However, to achieve the form of

approximate completeness described for the sequential version of

CMAP-BB (Theorem 2), is significantly more difficult. Specifically,

since the number of “super” agent actions is now exponential in the

number of agents, as opposed to linear in the sequential case, the

number of samples required to achieve approximate completeness

is also exponential in the number of agents.

The above challenges can be alleviated by making assumptions

about the factored nature of a multi-agent planning problem. For

example, consider the following, natural assumption: an action 𝑎𝑖
can be applied if and only if its preconditions hold, regardless of

the other actions performed concurrently by the other agents. This

assumption is implicitly assumed by all MA-STRIPS planners. Since

conflicting effects are not well-defined in MA-STRIPS, we also make

the assumption that agents’ actions do not conflict. Under these

assumptions, we propose the following version of SAM learning,

which supports concurrent actions effectively.

Definition 6 (SAM rules for MA-STRIPS). For any observed action

triplet ⟨𝑠, 𝑎, 𝑠 ′⟩
(1) If ℓ ∉ 𝑠 then ℓ is not a precondition of any single-agent action

𝑎 ∈ 𝑎.
(2) If ℓ ∉ 𝑠 ′ then ℓ is not an effect of any single-agent action

𝑎 ∈ 𝑎.
(3) If ℓ ∈ 𝑠 ′ \ 𝑠 then there exists at least one single-agent action

𝑎 ∈ 𝑎 that has ℓ as an effect.

The learning rules in Definition 6 form the basis for SAM learning

for concurrent action in the same way that similar rules form the

basis of ESAM . Initially, we assume all literals are preconditions of

all single-agent actions, and the effects of all single-agent actions

are empty. Then, we remove preconditions and add effects for the

different single-agent actions by processing all the trajectories and

applying the learning rules above.

Next, consider implementing the POL planning phase for the

concurrent actions setting. While any single-agent planner can be

applied in the POL planning phase to find a plan, the single-agent

planning problem that planner needs to solve is significantly harder.

This is due to the exponential number of joint actions per state,

which results in an exponential branching factor of the search tree.

Fortunately, existing MA-STRIPS planners, such as MAFS [18] and

GPPP [16], are designed to exploit the same factored assumptions

described above.

6 EXPERIMENTAL RESULTS
We implemented POL for lifted domains using three different action-

learning algorithms: SAM learning, ESAM learning [12], and FAMA [1].

Since existing MA-STRIPS planners do not generate plans with con-

current actions, we did not implement the support for concurrent

actions mentioned above. We evaluated our POL implementations

on the publicly available CoDMAP benchmark of MA-PDDL prob-

lems.
4
This benchmark includes 10 MA-PDDL domains and 20

MA-PDDL problems for each domain. Table 1 shows general sta-

tistics on the selected domains. The columns |𝐴| and |𝑃 | list the
total number of different actions and fluents in each domain. The

columns “Act.” and “Flu.” list each domain’s maximal arity for ac-

tions and fluents. The column “I.B.A” indicates whether or not the

trajectories in our benchmark maintained the injective binding

assumption required for SAM .

Arity

Domain |𝐴 | |𝑃 | Act. Flu. I.B.A.

blocks 4 5 3 2 yes

depot 5 7 4 3 yes

driverlog 6 6 4 2 yes

elevators 6 8 5 2 no

logistics 5 3 4 3 yes

rovers 9 25 6 3 no

satellites 5 8 4 2 yes

taxi 17 6 2 2 yes

woodworking 13 14 9 3 no

zenotravel 5 4 6 2 yes

Table 1: Statistics of max. values for the tested domains.

6.1 Implementation Details
Since there is no publicly available implementation of ESAM , we

implemented both SAM and ESAM learning algorithms in Python

for use in the POL learning phase. Due to its complexity, we imple-

mented a partial version of ESAM in which only some of ESAM’s

proxy actions are created. Specifically, ESAM resolves ambiguity

about the possible effects of an action by creating two types of

proxy actions: one that merges action parameters that are mapped

to the same object into a single parameter and one that assumes

imposes an additional precondition.We only implemented the latter

4
http://agents.fel.cvut.cz/codmap/



approach as it was simpler technically and sufficient to solve all the

problems in the available benchmark.

In addition, some domains contain constants, which are objects

that are defined at the domain level and are present in all problems

from that domain. The addition of constants to the domain defini-

tion adds complexity to the learning process since they extend the

current set of objects to which the action and predicate parameters

can be mapped. Indeed, neither SAM nor ESAM directly support

constants, as they assume the parameters of an actions’ precondi-

tions and effects can only be bound to parameters of the action.

Therefore, we extended both algorithms to support constants by

allowing such binding of literals to constants. The impact of this

addition on the sample complexity analysis given in Theorem 2 is

reasonable, adding the number of constants in the domain to the

base of the exponent in Equation 1. Practically, we limited the scope

of learning by assuming that a grounded literal ℓ is a precondition

or effect of a grounded action 𝑎 only if they share at least one object

in their parameters. This prevents having lifted literals with only

constants as preconditions or effects and improves the learning

efficiency. We also verified this assumption empirically in all our

benchmark problems.

To implement POL with FAMA, we used a publicly available

implementation of FAMA.
5
FAMA runs an internal planner to gen-

erate its action model. As recommended by FAMA, we used the

Madagascar single-agent planner for this purpose, setting a time

limit of 100 seconds. In preliminary experiments, we observed that

indeed Madagscar is well-suited for this task, and increasing the

time limit beyond 100 seconds did not yield significant benefits.

Also, we note that the woodworking and taxi domains included

constants, which FAMA does not support, and thus we did not

include FAMA results for these domains.

In all our POL implementations, we used the FD planner for the

POL planning phase, with a time limit of 60 seconds. Since we do

not aim for optimal solutions, we configured FD to use Greedy

Best-First Search with the FF heuristic and preferred operators.

6.2 Evaluation Setup
Since the number of problems for each domain is relatively small in

the available benchmarks, we evaluated our algorithms using the 𝑘-

fold cross-validation method [19]. Specifically, we split our dataset

into five disjoint folds, each comprising four problems. Thus, in each

fold, 16 problems were used to generate the train set trajectories,

and the remaining four problems were used to test the learned

action model. These trajectories were generated by converting the

16 MA-PDDL problems into single-agent problems and running

Fast Downward [11], an off-the-shelf state-of-the-art planner, to

solve them, using a time limit of 1 minute.
6
In a few cases, FD could

not solve all 16 problems. This occurred only in depot and driverlog

domains. In these cases, fewer trajectories were obtained and used

for training.

5
https://github.com/daineto/meta-planning

6
Increasing the FD time limit did not significantly increase the number of problems

solved.

6.3 Evaluation Metrics
We focused our evaluation on threemetrics: the number of problems

solved with POL, the precision of the learned action model, and the

recall of the learned action model, denoted 𝑆 , 𝑃 , and 𝑅, respectively.

The 𝑆 metric is computed by running POL on the problems in our

test set. Note that if POL outputs a plan that is not sound, then it

is not counted as a solved problem. Precision and recall (𝑃 and 𝑅)

are measured separately for preconditions, add- and delete effects.

In more detail, let 𝑀 be an action model and let pre𝑀 (𝑎) be the
preconditions of action 𝑎 according to𝑀 . The precision and recall of

the preconditions in𝑀 , denoted 𝑃pre (𝑀) and 𝑅pre (𝑀), respectively,
are computed as follows:

𝑇𝑃pre (𝑀,𝑎) =∥ {𝑓 ∈ pre𝑀 (𝑎) } ∩ {𝑓 ∈ pre𝑀∗ (𝑎) } ∥
𝐹𝑃pre (𝑀,𝑎) =∥ {𝑓 ∈ pre𝑀 (𝑎), 𝑓 ∉ pre𝑀∗ (𝑎) } ∥
𝐹𝑁pre (𝑀,𝑎) =∥ {𝑓 ∉ pre𝑀 (𝑎), 𝑓 ∈ pre𝑀∗ (𝑎) } ∥

𝑃pre (𝑀) =
1

|𝐴 |
∑︁
𝑎

𝑇𝑃pre (𝑀,𝑎)
𝑇𝑃pre (𝑀,𝑎) + 𝐹𝑃pre (𝑀,𝑎)

𝑅pre (𝑀) =
1

|𝐴 |
∑︁
𝑎

𝑇𝑃pre (𝑀,𝑎)
𝑇𝑃pre (𝑀,𝑎) + 𝐹𝑁pre (𝑀,𝑎)

Precision and recall for the add- and delete effects, denoted 𝑃add,

𝑅add, 𝑃del, and 𝑅del are computed similarly.

6.4 Experimental Results
While conducting our experiments, we noticed that FAMA could

only generate action models for the blocks, driverlog, logistics,

and zenotravel domains before running out of time or memory. In

these domains, the injective binding assumption always holds (see

Table 1). Thus, the behavior of POL with either SAM or ESAM is the

same, and we only report the results for POL with SAM learning.

These results are presented in Table 2. The column “Alg.” indicates

the learning algorithm used, FAMA or SAM , denoted in the table

as F and S, respectively. The columns T and “Tri.” indicate the

number of trajectories and action triplets needed to obtain the best

results. Here, best results mean maximizing 𝑆 , and then maximizing

the precision and recall results. The rest of the columns show the

minimum, average, and maximum across all folds for all our metrics.

Observe that while SAM learning is monotonic, in the sense that

adding more trajectories can only increase its performance (𝑃 , 𝑅,

and 𝑆 values), this is not the case for FAMA.

As can be seen, POLwith SAM can always solve the same or more

problems than when using FAMA. The advantage of POL with SAM
is evident in the driverlog and zenotravel domains, where POL with

SAM solved all 4 test problems while POL with FAMA solved only

one or zero problems, respectively. In both cases, POL with FAMA

generated multi-agent plans, but these plans were inapplicable (i.e.,

not sound). Previous work [22] also encountered similar results.

In terms of precision and recall, the action model learned using

SAM always yielded the same or higher precision and recall com-

pared to FAMA. Observe that for driverlog, and zenotravel domains,

POL with FAMA, peaked after fewer action triplets than SAM . How-

ever, in these cases, its peak performance was significantly lower

than POL with SAM , solving fewer problems in the test set (lower

𝑆 values) and lower precision and recall results. Notably, the pre-

cision and recall computation for FAMA was different than as we

computed. In FAMA, the precision and recall are averaged over the

TP, FP, and FN of all actions, while we computed the precision and



Domain Alg. |T | Tri. 𝑃pre 𝑅pre 𝑃add 𝑅add 𝑃del 𝑅del 𝑆

blocks

S 1, 1, 1 38, 38, 40 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
F 1, 1, 1 38, 38, 40 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

driverlog

S 9, 10, 11 143, 183, 249 0.9, 0.9, 0.9 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

F 1, 3, 4 14, 34, 57 0.7, 0.8, 0.9 0.6, 0.7, 0.8 0.4, 0.6, 0.7 0.7, 0.8, 1.0 0.7, 0.8, 1.0 0.9, 0.9, 1.0 0, 0, 1

logistics

S 1, 1, 1 46, 47, 49 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
F 1, 2, 2 49, 81, 89 1.0, 1.0, 1.0 0.8, 0.8, 0.9 0.9, 0.9, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 0, 1, 4

zenotravel

S 2, 3, 3 55, 72, 82 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
F 1, 1, 1 24, 26, 27 0.6, 0.6, 0.7 0.6, 0.7, 0.7 0.4, 0.6, 0.7 0.7, 0.8, 0.9 0.6, 0.6, 0.7 0.7, 0.7, 0.9 0, 0, 0

Table 2: Comparison: POL using FAMA and SAM. The best results in each case is given in bold.

recall per action and reported the average of these values. Neverthe-

less, in all cases except driverlog SAM was able to learn precisely

the real action model, and thus these different computations are

not significant.

In general, the results highlight that for CMAP-BB, POL with SAM
performs significantly better than POLwith FAMA. However, it is es-

sential to note that the primary purpose of FAMA is learning action

models in a partially observable environment while our algorithm

only works in fully observable ones. This property of FAMA corre-

lates with the fact that its best performance results were acquired

after a few trajectory triplets. Furthermore, we noticed that while

POL with SAM learning only deduced the preconditions and ef-

fects for observed actions, FAMA also partially learned unobserved

actions.

6.4.1 Results over the Entire Benchmark. Unlike FAMA, both SAM
and ESAM feature feasible time complexity. Thus, we were able

to run POL with SAM and with ESAM over our entire benchmark.

The results are reported in Figure 2. The table in Figure 2(left) is

in the same format as Table 2. Since both SAM and ESAM return a

safe action model, the preconditions’ recall and the add and delete

effects’ precision values are constantly 1.0. Thus, we omitted these

columns from the table. The table shows only the results for POL

with SAM learning since we observed that POL with ESAM per-

formed the same in almost all cases. The only difference observed

between SAM and ESAM manifested in the satellite domain and

only in the number of triplets needed to reach the best performance.

We report these results in the plot in Figure 2 (right), which shows

the number of triplets needed to reach the best performance in each

of our five folds. This similarity in performance between SAM and

ESAM is expected since the injective binding assumption holds in

all domains except elevators, rovers, and woodworking. Moreover,

even in these domains, cases where this assumption does not hold

are relatively rare.

The first trend we observe is that the small number of trajectories

used for learning was sufficient to solve all problems in our test

set in almost all cases. Moreover, for the blocks, depot, logistics,

and zenotravel domains, the learning converged after less than 100

action triplets. For the taxi domain, our algorithm required all 16

trajectories in the training set to learn a model that is adequate to

solve the test set problems. This happened since it is divided so

that some agents are not observed. Thus, their actions could not

be learned until the entire training set was acquired. There were a

few cases where not all of the test set problems were solved. For

instance, in the depot domain, for one fold, only three out of the four

test set problems were solved. We performed a deeper investigation

of these few cases and discovered that they occur either when the

problem itself is too complicated for our planner to solve, even with

the actual action model (this was the case in depot), or when an

action has not been observed at all in the training set trajectories

(this was the case in satellite).

The second trend we observe is that in all domains except wood-

working and satellite, our algorithm can learn the action model of

all agents almost perfectly, with a recall of 1.0 for the effects and

an average precision higher than 0.7 in all cases (and usually much

higher). The satellite domain presented an interesting phenome-

non: the minimal recall for effects occurred when an action was

not observed in a specific fold. Indeed, without observing an action,

our algorithm cannot learn it. When experimenting on the wood-

working domain, we discovered that to solve the test set problems,

it was unnecessary to learn all of the actions and that using 7 out

of the 12 actions, all of the test set problems were indeed solved.

Thus, while the correct action model was not accurately learned, a

sufficient, safe action model was found.

Finally, consider the difference between the results of SAM and

ESAM on the elevators domain, as shown in Figure 2 (right). As can

be seen, in this domain, ESAM was able to reach peak performance

much faster than SAM , i.e., with significantly fewer action triplets.

On average, ESAM converged in this domain after less than half of

the triplets needed for SAM to converge. We note that the minimal

number of triplets needed for SAM to converge for the domain is

as high as the maximal number of triplets needed for ESAM . To the

best of our knowledge, this is the first experimental evidence for

the benefit of using ESAM over SAM learning.

7 RELATEDWORK
Learning a planning model from observations has gained signifi-

cant attention and has been studied using different assumptions.

The FAMA algorithm, for example, can learn action models in cases

where the observability of the actions/states is limited. The algo-

rithm uses planning to learn the preconditions and effects of the

actions. While FAMA’s main advantage is that it can learn an ap-

proximate representation of an agent action model with little to no

observability, its action model might contain actions that might not

be applicable to the agent. The LOCM family of algorithms [10] com-

pletely ignore the state information and only track the sequences

of allowed actions. While this broadens its applicability to cases



Domain T Tri. 𝑃pre 𝑅add 𝑅del 𝑆

blocks 1, 1, 1 38, 38, 40 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

depot 1, 1, 1 31, 201, 243 0.9, 0.9, 0.9 1.0, 1.0, 1.0 1.0, 1.0, 1.0 3, 4, 4

driverlog 9, 10, 11 159, 183, 249 0.9, 0.9, 0.9 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

logistics 1, 1, 1 46, 47, 49 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

satellite 1, 4, 6 40, 229, 324 0.8, 0.9, 1.0 0.8, 0.9, 1.0 0.7, 0.8, 0.9 3, 4, 4

taxi 16, 16, 16 349, 367, 405 0.8, 0.9, 0.9 1.0, 1.0, 1.0 1.0, 1.0, 1.0 3, 4, 4

zenotravel 2, 3, 3 55, 72, 82 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

rover 4, 6, 8 281, 352, 409 0.8, 0.8, 0.8 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

woodworking 6, 7, 11 260, 320, 447 0.6, 0.6, 0.6 0.6, 0.6, 0.6 0.6, 0.6, 0.6 4, 4, 4

elevators 2, 4, 5 148, 326, 400 0.7, 0.7, 0.7 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

Figure 2: (Left) Results for POLwith SAM learning. (Right) Comparison of the number of triplets needed until complete learning
for both SAM and ESAM in the elevators domain.

with no state visibility, it also yields poor performance when such

visibility is possible.

There are cases where agents do not share their internal data.

This might be due to privacy issues [9] where some of the facts or

actions of an agent are private, or since the agent is new and lacks

coherent API. In such cases cooperating with these agents is a more

challenging task. To address the fact that the agents’ capabilities are

unknown, and no prior information about the agents’ action models

is given, Verma et al. [22] created a framework where the algorithm

suggests "plans" for an agent and queries what would happen if the

agent were to execute the suggested plan. The agent then simulates

the execution of the plan and outputs a response. According to

the response, the algorithm can filter non-consistent action model

suggestions, whereby it will output a set of consistent action model

suggestions at the end of its run. This approach requires the agents

to have some query answering capabilities. On the other hand, our

approach can be executed as a prior stage to planning for all types

of agents. Furthermore, we suggest that using our approach will

improve the pruning capabilities of the concrete models (based on

the agents’ responses).

8 CONCLUSIONS AND FUTUREWORK
This paper introduced the CMAP-BB problem, where an agent is

tasked to generate a multi-agent plan for a team of black-box agents.

We proposed POL, a framework for solving CMAP-BB problems that

learns an explicit action model for the agents in the team. Equipped

with a safe action model learning algorithm, POL is guaranteed to

return a sound plan and, given enough trajectories, is probabilis-

tically complete. We implemented POL with three action model

learning algorithms and evaluated empirically on ten benchmark

domains. Our results showed that using a small number of tra-

jectories is sufficient for POL to learn an action model that serves

as an adequate approximation of the actual action model that en-

ables producing applicable plans for most test problems. Comparing

the different learning algorithms within POL in a fully observable

setting showed the benefit of using a safe action model learning

algorithm, namely SAM learning, over FAMA, a state-of-the-art

action-learning algorithm. Future work will explore POL in the con-

text of richer planning models that include stochasticity, partial

observability, and numerical state variables.
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